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The local geometrical structure of general relativity is analyzed in detail from the standpoint of a
formulation of gravity as a gauge theory of the de Sitter group SO(3,2). In order to reproduce the structure
of the Einstein-Cartan theory, it is essential that the SO(3,2) gauge symmetry be spontaneously broken
down to the Lorentz group. In the geometrical analysis of this spontaneously broken theory, the Goldstone
field of the symmetry-breaking mechanism plays a central role, representing the coordinates of a point in an
internal anti-de Sitter space, where the motions induced by parallel transport across space-time take place.
In order to establish the connection between the SO(3,2) gauge theory and the Einstein-Cartan theory, the
gravitational vierbein and spin connection are derived from the original SO(3,2) gauge fields by passing over
to a set of nonlinearly-transforming fields through a redefinition involving the Goldstone field. The original
SO(3,2) gauge fields have a different but equally important role: they generate pseudotranslations and
rotations in the internal anti-de Sitter space under a kind of parallel transport across space-time that is
called "development. " Development maps curves in space-time into image curves in the internal space, and
vector fields along the curves in space-time into image vector fields along the image curves. Considering
development along infinitesimal closed curves in space-time leads to the proper interpretation of the effects
of torsion and of curvature in terms of the nonclosure of image curves and of the rotation of image vectors
with respect to their original values. .

I. INTRODUCTION

This paper is about the insights into the geomet-
rical structure of the Einstein-Cartan theory of
gravity that can be gained from a formulation of
the theory as a Yang-Mills gauge theory of the
de Sitter group SO(3, 2). The de Sitter symmetry
must be spontarieously broken down to the Lorentz
group SO(3, 1) in order to make contact with the
usual four-dimensional geometry of gravity. In
our discussion, we shall pay particular attention
to the role of the Goldstone field of the theory, as
well as to that of the SO(3, 2) Yang-Mills gauge
fields. The latter do not directly represent the
gravitational vier bein and spin connection as in
other works on this subject, but, nonethel. ess, they
are of central importance for the geometrical
structure of the theory. Using them we shall make
contact with a more precise formulation of the
geometry of the Einstein-Cartan theory than is
normal. ly presented in the physics literature.

There is by now an extensive literature on the
relation of general relativity to Yang-Mills gauge
theories. Since the papers of Utiyama, ' Kibble, '
and Sciama, ' there has been considerable interest
in this topic and, rather than recount the history
in detail, we refer the reader to the several avail-
able reviews of the subject. ' ' The end result of
this work has been to establish an analogy between
general relativity, when written in first-order

form in the vierbein formalism, and a gauge theory
of the Poincare group, with the spin connection
representing the gauge field for the Lorentz rota-
tions, and the vierbein field being considered as
the compensating field for translations in space-
time. Since the translations must be space-time
dependent in order to have a local symmetry, they
really represent infinitesimal general coordinate
transformations considered actively, i.e. , trans-
forming fields but not the coordinates of space-
time. Of course, the general coordinate group is
an infinite-dimensional group, so the connection to
the Poincare group that is made in this way is
really just an analogy based upon the flat-space
limit of general relativity. The differences from
the Poincare group show up in the appearance of
space-time-dependent functions in the algebra of
commutators of the active general coordinate
transformations. For a review of the various ap-
proaches that have been taken in considering gen-
eral coordinate transformations as local transla-
tions, see Ref. 4.

In this paper, we take a quite different attitude
to the Yang-Mills symmetry that underlies our dis-
cussion of gravity. We shall not place much em-
phasis on the connection to general coordinate
transformations; this connection will emerge nat-
urally, and is the same as that explained in Ref. 4.
On the other hand, we will take the original Yang-
Mills symmetry quite seriously, not discarding
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the "translational" parts in favor of general coor-
dinate transformations, but preserving the full lo-
cal symmetry rigorously throughout the work.

An important stimulus for the revival of interest
in gauge-theoretic formulations of gravity has come
from recent developments in supergravity. '~ In
particular, the extended supergravity theories
combine space-time and internal symmetries with-
in one irreducible multiplet of symmetries. Pure
supergravity is related to a gauge theory of the
graded Poincare group, "or, in the generalization
of supergravity to include a matched pair of cos-
mological constant and spin-& mass term", to a
gauge theory of the graded group OSP(1, 4)." Both
of the Refs. 10 and 12 considered the reduction to
the corresponding purely gravitational theories,
based respectively on the Poincare group and on
the group SP(4). Although these groups were used
to motivate the construction of actions in Refs. 10
and 12, the end results were not strictly invariant
under the respective groups. An extension to a
superspace formulation of supergravity of the re-
sults of Ref. 12, which clarifies the relation to the
work of Ref. 4, has recently been given in Ref. 13.
The usefulness of the heuristic discussions of Refs.
10 and 12 was shown in the application of these
techniques to study the SO(2) extended supergravity
theory' and to construct the theory of conformal
supergravity. "

In this paper, we base our discussion upon the
de Sitter group SO(3, 2) which is locally isomorphic
to the group SP(4). We take as a starting point the
results of Ref. 16, where an action that is strictly
SP(4) invariant was given, which in a particular
gauge reduces to the gravitational action of Ref. 12.
This work also introduced the five-vector nondy-
namical field that we shall study extensively here.

For our present purposes, we could equally well
use the de Sitter group SO(4, 1); the choice of
SO(3, 2) is made simply to retain the connection to
the work on supergravity referred to above. The
choice of the de Sitter group rather than the Poin-
care group is not casually made, however. In or-
der to make contact with the geometry of the Ein-
stein-Cartan theory and still retain the Yang-Mills
symmetry throughout the work, it is essential that
this gauge symmetry be spontaneously broken down
to the Lorentz group. We chose the de Sitter group
because it is a semisimple group and in it the gen-
erators are initially all on an even footing. Spon-
taneous symmetry breaking causes four of the ten
generators of the group to be broken, and thus to
have a nonlinear action on field variables. The
strength of the symmetry breaking is given by a
parameter m"' with the dimensions of length; in
the usual fashion, the broken generators and their
associated gauge fields are scaled by the factor m

in order to normalize the Goldstone field. Letting
the strength of the symmetry breaking tend to in-
finity leads back to the Poincare group.

The symmetry breaking in our case is triggered
by requiring a nondynamical SO(3, 2) five-vector
field to be constrained to take its values in an in-
ternal anti-de Sitter space, a copy of which is as-
sociated to each point in space-time. This internal
space is also a copy of the maximally symmetric
solution to the theory's field equations. It is a
four-dimensional submanifold of the five-dimen-
sional space that the de Sitter group has a natural
action in. The constrained theory can be general-
ized to a theory with a propagating Higgs scalar
field in the usual way of spontaneously broken
gauge theories; we shall give an example of how
this may be done in the concluding section of this
paper. Since the SO(3, 2) symmetry is spontaneous-
ly broken, the broken generators give rise to an
inhomogeneous and nonlinear transformation law
for the Goldstone field, which parametrizes the
point in the internal anti-de Sitter space referred
to above. The appropriate mathematical formal-
ism for discussion of this situation is the theory
of nonlinear realizations of groups, "~"which we
shall use extensively.

The application of the theory of nonlinear reali-
zations to gravity has been carried out in different
ways in previous investigations. For example, the
vierbein field has been considered as a GoMstone
field related to a nonlinear realization of the group
GL(4, 8),"or of the affine and conformal groups. "
For us, however, the Goldstone field is the non-
dynamical field referred to above. The approach
which is most directly relevant to the present work
is that due to Volkov and Soroka" (cf. also Ref.
22). These authors considered a nonlinear reali-
zation of the Poincard group in the context of the
spontaneous breakdown of supersymmetry. Unlike
the present work, they did not associate a Gold-
stone field to the breakdown of Poincard to Lorentz
symmetry, but identified the corresponding coset
parameters with the points of space-time itself.
However, they did construct the vierbein and spin
connection from the Poincare gauge fields by pass-
ing to a set of redefined "nonlinear" fields as we
shall do. Similar identifications of the vierbein
and spin connection have subsequently been made
also in Refs. 23, 24, which were primarily con-
cerned with the application of nonlinear realiza-
tions of OSP(1, 4) to supergravity. None of these
papers has treated the Goldstone field in the way
that we shall do, however.

In the present work, the Goldstone field repre-
sents a point in an internal anti-de Sitter space,
as we have mentioned. In describing the geometry
of this internal space, we make use of some of the
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results of Refs. 25, 26 on the nonlinear realization
of supersymmetry in anti-de Sitter space. In order
to carry out parallel transport across space-time,
we use the property of nonlinear realizations that
they respect the linear representations of the sta-
bility subgroup, which in this case is the Lorentz
group. The precise description of this parallel
transport involves a map between the tangent space
to space-time at a given point and the tangent space
to the internal anti de Sitter space at the point
whose coordinates are given by the Goldstone field.
The vierbein field is the matrix of this map, which
is formally known as the solder form. The under-
lying mathematics of this situation was presented
in Ref. 27.

The role of the original SO(3, 2) gauge fields in
our formulation is to generate a version of parallel
transport of nonlinearly transforming fields that
we call "development. " Development differs from
the usual version of parallel. transport using the
spin connection in that it involves calibrating
transformations that use the broken de Sitter gen-
erators as well as the Lorentz generators. It is
a purely gauge-theoretic notion which is carried
out by solving a set of differential equations involv-
ing an operator 6, , constructed from the original
SO(3, 2) gauge fields, to find the result of develop-
ing the values of the Goldstone field and of nonlin-
ear tensor fields along a given curve in space-
time.

Since the broken generators a.ct inhomogeneously
on the Goldstone field, the result of developing this
field from each point along a curve in space-time
to some given point is to create an image curve in
the internal space associated to that given point.
It is because of this that we have named the pro-
cess "development, "for the resulting image curves
and image tensor fields defined along them are
identical to those obtained by a generalization, to
our situation with internal anti-de Sitter spaces,
of a purely geometrical construction known in dif-
ferential geometry as development into the affine
tangent spaces of a differentiable manifold. Al-
though the details of this known geometrical con-
struction, as discussed for example in Ref. 28, in-
volve parallel transport of tensors alone using the
spin connection, we show that the results agree
with our form of development, which is based upon
transport of the Goldstone field using the original
SO(3, 2) gauge fields. The demonstration rests up-
on the equivalence between SO(3, 2) gauge transfor-
mations and parallel transport in the internal
space.

The geometrical construction generated by de-
velopment is important because it is the appropri-
ate construction for the analysis of the effects of
space-time torsion and curvature. It has riot fig-

ured prominently in previous discussions of the
Einstein-Cartan theory in the physics literature,
although it is necessary for an accurate descrip-
tion of the effects of torsion. An analysis of the
Einstein-Cartan theory using the formalism of
modern differential geometry has been carried out
in the work of Trautman, "although development is
only obliquely referred to there through what is
called a "radius vector field. " In order for us to
establish full contact with this theory, it is neces-
sary to obtain the usual space-time torsion and
curvature from the SO(3, 2) curvatures by a redef-
inition, involving the Goldstone field, which is
analogous to that used to obtain the vierbein field
and spin connection. From our discussion of de-
velopment, torsion gives the gap by which an image
curve in the internal space, . corresponding to an
infinitesimal closed curve in space-time, fails to
close. The de Sitter curvature gives the relative
rotation of an image vector developed around such
an infinitesimal curve with respect to the original
vector. The value of the de Sitter curvature is the
difference between the usual Lorentz curvature of
space-time and the curvature of anti-de Sitter
space.

