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Nonsingular particle solutions in variations on Einstein's nonsymmetric unified field tlieory
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The Einstein-Kuryunoglu nonsymmetric field theory has a distributed particle solution for the spherically
symmetric time-independent case where g»@0. The mass of the particle is derived from the field energy
when the integration constants are chosen to avoid singularities. Linearization of the equations yields the
Klein-Gordon equation for the charge density. The field functions are similar to a solution previously found
for Bonnor's modification of the nonsymmetric theory.

I. INTRODUCTION

After twenty years of neglect, Einstein's non-
symmetric theory has become the basis for a num-
ber of attempts to unify the fields of nature. ' These
attempts have generally been centered around two
modifications of Einstein's original theory. The
first was published in 1952 by Kursunoglu, ' the
other in 1954 by Bonnor. ' They differ from Ein-
stein's theory by the addition of a term involving

g,.&. This form was considered and rejected by
Einstein earlier. ~ Most of the recent papers in
the area have been concerned with the unification
of the electromagnetic and gravitational fields;
however, Borchsenius' has attempted to combine
gravitational and electromagnetic interactions with
the strong interaction by extending Bonnor's form
of Einstein's nonsymmetric theory to include the
Yang-Mills field. Moffat' has also attempted to
bring other fields of nature into the formalism by
using Bonnor's theory in conjunction with an ex-
tension of f-g theory. ' Finally, Kursunoglu has
reinterpreted and generalized his earlier nonsym-
metric theory to include further fields. "'

The closed-form solutions of Kuryunoglu and of
Pant' both suffer from field singularities at the
origin which lead to an infinite rest mass. This in-

finitee

rest mass is made finite by the artifice of
adding an infinite-negative-mass singularity to
provide a long-range mass which is finite. The re-
sulting uncoupling of the rest mass and total field
energy was presented by Bonnor" as an objection
to Kuryunoglu's2 contention that the rest mass of
the particle was derived from the total field en-
ergy in the Kuryunoglu theory. When Pant" pre-
sented the closed-form solution for the magnetic
monopole in Bonnor's theory he failed to find the
corresponding electric (g») charge solution. He
offered a proof that no such solution existed if the
charge could be confined to a finite sphere. Boal
and Moffat" obtained the same solution and offered
a reinterpretation by interchanging the electric and
magnetic fields. Boal and Moffat" also offered a
proof that there could be no solution to the electric

(g») charge problem if g»g« = -l. The present
authors found both assumptions to be disposable
and found the equations could be reduced to an
integro-differential equation. The charge struc-
ture of the spherically symmetric, time-indepen-
dent fields which satisfy Bonnor's equations was
investigated by numerical methods. "

The integro-differential equation method can
easily be generalized to a class of theories which
include Bonnor's and Kursunoglu's. In this paper
a solution for Kuryunoglu's theory will be obtained
by numerical integration of the corresponding
integro-differential equation. It will be shown that
in the case of small charge the solution goes over
to a solution of the Klein-Gordon equation found by
Kuryunoglu as a result of linearizing his unified
field theory. ' Kuryunoglu's evaluation of the total
field energy and claim that the total mass is de-
rived from the field energy is also supported by
the numerical integrations.

II. EINSTEIN-KURSUNOGLU FIELD EQUATIONS

Kuryunoglu derives his equations from a vari-
ational principle

which yields the following set of equations:
1 2Jf(„„)=,~'(b„„a„„), -

when the torsion vector vanishes, i.e.,

(5)

Here g" is defined as the contravariant metric
tensor density. 8» is the Ricci tensor formed
with the nonsymmetric affine connections I'»~ ac-
cording to

&I v-=I'pv, p -I'pp, v+I'pvI'ap -~p pI av ~
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The symmetric and antisymmetric parts are writ-
ten as

2B(p~) Bp p +gyp

2A (p„—=B~„-R„„.
(7)

(8)

The comma stands for partial differentiation and
the semicolon for covariant differentiation as de-
fined in Eq. (4). The covariant metric tensor is
defined by

g)) v 8 =')) -g 8)) ~ (9

where

g =det(g„„), ll"'
= P '""'/(-detg '""')"', (10)

l =det(g&)'"&), a„„=g&„„&, l)„„l '" =8„'. (ll)
The sixty-four equations (4) are sufficient to

define the I"s in terms of the g's. The system is
simplified by requiring spheri. cal symmetry and
time independence. When we further restrict the
problem by seeking only the electric field, we
have a metric of the form

A33 =R22 sin20

R„=v'e' "[—
& (u" + u" + u' v'/v + u'p') ]'

= ——', K'e "(1—sing),

csc8R» =-—,'v[ve"'&'(&t)' sinp+p' cosp)]'

+ —,
' v'e" ' ~ Q' [&t)' cos&t) —p' sin&t)]

= 2K'(1' -e~cosp),

(18)

(17)

(18)

III. SOLUTIONS

A. Analytic Results

A linear combination of Eqs. (13) and (16) can
be conveniently manipulated to give

Since Eq. (14) is proportional to Eq. (15) and
Eqs. (17) and (18) also are proportional, we have
only four equations to satisfy. Kuryunoglu' has
shown that one of the four remaining equations
is redundant (due to the Bianchi identity).