The paper is organized as follows. In Sec. II,
we use the results of Ref. 16 to introduce the con-
strained field, which will become the Goldstone
field upon passage to a nonlinear realization, as is
discussed in Sec. III, where the usual features of
the Einstein-Cartan theory are derived. Develop-
ment is introduced in Sec. IV, and shown to gen-
erate the appropriate geometical construction to
enable the torsion and curvature to be identified,
as is done in Sec. V. Section VI concludes the pa-
per with a look forward to applications of the pres-
ent work to supergravity and to the global struc-
ture of general relativity. In this concluding sec-
tion, we also give an example of how the con-
strained field that we use in the geometrical dis-
cussions can be replaced by a propagating Higgs
field with a potential that causes spontaneous sym-
metry breakdown of SO(3, 2) to the Lorentz group.
Some technical details on the calculations and on
the description of anti-de Sitter space are pre-
sented in the Appendix.

II. SO(3,2) GAUGE THEORY OF GRAVITY

In. order to give a concrete basis to the following
geometrical discussion, in this section we recall
the SO(3, 2)-invariant action for gravity which was
given in Ref. 16. The initial intention is to con-
struct the gravitational vierbein field, spin connec-
tion, and action using only the SO(3, 2) gauge
fields; this aim will shortly be relaxed by the
introduction of a nonpropagating field, as will. be
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explained. Accordingly, we begin with just a four-
dimensional differentiable space-time manifold 9g
and the SO(3, 2) gauge fields &o„"s(x), A, 8=1, . . .,
5. With this minimum of mathematical apparatus,
the only further objects that we may use to con-
struct invariants are the numerically invariant
SO(3, 2} tens or q„~ = (1,1,1, -1, -1), the totally
antisymmetric tensor e"san (with e'"4'= 1}, and
the Levi-Civita tensor density (with "world" in-
dices) e""~. Invariants which could serve as the
action of an SO(3, 2) gauge theory must be con-
structed from the field strengths

AB g ~AB 8 ~ AB~~ AC~ B ~AC~
pv g v v y vC v uC

(2.1)

where the index C has been lowered with g».
The only invariant which can be built with the

above elements that is polynomial in the field
strengths is the topological invariant that gives
the Pontryagin index, f d'xe""~R„„"R~gs.
Ref. 16 a nonpolynomial action was presented,
which in the present notation is

actions. The action now takes the form"

I d g mg &A c~~A

+ X(y"y„+m ') ] . (2.5)

y'(x) = 0 (2.6)

and noting that the field y'(x) is then constrained
to take the value m ', the integrand reduces di-
rectly to the form (2.4). Defining the scaled gauge
fields

Notice that in order for this action to be even under
parity transformations, it is necessary to make an
O(3, 2) transformation of determinant minus one at
the same time as the parity transformation is car-
ried out on the spatial indices. This is of course
just a generalization of the usual situation in the
vierbein formalism with the Lorentz group. Elim-
ination of first y, then X by substituting the solu-
tions to their algebraic field equations back into
the action yields again (2.2). On the other hand,
upon making the [a5] gauge choice

x(g&&~H&R,R g~&&~}] ~ (2.2)

If a local gauge choice is made corresponding to
the [a5] (a= 1, . . ., 4) generators of the group such
that

1el a=m col as

and expanding the field strengths

where

ab 8 ~ ab 8 ~ ab+~ ac~ b ~ ac~ b
v v v 0 fI VC v g c

(2.7)

(2.8)

(2.9)

v~& g bcg d 5 0abed 5 uv pe

at every point x "c5R, then (2.2) reduces to

f d'x(@')'~', where

~ ovpeg abg cd~
pv pe abed 5 '

(2.3)

(2.4)

Taking the square root, the resulting action

f d'x 4 has a residual SO(3, 1) gauge invariance.
This is the action for gravity in the form given in
Ref. 12.

The form {2.2} of the gravitational action is not
the most convenient for our following discussion.
The square root is somewhat unorthodox, and there
is also a dimensional difficulty. In order to inter-
pret the gauge field ~„„in the special gauge (2.3)
as the vierbein e „it must be scaled by a quan-
tity with dimensions of length in order to give a
dimensionless vierbein field. There is no indica-
tion of any scale of length in (2.2), however In.
order to eliminate. the square root and introduce
a dimensional quantity, we introduce a con-
strained, nonpropagating SO(3, 2) five-vector field
y"(x) with dimensions of length, together with a pa-
rameter m of dimension (length) ' and a scalar
density Lagrange multiplier X(x). This five-vector
field was first introduced in the work of Ref. 30,
where it was used to construct OSP(1, 4) -invariant

x"x„=x'x' {x')' (x')-'= -m -'. (2.11)

Thus, the vacuum state of the theory (2.5) is an
Ads space of the same curvature and signature as
the space the y" are constrained to lie in. This

is the usual SO(3, 1}curvature tensor, the inte-
grand (2.4} splits up into three pieces: Z,»&
+m'Z«, »+m 2«,«&. The first of these is the inte-
grand of the Gauss-Bonnet topological invariant,
and so gives no contributions to the field equations,
the second is the usual scalar curvature action of
Einstein's theory, and the third is a cosmological
constant.

The maximally symmetric solution to the field
equations derived from (2.5) is an anti-de Sitter
space (henceforth denoted AdS) satisfying

0pv

In the special gauge (2.6), we may identify the
scaled field e~ in (2.'I) as the vierbein field, and

the remaining e„'b as the spin connection. When
these fields satisfy (2.10), they belong to a space
that may be represented as a four-dimensional
submanifold embedded in a five-dimensional
pseudo-Euclidean space with metric q», with the
embedding equation
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fact suggests the role that the y" must play in the
geometrical structure of the theory: They are the
AdS analogs of the local inertial frames of general
relativity. Each point of 3R is provided with a field
that lies in a local copy of the vacuum. If there is
no cosmological constant, then the vacuum is just
Minkowski space, and the local inertial frames
are taken to be flat. Vfith a cosmological constant,
these local frames are taken to be curved. Note
that in either case the frames are, in general, on-
ly truly inertial at one point [in our case, a frame
is in fact only inertial at a point z~ if its origin is
chosen so that (2.6) holds there]. The deviations
from inertial character in a vicinity of that point
are minimized by making the appropriate choice
of frame curvature.

In order to couple the theory (2.5) to matter
fields, one needs to have an SO(3, 2)-invariant ob-
ject that can serve as a metric tensor. This is
constructed using the covariant derivative of y",

V@y = ~~y + (d~ gy (2.12)

A
p, y my~ ~ (2.13)

Note that using g „, one may also construct other
forms of the gravitational action than (2.5). Tbe
form (2.5} is, however, the unique form which
permits elimination of the field y" by an algebraic
field equation.

The introduction of a constrained field y" in
(2.5) is an essential feature of the attempt to view
gravity as a gauge theory of SO(3, 2). Although,
for concreteness, we have introduced it with ref-
erence to a specific action principle, the reason
why it arises is fundamental. General relativity
in the form of the Einstein-Cartan theory is for-
mulated in terms of spin connections and the ca-
nonical one-form (i.e. , tbe vierbein field) defined
on the bundle of orthonormal frames over the
space-time manifold K.29 Gravity is thus firmly
linked to the tangent space structure of ~ A gen-
eral gauge group bundle, however, is only loosely
attached to gg, and need not have any rigid global
linkage to the tangent spaces of ~ For this rea-
son, it is necessary for us to take a specific
SO(3, 2) bundle which allows the construction of a
one-form that sozdezs the fibers with structure
group SO(3, 2) to the tangent bundle of tbe space-
time manifoM It'. The full mathematical details
on the construction of this solder form can be
found in Ref. 27.

In brief, the requirements for there to exist a
solder form are as follows. There must exist a
fiber bundle associated to the principal SO(3, 2)

In the special gauge (2.6), this expression reduces
to V~y'= e~', V„y'= 0. Consequently, matter
couplings can be made using V„y" and the metric"

bundle on which the gauge connections are de-
fined, the fibers of which can be identified with
the coset spaces (SO(3, 2)/SO(3, 1)), and which al-
lows a point in each of these fibers to be smoothly
associated with the underlying space-ti. me point as
one goes around the manifold 9g, i.e. , this asso-
ciated bundle must admit, a global cross section.
Note that the fiber (SO(3, 2)/SO(3, 1)jhas the same
dimension as It. Once a cross section has been
picked, the residual structure group is the Lorentz
group SO(3, 1}and one says that tbe structure group
has been reduced from SO(3, 2) to SO(3, 1). It is
further required that the tangent spices to the
(SO(3, 2)/SO(3, I)) fibers at the points chosen by
the cross section. may be smoothly mapped onto the
tangent spaces to QR at the underlying space-time
points. That is to say that the associated bundle
of (SO(3, 2)/SO(3, 1)j fibers must be soldered to
the space-time manifold It'. The solder form is
the map between the tangent spaces to K and the
tangent spaces to the fibers (SO(3, 2)/SO(3, 1))at
the points selected by the cross section.

The coset spaces (SO(3, 2)/SO(3, l)j are just the
local anti-de Sitter spaces that we have found it
necessary to introduce. The cross section of the
associated bundle of (SO(3, 2)/SO(3, l)3 fibers is
represented locally by the constrained five-vector
field y"(g). The vierbein field of the theory is then
the solder form. Note that in our discussion so
far, we have. only attempted to identify the vierbein
field in the special gauge (2.6), where the con-
strained field points in the "5"direction every-
where. This will have to be generalized if we are
to retain the full SO(3, 2) invariance in our discus-
sion of gravity, and the vierbein field will have to
be identified with more care, as we shall see in
the next section. The importance of retaining the
full SO(3, 2) invariance is illustrated by another
gauge choice which can be made when the system
is in its vacuum state. The vacuum equations
(2.10) allow an SO(3, 2) gauge to be chosen in which
e„'= & ' =0. The vacuum state is then described
entirely by the constrained field y"(z) and the va-
cuum vierbein and spin connection will be given in
terms of it and its derivativ'es.

III. SPONTANEOUS SYMMETRY BREAKING

The appearance of the constrained field y"(x) in
our SO(3, 2) gauge formulation of gravity recalls
the nonlinear o model, and indicates that the de
Sitter symmetry is spontaneously broken. Spon-
taneous symmetry breaking is also evidenced by
the difference in propagation between the gauge
fields &„, and ~„,» the former propagate, while
the latter satisfy an algebraic field equation in the
special gauge (2.6), which corresponds to the usual
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"unitary" gauge. The situation is analogous to that
of the Higgs effect, in which gauge fields that were
initially on an even footing end up with different
propagation behavior. In this case the spontaneous
symmetry breaking is triggered by the fact that
the nondynamical field y"(z) is constrained to lie
in an anti de Sitter space, y"y„= -m '. Note that
although the difference in propagation character
between the ~ „and ~„,~ is most clearly seen in
the unitary gauge (2.6), a difference in propagation
among the w„» will occur in any gauge.

The fact that the 80(3, 2) symmetry is spontan-
eously broken plays a crucial role in the geomet-
rical analysis of the theory. Its most important
consequence is to allow us to construct the true
vierbein and spin connection. The spin connection
expresses the relative rotation of the orthonormal
frames in the tangent spaces to the space-time
manifold gg at two neighboring points g" and ~"
+ dh". It allows one to perform parallel transport
of vectors that reside in these tangent spaces. In

-our SO(3, 2) gauge theory, we do not possess at the
start any means of parallel transporting such
SO(3, 1) four-vectors. However, we do have the
gauge fields ~~~, which permit us to parallel
transport objects that transform according to the
linear representations of 80(3, 2}. What spontan-
eous symmetry braking of SO(3, 2) down to SO(3, 1)
allows is the passage to a nonlinear realization""
of SO(3, 2) in which the irreducible linear repre-
sentations of SO(3, 2) go over into nonlinearly
transforming sets of fields that transform inde-
pendently according to their SO(3, 1) indices.

The importance of nonlinear realizations for
gravity in the sense of this paper was realized by
Volkov and Soroka in connection with the spon-
taneous symmetry breaking of supersymmetry,
where the Poincare group is a broken subgroup
and the Lorentz group is the actual stability sub-
group. In Ref. 21, the vierbein and spin connec-
tion were identified with nonlinearly transforming
fields derived from the original linear gauge fields
as we shall do, but the coset parameters corre-
sponding to the spontaneously broken translations
were taken to represent the coordinates of points
in space-time itself. In contrast, the present work
takes the coset parameters corresponding to the
broken generators to represent the coordinates in
an internal anti-de Sitter space of the point deter-
mined by the constrained field y"(z). Moreover,
although the Poincard group is obtained from
80(3, 2) by a Wigner-Inonu contraction, from the
standpoint of this paper, the de Sitter group is
most natural. In it, the group generators are in-
itially all on an even footing, and the scaling of the
broken generators by the inverse radius m of the
internal AdS space is a natural consequence of the

g =e ~&'Pa@, (3.1}

where h cK= 80(3, 1) is an element of the Lorentz
group, the stability subgroup, and p parametrize
the coset space {G/Kj. The original generators
M„~ of SO(3, 2} satisfy the Lie algebra

&B cDI &&c Ba+~BD &c

~AD BC ~BC AD &

and the generators P, are defined by

(3.2)

P —=mlVI (3.3)

These scaled generators satisfy the commutation
relations

-f [P„p,]= m'M„, (3.4)

(3.5)f [M~ns Pg1 = 1ggpy —1~P~ ~

The nonlinear action of g, c G on {G/K) is given by

g~ &&Pa= e g&'&& eo)Pay (t g ) (3.6)

where f" and h,, are, in general, nonlinear func-
tions of f' and go. More precisely, if g, = h, e H,

symmetry-breaking mechanism. The value of the
cosmological constant is thus determined by the
strength of the symmetry breaking.

The passage from a linear to a nonlinear realiza-
tion of SO(3, 2) requires choosing some paramet-
rization of the coset space {SO(3,2)/80(3, 1)), i.e. ,
some set of coordinates in anti-de Sitter space.
We shall adopt the standard exponential paramet-
rization, as in the work of Keck" and of Zumino"
on the nonlinear realization of supersymmetry in
anti-de Sitter space. This work made use of rigid
80(3, 2) invariance in anti-de Sitter space-time.
As we have noted, in the present paper, the AdS
space is an internal space, not the space-time
manifold 3}I. Also, the SO(3, 2) invariance that we
have is a local invariance, dependent upon the
space-time point g ", although the effect of an
80(3, 2) transformation upon any given AdS space
at some point z" is rigid throughout that AdS space.
In this section, we shall make use of the results
and calculational techniques of Ref. 26, with ex-
tensions to the case of local symmetry as indi-
cated. One could equivalently use the formalism
of Ref. 23 in which the extension to local symmetry
was also given, but without proposing any particu-
lar interpretation for the coset parameter fields.
All these calculations are carri. ed out by straight-
forward application of the general scheme pre-
sented in Refs. 1V, 18.

In the exponential parametrization, an element

g of G= SO(3, 2) within some neighborhood of the
identity may be uniquely represented in the form
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then the action is linear,

,g ap a = @ g &&ap aug0 0

h~= ho,

(3.7)

(3.8)

z cosh'
gga= pa+

slnhz

where

(3.10)

(3.11)

and lower-case roman indices are raised and low-
ered with q, ~. Under finite transformations, (3.6)
shows that the point P= 0 is transformed to g'= &'.
On the other hand, y"=(0, 0, 0, 0, m ') is trans-
formed by e„=me, into y'=m '(e'/e) sinh(m&), y'
= m ' cosh(ma). Thus, the relations between the
y"(x) and the P(x) are given by

y'= m '(P/g) sinh(mg),

y'=m 'cosh(mg).

These relations may also be expressed as

(3.12)

yA(x) = g e g~(x)Pa (3.13)

where the symbol 0, denotes the five-vector rep-
resentation of SO(3, 2). At this stage, the reason
for scaling the broken M„generators by m to form
P, in (3.3} is clear: This scaling is necessary for
the expansion of y" in powers of &a to have a first- .

order term that is just P itself:

y"(x) = (0, 0, 0, 0, m ') + ( P(x), 0)+ O(f') . (3.14)

Thus, the P(x) have dimensions of length just like
the y"(x), as is appropriate for coordinates in the
internal AdS spaces, which we will interpret as

since the P, transform according to the four-vector
representation of H=SO(3, 1). &f g, = exp(-fe' p,),
then the action is nonlinear and the transformation
of f' is inhomogeneous. The infinitesimal form of
the transformation (3.6) is

e'~' o(g, —1)e '~ & —e'~' ~6e '~ Ps=A, —1. (3.9)

The coset parameters 1' in (3.1) are taken to be
functions of the space-time coordinates x". As in
the usual treatments of spontaneous symmetry
breaking, they represent the Goldstone fields of
the theory. Their relation to the constrained field
y"(x) may be deduced from their behavior under a
transformation with e'(x)P, =me'(x)M„. Under in-
finitesimal transformations, the P(x) transform by

local coordinate frames, or as maps of the space-
time near a given point x~.

The relation (3.13) is the prototype of the general
relation between linear and nonlinear fields, with
the Goldstone field P(x) acting as a bridge between
the two types. Given a set of fields g(x) trans-
forming according to some representation o of
SO(3, 2}, the corresponding nonlinear fields p(x)
are defined by

(3.15)

Under the transformation (3.6), these fields trans-
form according to their SO(3, 1) indices only, but
with the nonlinear group element h,(g(x), g,(x))
c SO(3, 1):

(3.16)

The explicit form of h,(f(x), e "'"")for infinitesi-
mal P, transformations with parameter e'(x) is
calculated in the Appendix from Eg. (3.9). The re-
sult is

k,(f( x,}c(x))=h,(f(x},1 ia(x—) P) —1

f
( N~~ ~ )

coshe —1
zsi

(3.17)

The tilde on h, is used to denote a I ie algebra ele-
ment.

Except for the scalar representation, the irre-
ducible representations of SO(3, 2) become reduc-
ible when considered as representations of
SO(3, 1). According to (3.16}, the nonlinear fields
g(x) mix under general SO(3, 2) transformations
only with fields belonging to the same irreducible
linear representation of SO(3, 1}, i.e. , the non-
linear transformations (3.16) respect the fields'
SO(3, 1) index types. Accordingly, one may con-
sider smaller sets of nonlinear fields than are
necessary to fill an irreducible SO(3, 2} represen-
tation, and (3.16) may then be read as the trans-
formation law for such a set, with o the SO(3, 1)
representation the set belongs to. This is the key
feature of nonlinear realizations that allows us to
construct the vierbein and spin connection of gen-
eral relativity from the SO(3, 2) gauge fields
&o~e(x} and the Goldstone field P(x), and to arrive
at the usual geometrical interpretation of their role
in the parallel transport of vectors that lie in the
tangent spaces to the space-time manifold gg.

In order to carry out parallel transport of a vec-
tor V" that lies in the tangent space to K at g", we
must first convert this vector into an object V' that
transforms nonlinearly under SO(3, 2). Then it can
be parallelly transported while respecting its
SO(3, 1) index type. The conversion from P~ to p'
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is effected using the true vierbein e„, which is
obtained together with the true spin connection
~„"from the SO(3, 2} gauge fields &u~s and the
Goldstone field f' according to the general scheme
(3.15), where in this case o stands for the adjoint
representation of SO(3, 2). Since (3.15) obtains

nonlinearly transforming fields from the linear
fields by a P, gauge transformation with minus the
Goldstone field as parameter, it is necessary to
take into account the inhomogenous transformation
character of the gauge fields &„». Thus, one ob-
tains e„'(x) and ~„'~ from

"(x)m -fe '(x)p =e"""'"[&„+2f~"(x)™„-fe„'(x)P,]e *'"""&. (3.18)

Note that in order to maintain consistency with (3.14), we must use the scaled gauge field e„,= m
and e„, is then correctly dimensionless. The details of the calculation of e„,and & are given in the Ap-
pendix; the result is

(3.19)

sinh gab & ab ~2(pa& b tb& a)
P P g

t' cosh z —1+m'(Vrd ' V-Vrd ' V)l
* —I'(P& P-VB, P)I,* ).t'cosh g —1

(3.20}

The expressions for e„' and ~ a' are in agreement
with those found in Ref. 23.

Under local SO(3, 2) gauge transformations,
these "barred" fields transform as follows:

fe'„' p, -= a,(-ie„'p,)a, ', ,(3.21)

yc gee a

and then solves the differential equation

(3.23)

5~Vj) (Ã(f)' x~) 0 (3.24)

where the covariant derivative D„ is defined by

(3.25)

so that

(3.26)

The differential equation (3.24) must be solved sub-

—,
' f~',~&M„= a,(-,'f ~;&M.,)a,-'+ a,s,a,-'. (3.22)

Equations (3.21) and (3.22) show that the e„' and
u„'~ do not mix under SO(3, 2) gauge transforma-
tions, in agreement with our general discussion.
In addition, only & '~ has an inhomogeneous piece
in its transformation law. The vierbein e„' trans-
forms homogeneously, according to the four-vec-
tor representation of SO(3, 1), but with the nonlin-
ear group element a,(f,g,) cH, following the pat-
tern of Eq. (3.16).

The procedure for parallel transport of a vector
V" is now just the usual one in general relativity.
In order to move a vector V'" lying in the tangent
space to 5R at g~ along some parametrized curve
x"(f) in SR from x"(l)=xf to x"(0)=x,", one first con-
verts T" to the nonlinear components 7',

ject to the initial condition

V'(x(1);x,)= V'. (3.2V)

The solution V„'(x(0};x,) then gives the nonlinear
components of the parallel transported vector at
&0 To convert thes e nonlinear components back to
ones with world indices, one must use the inverse
vierbein field,

V„"(x„.x, ) = e".(x,)V„'(x„x,),
where

(3.28)

e" e a
a v v~

(3.29)

or explicitly,

(3.31)

In order to define e „ it is necessary that det(e )
40. Note that this condition is locally SO(3, 2) in-
variant and is also invariant under world general
coordinate transformations.