1

0

p"+p' v'/v+ l(p" +0")=o.
We may formally integrate to obtain

(19)

e~ cosysing

-e)' cos&))) sin8 -e)' sing sin'8 0
Solving for v gives

(20)

(12)

The equations (4} are solved for the I"s and then
the 1"'s are used to form six nonvanishing equations
from (2) and (3):

ft „=p" +p' v'/v+ -', (y" +p")
+ 2 (u" + u" + u' v '/v+ u'p')

1 r A/2 ~ 1v= —,exp --,' p'+, dr =- —,e . (21)
P 0 P P

By forming the linear combinations 8» cos&t)

+A» sing/sin8 and A» sin&t) —fl» cos&t)/sin8 we
obtain

(ve"' p&')' =1/v[K'(e&'cos&)I) -1'sin&t)) —2 cos&t)]

(22)

, e"
(1 —sin&t)),

fl» =-1+—,v [ve"'&'(p' sing —&t)' cosQ)]

——,Q'v'e" '
&'(&t)' sing +p' cosQ)

= —,
' K'e)'(sing —1),

(13)

(14)

(v e"')'p'}' = 1/v(K'[e &'(1 —sin&)))) —l' cosy] + 2 sing] .

These two equations are formally inte'grated and
a ratio is formed to eliminate the variable u:

d&)&) f~ 1/v[K'(e&'& cos&t), —1' sing, ) —2 cos t]d&r),
dp J'" 1/v(K' [e)'l(1 —sin &t),) —l ' cosQ, ] + 2 sin&t)/dr,

' (24)

The integration constants are set equal to zero to eliminate singularities. When Eq. (21) is used to elim-
inate v we have an ordinary integro-differential equation in &II) as a function of p,

J'p„e&[K (e 1cosfl l slung) 2c—os/&]d p, —
dp f&' e &fK2 [e~(1 —sing, ) —l' cosp, ]+2 sing, ]dp, '

Po
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where choice for ~. We choose

y=-'. '1+ '
dp. . (26} (2V)

Notice only Q, p, and its dummy replacements
p, , p, remain. po is a constant.

The complete elimination of r is consistent with
the Bianchi identity which allows an arbitrary

Q:2)+ p7f.

The integro-differential equation becomes

Jo e [p'(r, 'i sinht/i, +1'cosh/, )+2i sinhg, ]dr,
dr r f"e~( p'[-r, '(1 —cosh/, )+1'i sinhg, ]+2coshg, )dr, ' (29)

where

(30)

be finite we obtain the condition

l'P' cosh/, +2i sinhg, =0 . (31)

%hen we require that the derivative at the origin
The final form of the integro-differential equa-

tion is

8 — + —,p r, sinhg, dr,z sinh(g, —g, )
d 2 0 cosh

6 cosh(4
cosh/,

(32)

Before proceeding to a numerical solution we will
examine the weak-field approximation.

B. Weak-Field Approximation

given by

r
r'g = 4m gr'dr.

0
(36)

The weak-fieM case was examined by Kuryunog-
lu' where he introduced a current vector J„and
found

J~- g'Jp=0.

From this he deduced the spherically symmetric,
time-independent charge density

Substitution of Eg. (38) in (3V) and differentiating
yields

dg~2 p2~ Q
d&

which we recognize as the result obtained previ-
ously by Kuryunoglu.

and the total energy

mc'= v 2g.
We linearize Eq. (32) by the approximations

sinhP = g,
cosh/ =1, (36)

where g is small. This allows the reduction of Eq.
(32}to

2 f~ (g —$0+ 2p r'g)dr
dr r J"dr

0

In the linearized problem the charge density is

C. Numerical integration

Bonnor" objected to Kuryunoglu's contention
that the mass was totally derived from the field
energy. Bonnor showed by asymptotic expansion
that the mass and the charge were two apparently
independent constants. The numerical solution
resolves this difficulty by showing nonsingular
solutions exist only when the mass is completely
determined by the charge and the fundamental con-
stant P. Indeed, if we attempt to place a mass or
charge singularity at the origin we find ourselves
unable to satisfy the equations with a continuous
function; in this case, like Bonnor, we also have
two independent constants.