The covariant derivative D in (3.25) generates
parallel transport according to the usual prescrip-
tion. Note that by (3.22) and (3.16), 3„g(x) has the
same transformation law as g(x), i.e. , D„ is a
covariant derivative in the normal sense. Parallel
transport of a vector around a small closed curve
will result in a net SO(3, 1) rotation between start
and finish that is determined by the "barred"
analog of the usual Lorentz curvature, which is
defined by taking the commutator of two covariant
derivatives D„:

(3.30)
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I d g~ A bA cu~g
abed v~ Pv (3.33}

where

(3.34)

In this form, the action is locally SO(3, 2) invari-
ant because it is written in terms of barred fields
and is constructed to be locally invariant under the
linearly realized SO(3, 1) stability subgroup. The
cosmological constant in (3.33) is proportional to
m~, and hence is determined by the strength of the
symmetry breaking.

The nonlinear form (3.33) of the action is a
straightforward consequence of the theory of non-
linear realizations. As such, it could have been
written down immediately without starting from the
linearly realized form (2.5). To do so, however,
would give no indication of the role of the Gold-
stone field g'(x) and the anti-de Sitter space it
lives in, the interpretation of which we shall now
address.

IV. DEVELOPMENT

In the last section, we have reproduced the usual
local structure of general relativity in first-order
form in the vierbein formalism. " The essential
feature of the theory of nonlinear realizations that
we have used is the respect for the nonlinear fields
SO(3, 1) indices. The standard vierbein and spin

This Lorentz curvature tensor gives the rotation
that a vector's nonlinear components wiB undergo
on parallel transport around a small closed curve.
It is of course also possible to construct a connec-
tion 1" „~ with purely world indices from the

a aod spin connection ab

(3.32)

This connection will not in general be symmetric,
nor will the curvature B„„„~,obtained from (3.31)
by changing the [ab] indices to [nP] using vierbein
fields, satisfy the cyclic identity.

These two conditions are the standard indications
of the presence of torsion in a space-time, and we
shall see in the following that the possibility of
torsion is of great importance for the geometrical
analysis of the theory.

We may rewrite the action (2.5) in terms of the
barred fields e„'(x). As is usual with spontaneous
symmetry breaking of a local symmetry, the local
SO(3, 2) gauge invariance of the action (2.5) pre-
vents the Goldstone field from making an explicit
appearance. The action has the same form'as (2.5)
in the unitary gauge (2.6), but with all fields barred
[note that in the gauge (2.6), P(x) = 0 everywhere,
so that e '=e ' and v '~=

&u 't']:
P

connection are the nonlinearly transforming fields
e and re ~

defined in (3.18). The spin connection
&s ~ transforms in the required fashion (3.22) to
construct. the covariant derivative D„which gen-
erates the usual. parallel transport of vectors lying
in the tangent spaces to the space-time manifold

All of these standard features, however, do
not fully describe the geometrical structure of the
theory. The original linear gauge fields e ' and
co ' give rise to a second kind of differential op-
erator and its associated notion of parallel trans-
port, which is called development.

The development operator 6, defined by

is understood to act on any fieM according to its
transformation character. It has the same form as
the covariant derivative V„ introduced in (2.12),
but when it is applied to a nonlinearly transform-
ing field, the P, generator produces an infinitesi-
mal nonlinear transformation in accordance with
(3.16). On a nonlinear field P3x), we shall write
this action as iP,g-(x), considering P, to be an
operator. More specifically, on a vector field's
nonlinear components V'(x), we have

—fe&(x) P, V'(x) = f T,(g(x), ~(x))]',V'(x), (4.2)

where the value of h(f, e) = ,'f, [h(f, —e)]'M, ~ is given
in (3.'I). We will consider M,~ also to be an op-
erator, but of course its action is always linear.

The covariance properties of the operator 6
require some explanation. Its action on a nonlin-
ear field is not the same as that of applying b, to
the fields of a linear embidding representation and
then making the transformation to nonlinear form
w jth g «'"'P. Nonetheless, the action of 6 is co-
variant in the sense that the operator [1+p "(x)d ]
preserves the nonlinear transformation character
of the fields it acts on, with accuracy up to the
first-order terms in the infinitesimal parameter
p~(x). In order to establish this, we shall need
the following result: When applied to fields g(x)
that transform according to (3.16), with o any rep-
resentation of SO(3, 1), we have the equality

&~g(x) = (& „+2 i(u„' M,~+fe ~'P,)$(x)

Note the change of sign in the P, term w'ith respect
to (4.1}. Equation (4.3) may be proved by formal
manipulations using the transformation law (3.6)
and the definition (3.18), or more simply by sub-
stituting (3.19) and (3.20) into (3.17). Equation
(4.3) holds by virtue of the existence of the auto-
morphism P,- —P, of the SO(3, 2) Lie algebra.
A corollary of (4.3) is that for any set of param-
eters (s'", e'), the following holds:

(-.' f~'»., -~c'P, )y(x) =(-.' ~e "M„+~VP.)y(x), (4.4)
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where the barred parameters («'~, «') are defined
according to (3.15).

Equation (4.3) may be rewritten

aj (x) = D j(x)+ fe,' Pj(x) . (4.5)

The first term transforms in the same way as g(x)
because D„ is a covariant derivative, as we have
already discussed. The second term just generates
an infinitesimal P, gauge transformation; in the
operator [1+p "(x)rh, ], the contravariant world in-
dex of p "(x) is changed to that appropriate for the
parameter of a P, gauge transformation by the
vierbein e ', which itself transforms homogen-.
eously according to (3.21). Thus, we expect that
up to first-order terms in pox), the quantity

y, (x) = [1+p "(x)b,]g(x) (4.6)

(4 7)0;(x)= t'( )+xp "(x)&„0'( )x

transforms by the same function of g'~(x) and
«'(x) as the function (3.10) of P(x) and «'(x) that
P(x) transforms by, keeping only up to first-order
terms in pox). The transformation law of g~(x) is
also given up to first order in pox) by the same
function (3.17) as that which occurs in the trans-
formation of g(x), but, again, with the argument
P(x) replaced by f~(x} Specific.al.ly, taking the
nonlinear components of a vector field V'(x), and
defining

V:(x)= V (x)+ pox)~„V (x), (4.8)

the transformation of 7'~(x) is given by

&(7'(x))= [h,(f (x), «(x))]',V'(x)+O(p') . (4.9)

The quantities pe~(x) and V~(x) ln (4.7) and (4.8)
are the result of bringing g'(x+ p(x)) and V'(x+ p(x)}
an infinitesimal distance from the point x "+p "(x}to
the point x" using the development process which
is generated by 6 . The development of P(x, ) and

has the same general nonlinear transformation
character as P(x). This is certainly true for the
M,~ transformations, which are linearly realized.
In order to determine precisely the transforma-
tion properties of g~(x), however, we must take
into account the way in which its P, gauge trans-
formation law depends on the Goldstone field
Z'(x).

The development operator 6, may also be applied
to the Goldstone field P(x). This field has its own
special transformation law (3.10), which must be
taken into account when performing the transfor-
mation ~e „~(x-)P„f'(x). Ow'~e to the special trans-
formation behavior of this field, Eq. (4.3) does
not, apply to it. It may be verified by explicit cal-
culation, however, that under an infinitesimal P,
gauge transformation with parameter «'(x}, the
quantity

V'(x, ) along a finite curve x"(f) passing through
z,"at t= 1 and through+, "at t=0 is given by the
solutions to the differential equations

dx "(f) ~,g;(x(f);x,}= O, (4.10)

dx "(t) ~,V;(x(t);x,) = O,dt (4.11)

subject to the initial conditions

(4.13)

and then use of the initial condition g~(x, + p)
= g'(x, + p) gives

C'(x.)+p'8„C'- V.(x.)+pN~. —8„)V+o(p') = o,
or

g(x, ;x,+ p) = 0'(x,) + p'a, P+ O(p'),

which is just (4.7). A similar argument holds for
(4.8).

In order to explain the geometrical meaning of
development, we must first recall the discussion
in Sec. II on the construction of the solder form

. thai makes a rigid linkage between the reduced
SO(3, 2) fiber bundle and the tangent spaces to the
space-time manifold ~ More precisely, the
solder form is a smooth map between the tangent
space to It; at a point P with coordinates x" and
the tangent space to the internal AdS space at the
point whose AdS coordinates are P(x), as the point
5' ranges over the whole manifold gg. Note that in
order to cover both the space-time manifold gg
and the internal AdS space with coordinates, it
will in general be necessary to use several coor-
dinate charts, but we shall not be concerned with
that here. Up until now', we have just treated the
vierbein e„(x) as a matrix that indicates how to
convert the world components of a tensor into its
nonlinear components. Now we must take into ac-
count the different spaces in which the two objects
that have these two different kinds of components
are to be found. Figure 1 illustrates the map be-
tween the tangent spaces T„(3R) and T«„&({G/II]„)
whose matrix is e '(x). The space (0/H)„ is the
internal AdS apce at g".

In complement to the discussion in Sec. II on the

t;(x(1);x,) = V(x,),
V;(x(1);x,}= V (x,) .

The solutions P~(x(0);x,) and V~(x(0);x,}are the
result of developing the values of f'( x) and V'(x, )
along the curve to the point g,~. The expressions
(4.7) and (4.8) give the solutions to (4.10) and (4.11)
for development an infinitesimal distance from
x,~+ p~(x, ) to x,~, because p~h /~=0 can be written
p~(&~+(&„—&„))f~=0, so to first order in p~,

p(x, + p) —p(x,)+ p "(&„-8,)g(x, + p)+ O(p') = 0
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I, G/H~(

T ((6/Hj„)

essary if II is to be identified with (G/H} be-
cause we do not have the freedom of local gauge
transformations at different points within the in-
ternal AdS space. There is only the freedom of
choosing the origin of the AdS space and the orien-
tation of the coordinate axes, corresponding to P,
and M,~ transformations that act rigidly through-
out that space.

Defining l„'(0) to be the internal AdS vierbein
field obtained by the above procedure, we have

(4.14)

FIG. 1. The vierbein e„~ (x) is the matrix of the map
between the tangent space T„Qg) to the space-time mani-
fold 3)I at x~ and the tangent space Tt &» ((G/H}„) to the
internal Ads space (6/If}„at the point K" (x). The
vierbein field changes the world components V" of a vec-
tor into the nonlinear components P'.

construction of tbe solder form, the interpretation
of the vierbein field given here is aIso in ful1. ac-
cord with the underlying mathematics of the theory
of nonlinear realizations presented in Ref. L'7 and
particularly in Ref. 18. It can be seen from the
definition (3.15) of the barred tensor field P(x)
that iis nonlinearly transforming components are
obtained by projection of the components of the
embedding linear field g(x) into the tangent space
T«„&((G/H}„). The independently transforming
parts of P(x) are obtained by contracting different
numbers of the indices of &1&(x) with the normal to
this tangent space; these parts consequently be-
long to different representations of the I orentz
group. Since a four-vector like V'(x) belongs to
T«„&({G/H}„), the vierbein e„'(x) is the matrix of
a map into this space from T„(II).

The vierbein matrix e (x} is expressed in com-
ponents that are related to bases in T„(mt) and

Tt&„&((G/H}„). Although the basis in T„(IK) will be
taken to be coordinate induced (holonomic), this
is not the case for the orthonormaI. basis in

Tt&„&((G/H}„). The basis in this latter tangent space
is determined by our choice of the exponential pa-
rametrization of the AdS space J&G/H} in Eq. (3.1)
and the definition of e„ in (3.18}. It is, however,
a simple matter to relate this anholonomic basis
to the (G/H} coordinate basis; the relation is ob-
tained by inspection of (3.19), setting e '= &o„"=0,
and replacing e„g by 6', since the g' are coordi-
nates in (G/H}. This procedure makes use of the
fact that the space II satisfying 8 „+s(x)= 0 is an
AdS space identical to (G/H}, as we have already
noted in Sec. II. Setting e„' and v ' to zero every-
where picks a gauge throughout 9g, ; this is nec-

This expression can also be obtained from a result
given in Ref. 26. The inverse AdS vierbein field is

(4.15)

(4.16)

where e"(x)= e'(x)l", (g(x)) and [lt ]"„is the appro-
priate matrix for the transformation of f"( )xac-
cording to (3.7), &..e. , [l&,(f, a', t")]"„

( [It (g ~a) ]~c+ aalu)

The result of applying the development operator
h„to (t)xis

n. g'(x) = 8„"(x), (4.17)

(4.18)

is a matrix that change holonomic indices in T„(K)
into holonomic indices in Tt&„&((G/H}„). A corol-
lary of (4.17), which is analogous to the result
(4.4), is that for any set of parameters (e'~, a'),
the following holds:

(-,'t'& M~, tc P~)f (x)= f I (f(x)), (4.19)

where &' is defined as before, according to (3.15).
Equation (4.17) is the key to the geometrical

interpretation of the development process gen-
erated by 5,„. For an infinitesimal development
from xc~+ p'(x, ) to xc~, we have

g",(x,;x, + p) = g "(x,)+ p "(x,)8„"(x,) . (4.20)

Further details on the description of AdS space in
the chosen parametrization are given in the Appen-
d'lx.

Henceforth, in order to distinguish between holo-
nomic and anbolonomic AdS tangent space indices,
we shall reserve the letters n, r, s for the bolo-
nomic indices and g, 5, c, . . . for the anbolonomic
ones. Using the AdS inverse vierbein field (4.15},
we may combine the infinitesimal P, and M „gauge
transformations of f"(x) with parameters [a'(x),
e"(x)] from (3.'l) and (3.10) into a single equation:

5N"( )=xa"(x)+ [A~(l(x), a'(x), a (x))]"„E"(x),
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I

g (x,+p)
{G/H)—

(xe p)
I

X,"e p"(x,)

FIG. 2. Infinitesimal development of the Goldstone
field l"(x) with p" (xo)4„. The point f"(x+p) in(G/H}&„,

&

is mapped into the point f~ (x(),.xo+ p) = f"(g&)+p" (go)e "(~0)
m $G/H)~o.

Thus, an infinitesimal development of g"(x,+ p)
from x,"+p "(x,) to x,"yields a point g(x, ;x+ p) in

{G/H)„ that is separated from f"(xo) by

p "(x,)8 "(x,), since for infinitesimal p", p~8" may
be thought of as lying in {G/H)„ itself. The point .

f~(x,;x,+ p) in {G/H)„may be associated with the
point x, + pox, ) in 3L The situation is illustrated
in Fig. 2. Note that the interpretation of the
vierbein fieM given earlier and illustrated in Fig.
1 is essential for consistency with the above inter-
pretation of (4.20). Considering infinitesimal vec-
tors p" in T„(3g) as representing infinitesimal
translations, there are corresponding vectors in

T«„&({G/H)„) that are obtained by development, as
given in (4.20). These latter vectors p'8"„(x,) are
the same as those obtained by straightforwardly
mapping with the vierbein e '(x,), and then chang-
ing to the AdS holonomic basis, as is shown in
(4.18).

The association of x,"+p "(x,) and f~(x,;x,+ p) is
especially natural when the space-time gg is in its
vacuum state 9g, , so that it is an AdS space just
like {G/HJ, . Since in this state, R„„"a= 0 every-
where, there exists a gauge in which e„= &„'~=0
everywhere, so that 6„=8„, and the developed
value f~(x,;x,+p) is just V(x, + p). In the vacuum
state gg, , development over a finite distance is
given in the indicated gauge by f~(x„x)= f"(x)
Thus, each point x in It', is associated with the

. point in {G/H)„ that has the coordinates f"(x) In.
addition, one can choose coordinates in 3II, such
that x~= ()„"f"( ), xand then we have just the situa-
tion we used to obtain the AdS vierbein field (4.14),
where II and {G/H)„, are not only geometrically
identical, but are coordinatized in the same way;
accordingly we also have e„'(x)= &„"I„'(f(x)},and

8 n g n
P V

In order to interpret development in gg as
above, it is not essential to make any special gauge
or coordinate choices. If a different gauge choice
is made in the vicinity of x, , but keeping the gauge
at go~ itself unchanged, then neighboring points x"
will be identified with the same points f~(x, ;x) in

{G/H)„, as before, but the relation to f"( x) will be
different. In this more general case, the linear
gauge fields 8„' and w ' are nonvanishing, and
their contribution to 6 just corrects for the dif-
ferent local choice of gauge. Similarly, the choice
of coordinates in It; does not affect the associa-
tion of points in 3R, with points in {G/Hj„.

In general space-times QP, it is not possible to
associate unambiguously every point in Qg with a
point in {G/H)„, What the development process
does, however, is to unambiguously map a curve
in gg passing through g, into an image cume in
{G/Ht„which passes through g "(K,). Moreover,
if the curve in gg is an autoparallel, satisfying

d'x "(t) „dx'(t) dx'(t)
(4.21)

then the image curve will be a geodesic in {G/H$„.Xo
In order to see this, we need to know what happens
to vectors lying in the tangent spaces to gg along
x gt) under development.

The development of a vector V'(x, ) along the
curve x "(t) from x,~ to x," is given by the solution
to Eq. (4.11) subject to the boundary condition
(4.13). In order to interpret the solution to this
equation, we return to the infinitesimal solution
V~(x,;x,+ p) in (4.8) and note the decomposition
(4.5) of b, into D +le„'P,. The quantity T/'(x, )
+ p "(x,)DP'(x, ) just represents the result of ordi-
nary parallel transport in II of V'(x, + p) to the
point g, with the usual covariant derivative D„, as
discussed in Sec. III. The remaining term
+lp "(xo)e„~(xo)P~T/'(x, ) thengenerates aninternalpa-
rallel transport in {G/H}„ from P(x,} to
ge(x, ;x,+ p), where f~ is given in (4. I). In order
to show this, we need to have the internal AdS spin
connection corresponding to the AdS vierbein field
(4.14}. This can be obtained by inspection from
(3.20), following the procedure we used to obtain
l„'(f}in (4.14). The result is

This AdS spin connection satisfies the standard re-
lation to l„'(f), i.e. ,

I)j "(g)=-.' [I"'(()g '-() l ')+ V'I'~(() l )I ']
-(a—b), (4.23)

where ()„=()/()g", and a, b, c, . . . are raised and
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lowered with q, ~.
It foilows from (3.1V), (4.15), and (4.22) that for

a P, gauge transformation with parameter &',

[@,(r, e)j"= t'P (t)o "(f) (4.24)

so that the operation+ jp"g 'P, gives the same
change in the components P' as does parallel
transport in (G/H)„ from g"(x,) to

t;",( x;, x, +p)= i'(x, ) +p"(x,)e;(X,)I",(L(x,)).
The positive sign of the fe„P, term in (4.3) is es-
sential for obtaining this result. The net effect of
an infinitesimal development from xf + p "(x,) to x,~
on a vector V'(x, + p) is to parallel transport it
along the infinitesimal trajectory shown in Fig. 3,
first using D in 3)I from x,"+p "(x,) to xc~ and then
using 8„+iQ„'~(t;) M,~ in (G/H)„ from g'(x, ) to
«~(x, ;x,+ p).

Development along a finite curve xgt) in 3)I maps
a vector V'(x, ) lying in T«„&((G/H)„) into its
image V~(x,;x,) lying in T«„.„((&G/Hj„). At an
intermediate point x&~ along the curve, the internal

space jG/H)„contains a partially developed image
curve with V~(x„'x,) lying in the internal tangent
space Tt (x,;x,)({G/HJ„). The process is sum-g)
marized in Fig. 4. If the curve x "(f) is thought of
as being broken up into many short segments
p "(x,), development along each new segment ending
at a point ~, consists in moving the previously de-
veloped image curve rigidly from (G/H)„ into

Xg~ ]
(G/H)„so that the previous end point f~(x, ,;x, ,)
= g'(x, ,) is mapped into f~(x;,x, ,) = f"(x,)
+ p "(x,)()„"(x,)+ O(p'). At the same time, vectors
previously developed into the tangent spaces along
the image curve in {G/H)„must' be moved rigidly

f
together with the image curve into their appro-
priate new tangent spaces to (G/H), ,

The rigid character of the mapping of the image
curve and of the vectors defined along it means that
the previously developed curve is not distorted
during development along subsequent segments.
The mapping is rigid because it is brought about
by M„and P, transformations which are the iso-
metrics of AdS space and act rigidly throughout it,

(F/H) )
(X;X +P}

((G/H(„, })
g(&&,+p)

I

I

I
-I

I
I
I

FIG. 3. Infinitesimal development of a vector V'(xo+ p) =V~(xo+ p) e„' (xo+ p) with p" (xo)E„. The vector p (xo+ p)
in Tt&, ~& ((G/H/&„, & ) is mapped into the vector V~+ (xo, xo+ p) in T& &x, „0,» ((G/H) ).
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V"(x))

FIG. 4. Development from x~~ to xp proceeds by adding new segments without distorting the previously developed
curve, moving it rapidly in (6/H) to accommodate the new segments. An intermediate state of this development is shown
at the point x;. The portion of the image curve in (G/H)„ indicated by the dotted line is congruent to the image curve
in {G/H)„.

analogously to the rigid rotations of a sphere. Al-
though the P, gauge part of the mapping acts rigidly
throughout the Ads space in this sense, its de-
tailed effect upon the coordinates of the points and
the components of the vectors along the image
curve is highly AdS coordinate dependent, accord-
ing to (3.10) and (3.1'1). Algebraically, the rigidity
of the mapping is enforced by the covariance prop-
erty (4.9) of the development operator 6 „when
acting on V'(x) and the corresponding property for
its action on f"(x}, which, using (4.16), can now be
written

6t",(x) = ~'(x)P.(C,(x))+ [&,(t.(x), ~(x))]"„P(x)

+ 0(p') . (4.25)

Equations (4.25) and (4.9) ensure that f~(x,;x,) and

V~(x&, x,) keep in step with each other under the
isometric P, and M„ transformations induced in

fG/H) by subsequent development from x J' to x,".
The process of development may be visualized

by considering the curve x "(t) and the vector field
V'(x(t)) = V "(x(t})e„'(x(t))defined along it to be
inked onto the space-time manifold 9g. An AdS

space, which is a local copy of the vacuum Jil
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is rolled along the curve x "(f) without slipping or
twisting, and as it rolls, the curve x "(f) and vector
fields V'(x(t)) are printed onto it. It is the func-
tion of the linear gauge fields e„' and ~„'~ to de-
termine that there is no slipping or twisting of the
AdS space as ii rolls, despite the fact that it will
in general be coordinatized differently at each
point of 3g it passes over. The local choices of
origin and coordinate axis orientation of the AdS
space correspond to the freedom of local P, and

M,~ gauge choices in gp.