Finite-difference methods were used to obtain
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numerical solutions of the integro-differential
equation (32). The radial variable was rescaled
to absorb the factor 2p'. Starting values for the
derivative were selected and the corresponding
charge, mass, and field distributions were found.
In many cases the solution diverged in either a
positive or negative direction (depending on the
total charge}. At a particular value of the charge
the numerical solutions approached the Reissner-
Nordstrom solution. The numerical method failed
to reach the point at infinity, however, and this
forced us to use the Reissner-Nordstrom solution
at large distances. An asymptotic expansion was
used in a previous paper" to show that the solution
does indeed approach the Reissner-Nordstrom so-
lution for large r.

Figure 1 shows the normalized radial fieM
(e~sinhP/tanhgo) as a function of the radial vari
able X which keeps the corresponding Reissner-
Nordstrom function constant [X=A/(1+A},
8'= e~ cosh]. In the small-charge region
[$,(0)«1] the numerical solution accurately re-
produces the solution to the corresponding Klein-
Gordon equation. For small X the numerical solu-
tion exhibits the behavior of Papapetrou's solution
for p'=O. Also, for large r the solution approaches
the Beissner-Nordstrom solution. Thus we are in
asymptotic agreement with the three related solu-
tions.

Although the charges a,nd masses of particles
observed in nature are extremely small and lie
in the asymptotic region [g„(0)«1], we have ex-
amined large values of $„(0) and have demonstrated
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FIG. 2. The mass of the particle is identified as the
integral of the field energy density. The contribution to
the mass of the spherical layers of thickness hz= 1/80
is shown to approach the BN result as x-1 and to
vanish as x 0. This allows the computation of a finite
self-energy and the identification of the mass with the
area under the curve. The curves are normalized to
the charge squared.

a space distortion peculiar to our solution (i.e.,
g»g44x-1). Figure 2 shows the radial variation of
(-g»g44)' ' with X'. Note that a volume computed
from fv'-gd'x will be diminished in the presence
of a large radial electric field.

Figure 3 displays the normalized mass in each
spherical shell and compares it with the corre-
sponding mass computed from the energy density
for the Beissner-Nordstrom solution. Although the
Beissner-Nordstrom solution may be found for any
finite charge, the Hermitian solution limits the
charge according to Eg. (31),

2- 2i
l = - -2- tanh(0, -1~tanh(o &1.
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FIG. 1. Normalized radial field functions are dis-

played for starting derivative $„{0)=—10 4, —5, —10.
The radial coordinate is chosen sothat the comparison
Reissner-Nordstrom {RN) function Ithe flux through a
sphere of radius {e cosh|tt )~~ ] is constant. The solu-
tions approach the RN solution as x-l, where x=—tl
+ {e cosh') ~2]"&; when $„{0)&1, the solutions approach
the solution to the Mein-Gordon equation.

FIG. 3. As the starting derivative becomes more
negative the volume element in the high-field region
diminishes in the Hermitian form of the theories. The
Reissner-Nordstrom solution does not show this be-
havior. The volume element in a sphere of radius
{e cosh/) i diminishes while the area of the sphere is
maintained at 4~ cosh/ .
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If the Hermitian condition on g is dropped then
another set of solution is found where the charge
is not bounded,

2 2
~ tang» -~ & tang

The linearization of this non-Hermitian theory
yields the same small-charge solution but in the
non-Hermitian case the volume in a sphere is
greater than its Euclidean value.

The solutions for Kuryunoglu's and Bonnor's
theories are not identical for finite charge, but

for the range of g considered neither is signifi-
cantly different from the linearized solution. Be-
tween the two theories, taking into consideration
charge conjugation, Hermitian and non-Hermitian
solutions, we could form eight charged particles
with the same charge-to-mass ratio. A neutral
particle could also be formed by taking a differ-
ence between the terms of the theories. The neu-
tral particle would apparently be much lighter than

the charged particles.

IV. CONCLUSIONS

Using a method developed and applied to the
Einstein-Bonnor theory in a previous paper the
authors have solved the problem of the interaction

of a charged particle with its own field in the Ein-
stein-Kuryunogt. u unified field theory. Graphs of
the numerical results are presented in three fig-
ures. The numerical results are in agreement in
the small-charge region with the results of the
corresponding Klein-Gordon equation.

The authors do not regard the theory as com-
plete in that it does not appear to contain spin.
Also, one would anticipate that a complete theory
would have no independent constants and provide
continuous fields with continuous first deriVatives.
The present theory provides fields which are con-
tinuous everywhere, but the first derivative is dis-
continuous at the origin due to the nonzero starting
value necessary to provide the solution that ap-
proaches the Beissner-Nordstrom solution at large

If one assumes that the discontinuous derivatives
at the origin are a result of some fundamental pro-
cess not included in the present theory, then we
have a theory that predicts a unique charge and
charge-to-mass ratio. When the value of the uni-
versal constant P is given, the value of the start-
ing derivative determines the solution completely.
In other words, a solution that converges at large
& exists only for a single charge and a single
charge-to-mass ratio.
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