If the space-time gg is in its vacuum state 9R,
then there is no rolling to be done, since the in-
ternal AdS space and gg, fit together exactly.
Curves and vector fieMs in gg, are just printed
directly onto the overlying part of the AdS space.
As we have seen, there is a gauge choice in gg,
such that e„'= &„'~=0, so 6 = 9 and development
of the nonlinear components of vectors in this case
involves no change in their values at all —they are
simply reassigned to the overlying tangent spaces
to the AdS space. In other words, when space-time
is in its vacuum state gg, , it and all of the inter-
nal AdS spaces over each of the points of Qg, may
be unambiguously identified with each other, and
similarly for their respective tangent spaces. In
general space-times, the development process
carries out such an identification for points and
tangent spaces along a particular curve, but, as
we shall see, when different curves are taken, the
identifications are in general different.

The description of the development process given
above makes clear another important feature, that
the image curve reflects as accurately 3s possible
in (G/H} the shape of the original curve in K. This
is due to the fact that the tangent vector x "(f) to
the curve in gg is mapped by the vierbein field into
x "(t)e„'(x(t)) in T&i„«&&((G/H}„«&), which in the AdS
holonomic basis is x (f)8„$x(t)), which is also the
tangent to the image curve, by (4.20). Consequent-
ly, autoparallels in II have image curves in (G/H"f
that are geodesics. Note that we must make a dis-
tinction between autoparallels and geodesics in gg
because the space-time may have torsion. The
mapping of autoparallels in gg passing through ~,"
into their corresponding image geodesics in

$G/H}„, provides the means to construct a local
coordinate system in around the point z,~, letting
x,"= 5~„g"(x,) and giving nearby points the coordi-
nates of their images in (G/H}„, on the correspond-
ing image geodesies. The change from an original
set of coordinates to the new set f~(x„x) has an
associated transformation matrix which at the point
x" is just the matrix 8„"(x,) from (4.18).

If 0"(x,)=0, so that at the pointx," the "unitary"
gauge choice (2.6) is made and the center of the
local coordinate system is the origin, then the co-

ordinate system induced in gR is a normal coordi-
nate system. It inherits this property from the ex-
ponential parametrization (3.1) of (G/H), which
gives a normal coordinate system about the AdS
origin, since the AdS geodesics passing through
the origin take the simple form f"=gc", where the
c" are fixed and f is an affine parameter (in this
regard, cf. Ref. 18). The lines x"= tc" in these
coordinates consequently are autoparallels in Qp.

Thus, as can be seen from (4.21), the symmetric
part I'~&

„& of the connection (3.32) vanishes at the
origin. Taking into account the possible presence
of torsion, these normal coordinates are the in-
ertial frames of the theory.

The process of development that we have intro-
duced and discussed in this section is an essential-
ly gauge-theoretic process, since it is a form of
parallel transport of the nonlinearly transforming
fields using the original SO(3, 2) Yang-Mills gauge
fields for calibration. The geometrical interpre-
tation of development that we have derived pro-
vides the link to a generalization, to our situation
with internal Ad8 spaces, of a purely geometrical
construction known in differential geometry as de-
velopment into the flat affine tangent spaces of a
differentiable manifold, as discussed, e.g. , in
Ref. 28.

It is due to this link that we have named the pro-
cess generated by 6„"development": The image
curves and image tensor fields are identical for
the two processes, although the process of devel-
opment using d on the Goldstone and tensor fields
is ostensibly quite different from the geometrical
construction described in 28. This latter construc-
tion involves ordinary parallel transport, using
the spin connection, of the tangent vectors to a curve
in space- time which is param etrized by a param eter
t. These tangent vectors are all parallely transport-
ed up to some given point x", . The resulting set of
parametrized vectors are expressed in anholonom-
ic components using the vierbein field at g," and
used to generate the image curve in the internal
space, a parametrized vector being carried out
along the image curve until it reaches the corre-
sponding value of t, at which point it must be tan-
gent to the image curve. Of course, in our situa-
tion, the internal space is not flat, but curved, and
upon carrying the parametrized vectors along the
image curve, the AdS spin connection (4.22) must
be used to generate Ad8 parallel transport of these
vectors. The equivalence of this process to the de-
velopment that we have described relies upon the
geometrical interpretation of the vierbein field as
illustrated in Fig. 1 and the fact that the SO(3, 2)
transformations induced by development with 6„
generate precisely the necessary space-time and
AdS parallel transport, as is shown by (4.17) for
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the operation of 6„on the Goldstone field f"(x),
and by (4.3) and (4.24) for its operation on tensor
fields like V'(x).

The process of development is important for the
geometrical structure of the Einstein-Cartan the-
ory because the geometrical construction which it
is equivalent to is the appropriate one for the prop-
er interpretation of the effects of torsion and curv-
ature in space-time. " This construction, how-
ever, has not been widely used in the physics lit-
erature on the Einstein-Cartan theory, although it
was obliquely referred to in the work of Traut-
man, "as we have mentioned in the Introduction.

V. THE HOLONOMY GROUP

The mapping of curves in the space-time mani-
fold into the internal Ads space by the develop-
ment process that we have discussed does not in
general yield an unambiguous assignment of points
in II to points in (G/H). Two different curves
leaving a point g," but crossing again at some other
point g,"will give different assignments of that
point to points in (G/Z]„. In addition, a vector in

the tangent space to 3g at g,~ will in general be
mapped into different vectors tangent to (G/H)„, by
development along the two different curves. The
nonintegrability of the development process may be
investigated by considering a curve in QR that re-
turns to its starting point x,". Then the result of
developing the Goldstone field f"(x,) and a nonlin-

early transforming field such as a vector V'(x, )
around the given curve can be compared with the

original values.
The group of transformations induced in the

fibers of a gauge theory by such round trips is
known as the holonomy group. This group contains
important topological information about the fiber
bundle over the space-time manifold gg which rep-
resents the global structure of a particular solu-
tion to the theory. In addition, the elements of the
holonomy group for infinitesimal closed curves in

gg describe the local structure of a solution, i.e. ,
they determine the local values of the SO(3, 2)
curvatures. It is with the infinitesimal holonomy
group that we are mainly concerned in this paper.
In order to fix the relation of the spontaneously
broken SO(3, 2) gauge theory to the Einstein-Cartan
theory, we must relate the effects of nonvanishing
SO(3, 2) curvature to the effects of nonvanishing
SO(3, 1) curvature and torsion in the standard the-
ory.

In order to compare the developed values
f~(x, ;x,) and V'„(x,;x,) with the original values at
g," of the Goldstone and vector fields after travel-
ling around an infinitesimal closed curve, we need
to have solutions of the differential equations (4.10)
and (4.11) that are valid up to second order in the
displacement [x~(t) -x0~]. To obtain these solu-
tions, we follow a standard procedure and first
replace the differential equations (4.10) and (4.11)
by the integral equations

and

1 dx" ti;"( (tx); )x= i;"(x,)+ )
[-'i(o„~( x(t)) M„ie„'(x(t)-) P]&"( (xt);x,) d

dt
t

(5.1)

(5.2)

(5 3)

1

V~(x(t);x,)= V'(x,)+
J

[-,'i&0„~(x(t))M~-ie„'(x(t))P,]V~(x(t);x,) dt.

Note that the initial conditions (4.12) and (4.13) are incorporated into (5.1) and (5.2), and that the point we
are developing from is x,", as well as the point we shall end up at.

To first order in [x"(t) -x,"], the solutions to (5.1) and (5.2) are, as in (4.7) and (4.8),

f~&»(x(t);x,)= f"( )x—[~i&@„~'(x,)M~ ie (x,) -P]f"(x,)(x"(t) -x, }

V;&„(x(t);x,)= V'(x, ) —[-,' i~„~(x,) M -ie,~(x,) P,]V'(x, )(x (t) -x,~). (5.4)

These expressions may be substituted back into (5.1) and (5.2) to obtain the second-order solutions
f~&»(x(t);x,) and V~&»(x(t);x,). For the situation we are interested in, the result is simplified by the fact
that the starting point and end point of the curve in II are the same, x~(1)=xa~, so that

'd "tdt 0
p CN

and also

'd "=-
„I "(t) dt= — I "(t) dt,

(5 5)

(5.6)
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as can be seen by integrating by parts. As a result of (5.6), the terms in the integrals for f~&»(x, ;x,) and

VR~&»(x, ;x,) that are of second order in tx "(f) -xo "] may be antisymmetrized in their world indices. Since
these terms also involve application of two SO(3, 2) generators to either g"(x,) or V (x,), the antisym-
metrization yields commutators of the SO(3, 2) generators, permitting application of the commutation re-
lations (3.2), (3.4), and (3.5). The results are

P(.,(x.;x.) —ixx.)=![!(R„„"(x) P„P-i R„„'( .x) p]pi (x) fx Rx" (5.V)

and

V;(,)(x,;x,) —V'(x„)=—,'[-', iR „„x(x,)PP „ iR „„'(x-,)P,]'V'(x, )f x"Ch", (5.8)

where the SO(3, 2) curvatures have been given before in Eq. (2.1).
The results (5.7} and (5.8) are of course just what one expects in a gauge theory: The gauge transforma-

tions induced by travel around an infinitesimal closed curve are given by the SO(3.2) curvatures contracted
with the antisymmetric expression g x "dx", which for an infinitesimal parallelogram with sides (dxR, 6x")
just takes the value (dxR5x"-dx"6xR). Of course, the SQ(3, 2) transformations are applied here to nonlin-
early transforming fields, but the transformation character of f"(x,) and V (x,) was never explicitly used
in the derivation of (5.'l) and (5.8). The SO(3.2) commutation relations which were used hold regardless of
the transformation character of the fields that the generators are applied to. In agreement with equations
(5.7) and (5.8), we also have the commutation relations for the development operator b, , which may be
verif ied directly:

(5.9)

The results (5.V) and (5.8) also have a straightforward geometric interpretation. Using the relations
(4.19) and (4.4), they can be recast as

i"„(,)(x,;x,) —V(x,)=-'R„„'(x,)Pp(i(x, )) fx Ch'

vpx)(x, ;x,) —v'(x, ) =-' [-', iR x(x,)PP „+iR,„'(x,) P, ]v'(x, ) fx dx" (5.11)

where the barred de Sitter curvature R p„b' has
been given before in Eq. (3.34). The barred torsion
tensor ls

Both B bc and R b are obtained from the expres-
sion for the unbarred SO(3, 2) curvatures in (2.1)
by putting bars onto all the fields occurring there.

The geometrical interpretation of (5.10) now fol-
lows immediately from the discussion of develop-
ment given in Sec. IV: The result of development
of f"(x,) around an infinitesimal closed curve be-
ginning and ending at g," is to produce an image
curve in (6/H)„ that fails to close by an amount
determined by the torsion tensor R „~(x,}. The
P, gauge term in (5.11) gives the corresponding
correction to the value of V'(x, ), which is equal to
the change in the components 7' upon parallel
transport across the gap in the image curve in-
dicated by (5.10), using the AdS spin connection
Q„~'(f} given in (4.22). The equivalence of the P,
gauge transformation with parameter

——,R R „«(x,) f x "dx" to parallel transport across the
gap is shown by the relation (4.24).

The term in (5.11) involving the de Sitter curva-
ture R„„~gives the SO(3, 1) rotation of the vector
V~(x, ;x,) with respect to its starting value V'(x, )
before development, exclusive of any rotation in-
duced by parallel transport across the gap in the
image curve, as discussed above. The situation
is illustrated in Fig. 5. This rotation is not the
same as that induced by ordinary parallel trans-
port using the covariant derivature D„ in (3.25).
The difference is due to the fact that at all points
x(t) on the curve in 5[[, the image V~(x(f);x,) lies
in (0/H)„«& at the image point f~(x(f);x,}. As we
have discussed, and illustrated in Fig. 3, develop-
ment of V'(x, ) into V~(x(t};x,) involves parallel
transport in 5R from x," to x "(f), and then back in

{G/H}„«&from f"(x(t})to g(x(t);x,). The two par-
allel transports produce rotations of VR~(x(t);xo)
with respect to V'(x, ) that tend to cancel, and in
fact do cancel exactly when space-time is in the
state gg, and the gauge where e '= ~„'~=0 is
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Q(x;;x, ) (x;;x,)

~g (x;)

I

I

I

I

I

{0}

IG/H}
X)

the curvature tensor of the internal AdS space,
which gives the rotation due to parallel transport
in (6/H)„using 8„+iQ„'~(f)M,~ .In AdS holonomic
indices, the AdS curvature tensor is
-m'(&„'(L)&„(f)—&;(C)I„~(f)); conversion of the
AdS holonomxc mdxces to world indxces using
e„"8„",evaluating the result at t"(x,}, and sub-
tracting it from B„„'~(x,) gives R„„'~(x,), as is
shown in (3.34).

x~
0

V„"(X;;x,)

n

g„(x„.x.

g(x)
~

I

Q(x, ;x;)

x"
0 X.

FIG. 5. Development around a closed curve in ~ In
(a), an intermediate stage is shown at a point x&, with
the paritally developed curve extending in (G/H] „back
to & ~(x&,~). In (b), the final result after development
all the way around the curve and back to x~p is shown.
For an infinitesimal curve 3R, the gap 6f" in the image
curve in (G/R)„~is determined by the torsion R„„'(xa).

Xp,
The rotation of p" (xp) into ~jj (&p'&p) is determined by
B„„&(xp)=B„„~e e&z, while the rotation of V~b'p) into

V~(xp,'~), exclusive of that induced by c].osing the gap
in the image curve, is given by g (xp).

chosen, so that 5, „=8„.
In general space-times, the net rotation of

V~(x,;x,) with respect to V'(x, ) after development
around an infinitesimal closed curve is given by
the difference of the usual Lorentz curvature ten-
sor B„„'~(x,) defined in (8.31}, which gives the ro-
tation due to parallel transport in gg using D, and

VI. CONCLUSIONS AND PROSPECTS

In this paper, we have started from a spontan-
eously broken SO(3, 2) gauge field theory and pro-
ceeded through a detailed investigation of the role
of the Goldstone field g"(x} to analyze the theory's
local geometrical structure. The theory limits
precisely to the Einstein-Cartan theory of gravity
as the strength of the symmetry breaking tends to
infinity, both at the level of the geometry and at
that of the dynamics, since the size of the cos-
mological constant in the action (3.33) is deter-
mined by m'. It should be noted that in order to
carry out this limit on the action (3.83), it is nec-
essary to first discard the Gauss-Bonnet integral
(thus confining the discussion to spaces where its
value is zero), and then scale the entire action by
m ' before letting m-0. This procedure carries
out the mell-known Wigner-Inonu contraction on the
group SO(3, 2) to yield the Poincare group.

Unfortunately, after the Wigner-In5nG contrac-
tion has been carried out, the traces of the origi-
nal Yang-Mills gauge invariance are rather ob-
scure. In the Poincard limit, the P, gauge trans-
formations do not affect any of the nonlinearly
transforming tensor fields g(x), since in this case
h, (t;, e}=0 for all e'. The only field that a p, gauge
transformation does affect in this limit is the
Goldstone field itself. While the resulting trans-
formations in JtG/H), which in this case is just
Minkowski space, do reproduce exactly the trans-
formations in the flat affine tangent spaces of the
Einstein-Cartan theory, their relation to a spon-
taneously broken gauge-theoretic formulation of
gravity does not appear to have been recognized in
the literature. In the present work, this connec-
tion is made naturally using the process of devel. -
opment generated by the differential operator 6„.
This process plays a pivotal role in the connection
between the gauge-theoretic and geometric as-
pects of the theory, since on the one hand it uses
the original linear SO(3, 2) gauge fields, and on
the other, it generates the appropriate geometrical
construction for the analysis of the effects of tor-
sion and curvature.

The way in which the image curves of the de-
velopment process have been generated in this
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paper is markedly different from that of the
straightforward geometrical construction known
in differential geometry. Here, the image curves
have been generated by a form of parallel trans-
port of the Goldstone field f"(x) using the SO(3, 2)
Yang-Mills gauge fields for calibration. In the
usual geometrical construction, no such Goldstone
field appears, and development is carried out sim-
ply by parallel transport of parametrized tangent
vectors. This is first done using the ordinary spin
connection in space-time, and then using the spin
connection for anti-de Sitter space in the internal
space associated to the space-time point toward
which the development is being carried out. We
have shown the complete equivalence of these two
different procedures in Sec. IV. In order to con-
nect the Yang-Mills gauge-theoretic and geomet-
rical aspects of gravity, the presence of the Gold-
stone field f"(x), which takes its values in a space
upon which the gauge group SO(3, 2) acts transitive-
ly, is an essential feature that has not figured in
other works on this subject.

We have mentioned in the introduction thai the
emphasis in previous investigations of the rela-
tion between general relativity and Yang-Mills
gauge theories has been on the sense in which gen-
eral coordinate transformations are the extensions
to general space-times of the translational gauge
transformations of the Poincare group in flat
space-time. In Ref. 4, it was emphasized that in
order to recognize this relation, the general coor-
dinate transformations should be taken actively,
and should be taken together with specific local
Lorentz transformations determined by the spin
connection. The net effect of an infinitesimal
"gauge" transformation in this sense is to perform
an infinitesimal parallel transport using the spin,
connection.

In the present work, the above relation between
infinitesimal parallel transports in space-time and
infinitesimal P, gauge transformations emerges
automatically from our discussion of development.
Considering, for example, a vector field V'(x),
development from go~+ p" to go~ produces an image
vector VN~(x, ;x,+ p) lying in T& &„. &((G/H)„).
By construction, the result of parallel transport-
ing V'(x, + p) from xo"+ p" to xo" across space-time
gives the same result as an internal AdS parallel
transport of V~(x, ;x,+ p) from g~(x,;x,+ p) to
f"( )xFurtherm. ore, this latter parallel trans-
port is equivalent to a P, gauge transformation by
our discussion in Sec. IV, i.e. ,
V'(x ) + p "D V'(x )

= V (x,)+ pqe„+ ,'~g„~'M )-V;(L,)
=7'(x,)+ p"(S„-~f„'P,)V;(t,)

=(1-fp"e„»,)V;(x,;x,+ p), (6.1)

where p"= p"e~" and the image vector field V~ is
considered to be a function of g~ in taking the AdS
derivative 8„.

An infinitesimal "gauge" transformation in the
sense of Ref. 4 consists, when applied to a vector
field such as V'(x), in making an infinitesimal
parallel transport of V'(x) using D„along an in-
finitesimal displacement p". Equation (6.1) shows
that the transformed value of V'(x) at the point x,"
is equal to the result of making a P, gauge trans-
formation of parameter p"e~~(x,) on V~(xo;x, + p).
Note that since the transformations in space-time
are taken actively, the corresponding P, gauge
transformations in the AdS space must also be
taken actively, so the image vector field must be
rigidly shifted in the AdS space by the isometric
P, gauge transformations. Accordingly, the trans-
formed value of V'(x, ) is given by the effect of a
P, transformation on V~(x, ;x,+ p), just as the
transformation in space-time parallel transports
V'(x, + p) to the point x,".

Of course, the connection between general coor-
dinate transformations and P, gauge transforma-
tions cannot be maintained beyond the first infin-
itesimal order. This is shown by the occurrence
of space-time-dependent functions (i.e. , curvature
and torsion) in the commutation relations of the
"gauge" transformations considered in Ref. 4, or
by our discussion of the gravitational holonomy
group given in Sec. V. It seems to us that the de-
gree to which one may wish to consider an equiva-
lence between general coordinate transformations
and P, gauge transformations is really just a
matter of taste. We have seen in this paper that
the proper interpretation of the P, gauge transfor-
mations is in terms of the isometrics of the inter-
nal spaces, each of which is associated to a par-
ticular point in space-time, and in which the Gold-
stone field corresponding to the spontaneously
broken P, symmetries takes its values.

Another way to view the relation between P'
gauge transformations and general coordinate
transformations is to make a gauge choice which
correlates the coordinates of the point f"(x) in the
internal space to those of its associated point g&
in space-time. For example, we can choose g"

In order to maintain this condition upon
performing a P' gauge transformation, a compen-
sating general coordinate transformation must be
made. However, the commutator algebra of these
"compensated P' gauge transformations" involves
derivatives in the "structure constants. " Thus we
see that the group structure of finite transforma-
tions of this kind is just that of the general coor-
dinate group plus the local Lorentz group.

Part of the motivation for undertaking the analy-
sis carried out in this paper came from the heuris-
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T ~'= 2i(v');, (6.2a)

T"'= T '= T '= T '=0 (6.2b)og eg oa aQ

T ~-=0,

where the notation of Ref. 32 is used, except for
the underlining of the spinorial indices, which in-
dicates that the indices shown can correspond to
either dotted or undotted two-component spinorial
indices. Using the graded Poincard curvatures in
superspace, Eqs. (6.2) may be reformulated" in
terms of the translational graded Poincare curva-
ture as

(6.3)

(6.4)

where A, and B are superspace "world" indices,
and the transition from internal indices in (6.2) to
the "world" indices has been effected using the

tic relations between supergravity and gauge theo-
ries of the graded Poincare or de Sitter groups
that were given in Refs. 10,12. The full local
geometrical structure of supergravity is still un-
clear, and we expect that extensions of the present
work will play an important part in the final under-
standing. One unsolved problem of considerable
importance is to deduce the auxiliary field struc-
ture of the extended supergravity theories, gen-
eralizing the known results for pure supergrav-
ity." This could be done by explicit constructions
using the component fields of supermultiplets, or
by an extension of one of the superspace ap-
proaches. A geometrically motivated approach to
a first-order formulation of SO(2) extended super-
gravity in superspace has recently been given in
Ref. 13.

An interesting connection between the present
work and the constrained superspace approach of
Wess and Zumino" is suggested by a reformula-
tion of their constraints in terms of the graded
Poincard curvatures. Supergravity is formulated
in a four-Bose plus four-Fermi dimensional curved
superspace, which is modelled after the flat coset
space resulting from a spontaneous breakdown of
graded Poincard to Lorentz symmetry. We shall
not pursue the details of this generalization of the
geometry discussed in the present paper, but
merely note that the graded Poincard group de-
fined on the (4+4)-dimensional superspace has
curvatures associated with rotations and transla-
tions which generalize the curvatures of the Poin-
car4 group in that they contain terms bilinear in
the supersymmetric gauge fields. In addition,
there is also a curvature associated with the gen-
erators of supersymmetry transformations.

The superspace constraints of Ref. 32 involve
the components of the superspace torsion, and
read

superspace vielbein field. In order to obtain the
expression (6.4}, the components of the vielbein
field must be identified with the nonlinear fields
obtained from the graded Poincard gauge fields by
a redefimtion which generalizes (3.18}. Thus E„
must be identified with e„' and E„with P„K (where
the superscript bar on g„- is meant to indicate a
nonlinearly transforming field). Using the spin-
orial graded Poincare curvature and the inverse
vielbein field, the constraints (6.3) may be re-
formulated as

(6.5)

g,„-=(m'y"y„)-' j(y'y, )-'(y'v„yc)(y'v„y, }

(6.6)

where the quantity m ' is now the vacuum expecta-
tion value of the Higgs field. An action for the
Higgs fieM is then

IH=k d &v-g 2 y yg y V~y~ y V„y~ g""

—~b'yd] (6 'f)

E E~ g~ —0
R

The particularly simple form (6.4), which in-
cludes both (6.2a) and (6.2b) in one formula, sug-
gests that an. understanding of the role of the graded
Poincard symmetry in pure supergravity may con-
siderably facilitate the superspace analysis of the
extended supergravity theories. An understanding
of the constraint structure for these extended the-
ories would essentially solve the problem of how

to express them in a covariant locally supersym-
metr ic formulation.

In this paper, we have been primarily concerned
with the relation between the gauge-theoretic and
geometrical aspects of gravity. The formulation
of gravity as a spontaneously broken gauge theory
of the de Sitter group may have interesting impli-
cations for gravitational dynamics as well. The
formulation (2.5) of the gravitational action, with
y"y„constrained to take the value -m"', is suffi-
cient to motivate the anlysis of the geometrical
role of the Goldstone field as we have done. More-
over, (2.5) generates precisely the field equations
of general relativity with a cosmological constant.
At a dynamical level, however, the action (2.5) is
suggestive of a generalized unconstrained theory
with a Higgs field and a potential that produces
spontaneous symmetry breaking in the normal
fa.shion.

It is a simple matter to replace the constraint in
(2.5) by a Higgs field and an appropriate potential
for the symmetry breaking. In order to construct
an action for the Higgs field, we need to have an
SO(3, 2)-invariant object that generalizes the
"metric" that we wrote down for the constrained
theory in (2.13). The appropriate object is
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yA(x) o, (s ic &x&P~) 0 (6.9)

where. 0 is a coupling constant with the dimensions
of length and V(y"y„) is a potential that produces
the des'ired strength of symmetry breaking. To-
gether with (6.7), we take the gravitational action

I~=(mx') '
J/d x~y &xscnzR „R„e" '],

(6.8)

where z is the usual gravitational coupling con-
stant.

Since the SO(3, 2) symmetry is spontaneously
broken down to SO(3, 1) by the potential in (6.7),
it is appropriate to make the field redefinition

as the scala, r coupling constant k tends to zero.
Generally, the mass of the Higgs field will be of
order m, and since this value determines the scale
of the cosmological constant, the Higgs field will
be essentially massless, although the exact value
of its mass obviously depends upon the particular
potential chosen. Note that the field @' does not
have the customary dimerisions; in order to cor-
rect for this and normalize the kinetic term in
(6.11), a factor of 0 ' should be absorbed into C'.
The coupling constant k then appears in all the
interaction terms involving the @' field.

Although the theory described here limits to gen-
eral relativity as k-0, there is an interesting dif-
ference in the theory's dynamics that shows up in
strong-field regions where the Higgs field C

~ is
not constant. Varying &e„,~ in (6.8) and using the
theory's Bianchi identities, we have

where p„ is defined by scaling Wl „,by m as before
in (3.3). The Goldstone field f"( x) then enters into
the definition of the vierbein and spin connection
exactly as given before in (3.18). Upon passage to
these nonlinearly transforming fields, the value
of the metric g~„given in (6.6} does not change,
since it is an SO(3, 2} invariant. In terms of the
nonlinear fields, the functional form of g„„is just

a-
gP v ~u ~vg ~ (6.10)

Thus, the Higgs action reduces to the familiar ex-
pression

d gv'-g -z8 8 g - V'—

(6.11)

Upon shifting the Higgs scalar field @ by its
vacuum expectation value,

(6.12)

we obtain a theory for a self-interacting scalar
field C '(x) coupled to gravity, both in the usual
way through the occurrence of g„„in (6.11}and
through a nonminimal coupling term arising from
the gravitational action (6.8). Besides this non-
minimal coupling term, (6.8) produces a Gauss-
Bonnet term, a scalar curvature term, and cos-
mological constant term exactly as before in (2.5).
In addition, there may be a contribution to the
cosmological constant from (6.7).

The theory described by (6.7) and (6.8) is a
scalar-tensor theory of gravity with a cosmologi-
cal constant. It is reminiscent of the Brans-Dieke
theory, with which it shares the property of limit-
ing to the pure tensor theory of general relativity

(6.13)

Instead of having the torsion B~~ vanish in the ab-
sence of spinning matter as in the Einstein-Cartan
theory, (6.13}shows that there will be torsion in
regions where @' is not constant and the de Sitter
curvature 8„'"is nonzero.

The fact that torsion need not be zero when grav-
ity is generalized to include the Higgs field may be
of particular interest in connection with solutions
to the theory that have nontrivial topology. In-
deed, we have emphasized that if the Einstein-

. Cartan theory is to be formulated as a gauge theory
of the de Sitter group, a very particular global
structure must be chosen for the SO(3, 2) fields in
relation to the tangent bundle of the space-time
manifold, permitting the construction of a solder
form. Local physics does not reflect the necessity
of such a particular global structure, however, so
a natural generalization of the Einstein-Cartan the-
ory is obtained simply by relaxing the require-
ments on the global structure for the SQ(3, 2)
fields. For example, we could retain the require-
ment that a cross section of the bundle of AdS
spaces may be chosen, but give up the require-
ment that the SQ(3, 2) bundle be reduced to the
tangent bundle of the space-time manifold.

A potentially more interesting possibility than
simply abandoning the reduction to the tangent
bundle of space-time would be to abandon also the
necessity of being able to construct a cross sec-
tion in the bundle of AdS spaces. In this case, in-
clusion of the Higgs fieM wouM be necessary, for
the obstruction to constructing a cross section of
AdS spaces wouM force the local representative
field y~(x) to pass through zero on some submani-
fold of space-time. The AdS spaces have the top-
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ology' S' x R', and it is the S' part that will per-
mit an obstruction to be set up on suitably chosen
space-times. The classification of a bundle of
circles over a four-dimensional space-time mani-
fold is given by the bundle's first Chem class."
For example, the maximally extended Schwarz-
schild/Kruskal space-time has topology~ S' x R',
and for this topology the bundle of circles is clas-
sified by the integers. " For any such nontrivial
bundle, the local representative field y"(x) would
have to pass through zero on some submanifold
of space-time.

As we have seen in (6.13), there will be torsion
in regions where the @ field is nonconstant. Since

'this field gives the radius of the local internal AdS
spaces, it will vary near the places where y"(x)
must pass through zero. Consequently, we may
expect to find solutions to the field equations de-
rived from (6."l) and (6.8) that have torsion in
localized regions due to such topological effects.
There are many interesting questions concerning
the physical effects of such topologically nontrivial
solutions, such as the effect on the singularity
structure of black holes or of cosmological mod-
els, or whether some of the analogies bebveen
gravitation and superconductivity suggested recent-
ly by Hanson and Regge" may be realized in this
way.

Work on the questions mentioned in this section
is in progress and will be reported elsewhere.

&ate added in Proof. A brief outline of the re-
sults of this paper may be found in K. S. Stelle
and P. C. West, J. Phys. A: Math. Nucl. Gen. 12,
L205 (1979).
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APPENDIX

In this appendix, we discuss how to derive some
of the formulas given in the text, in particular the

and

e~re~ = e~~F (A2)

e 6e =' &X. (A3)

Also, the equation

f(x).r =z
can be solved in the form

r= [f(x)] ' r.

(A4)

(A5)

When written in the above notation, E»l. (3.9) be-
comes, with g, = 1 -i a' P„

1 e»(:~P ()e»' Pah(- je~P~) — .
&

"(i&pP,)=h,(g,) —1.
(A6)

Evaluating the part of the left-hand side of (A6)
that is proportional to the P, generators allows
the evaluation of 6f', with the result given in
(3.10}. The calcuiation is easily carried out using
(A5) and the identity

(((' )'"*e4&P=(m »)" c'P —', P,), (AV)

which follows from the commutation relations (3.4)
and (3.5). Evaluating the part of the left-hand side
of (A6} that is proportional to the generators M,~

yields the expression for h, (t;, e) = h, —1 given in
(3.17).

The nonlinear fields e„'(x) and &o~'~(x) are
evaluated from their definition in E»l. (3.18),
which can be written

expressions for e„', ~„'~, and h, (f, »!). We use
the techniques of Ref. 26, which we summarize
here for convenience.

For any two quantities X and F involving the
SO(3, 2) Lie algebra generators, define

x~r= [x, r],
(A1)X2~r= [x, [x, r]], etc. .

An expression f(x)~r is defined by expanding f(X)
into a power series in X and then using the above
formulas. In particular, we have

—,'i(o„"(x)M,-ie„'(x)p = . , "S (i0'p )+e«'~"( ie, 'p )+e-« '~"(-, i(d„"M,).(1 e»(l~P I) ~ C 1

a
(A8)

The expressions for e~' and &~' given in Eqs.
(3.19) and (3.20} are easily found from (A8) using
(AV) and the identity

[(-i1'P,) "",giM, ))]= —gi(m'1')"(1, P»,
—f~ P,), (A9)

which also follows from (3.4} and (3.5).
As explained in the text, the vierbein and spin

connection of the internal anti-de Sitter space may
be found from the expressions for e„' and &„'~
given in (3.19) and (3.20} by setting e„'= &0~'~= 0.
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The resulting AdS vierbein field is given in (4.14).
It can be used to calculate the metric S„ofAdS
space, with the result

The metric of the AdS space in the coordinates y'
is found by using (All) to eliminate y', giving

S (k'l=l:n&l ', (q.=— ."l, +
mn n eb m nm g2 ~ +2

(A 10)

( ) q
yeya

(y'y +m ') ' (A12)

Then, the metric S (f) in f coordinates is given
by

y y„=-m" .A. "2 (A11)

Alternatively, we may calculate S (P) by using the
embedding equation for the AdS space into the
pseudo-Euclidean five-dimensional space,

sye By~
S~(g) = s~„st.„S„(y). (A13)

The result obtained in this way from (A13) agrees
with (A10).
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