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Semiclassical relativity is a theory in which quantum matter fields interact with a classical gravitational
field via the semiclassical Einstein equation G,, =8w{T,,>. We consider, for the case of massless
quantum fields, the weak-field limit of this theory. It is shown that the linearized quantum stress energy can
be determined in a manner which is essentially independent of the details of any regularization prescription.
Using this expression for the quantum stress energy, we solve the linearized semiclassical Einstein equation.
The solutions found include (1) perturbations that satisfy the linearized classical Einstein equation G,, =0,
(2) perturbations that grow exponentially in time, and (3) perturbations that (in some sense) travel faster

than the speed of light.

I. INTRODUCTION

General relativity is a classical theory of grav-
ity. It incorporates neither the quantum nature of
matter nor the quantum nature of the gravitational
interaction. Direct attempts to extend general
relativity to a full quantum theory of gravity have
encountered difficulties.! For this reason, some
interest has focused on a semiclassical theory in
which gravity is still treated classically (accord-
ing to general relativity) but matter is now treated
quantum mechanically (according to quantum field
theory). One hopes that in certain regimes this
theory will be a valid approximation to a full quan-
tum theory of gravity, as well as perhaps yield
some insight into the full quantum theory.

Semiclassical relativity can be divided into two
parts. The first consists of describing the effect
of curved spacetime on quantum fields, and the
second of describing the effect of quantum fields
on curved spacetime. The first part of this theory
is now fairly well understood.? The most impor-
tant new feature which arises is that gravitational
fields can create particles. In particular, Hawk-
ing® has shown that a black hole creates particles
with an exactly thermal spectrum, This predic-
tion is important not just for its possible astro-
physical consequences,? but also for the deep links
with thermodynamics which seem to be implied.®
Particle creation in cosmological models has also
been investigated.® The latter part of semiclassi-
cal relativity describes the back reaction of these
created particles on the gravitational field. Un-
fortunately, relatively little is known about the
physical implications of this part of the theory.
One expects statements of the form: ‘“Black holes
decrease in size as they radiate particles” and,
perhaps, “anisotropies and inhomogeneities are
damped out by particle creation in the early uni-
verse.” However, difficulties of (among other

things) computing the stress energy of a quantum
field in a curved spacetime have hindered pre-
dictions of this type (although preliminary results
have been obtained’).

In this paper we consider the back reaction of
quantum fields on a classical gravitational field.
In order to get more insight into the nature of this
back reaction, we investigate semiclassical rela-
tivity (with massless quantum fields) in the limit
of weak gravitational fields. In this limit the back
reaction is described by perturbations off Min-
kowski spacetime whose linearized Einstein ten-
sor is equal to the linearized created stress en-
ergy of the quantum field (i.e., perturbations sat-
isfying the linearized semiclassical Einstein equa-
tion). ‘

At first thought it might appear that this weak-
field limit of semiclassical relativity is equivalent
to the weak-field limit of classical relativity:
Since the stress energy is quadratic in the matter
field, and a linearized gravitational perturbation
creates a first-order change in that field, the
change in the stress energy would seem to be sec-
ond order. Indeed, the stress energy of a classi-
cal field coupled to gravity does vanish to first
order. However, it turns out that there is a first-
order contribution to the quantum stress energy
which can be thought of as resulting from the cross
term (matrix element) between the perturbed field
and unperturbed field configurations. Thus, al-
though the weak-field limit of semiclassical rela-
tivity does not include the energy density of the
created particles, it nevertheless includes some
effects of particle creation (as well as first-order
“vacuum polarization” effects).

Unfortunately, it turns out that for a given grav-
itational perturbation, there is a family of mathe-
matical candidates to represent the physical
created stress energy of a massless quantum field.
There does not appear to be any way at present to
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select one member of this family as the “correct”
one to include in the back-reaction calculations.
Thus, we are forced to consider the back reaction
determined by each member of this family.

In order to solve the linearized semiclassical
Einstein equation, one needs an expression for a
first-order quantum stress energy (selected from
the above family) in terms of the gravitational
perturbation. Such an expression was obtained
by Capper et al.'? using dimensional regulariza-
tion. Here, we derive an equivalent result using
Wald’s axiomatic approach.'* This approach has
the advantage of being less dependent on ambigu-
ities in the regularization procedure, and also
yields a convenient expression for the stress en-
ergy in terms of an integral over the gravitational
perturbation. This expression is sufficiently sim-
ple that the back-reaction problem can be solved
quite easily.

We find three main classes of solutions to the
linearized semiclassical Einstein equation. The
first class consists of all solutions to the linear-
ized classical Einstein equation. These solutions
can be interpreted as “weak gravitational waves
traveling through spacetime which do not interact
with the quantum field.” The second class of solu-
tions consists of perturbations which grow expo-
nentially in time. These solutions might be in-
terpreted as “gravitational fields which create
particles, which in turn create more gravitational
fields, etc.” The existence of this second class of
solutions is perhaps surprising. It indicates that
flat spacetime is unstable in semiclassical rela-
tivity. The third class of solutions (which only oc-
cur for certain choices of the stress energy) is
even more surprising. In consists of linear super-
positions of plane waves traveling in spacelike di-
rections. These solutions represent “coupled
gravitational-quantum field disturbances traveling
faster than the speed of light.” Since these solu-
tions are presumably unphysical, we may conclude
that the correct candidate for the quantum stress .
energy must be one which does not admit solutions
of this kind.

Finally, we consider the weak-field limit of
semiclassical relativity in the presense of a clas-
sical stress-energy source.\As an example, we
take the classical stress energy to represent that
of our sun, and estimate the first-order quantum
corrections to the bending of light (i.e., the cor-
rections due to the gravitational effects of the vir-
tual particle-antiparticle pairs in the space around
the sun).

The organization of this paper is as follows. In
Sec. II we review some of the mathematical for-
malism of semiclassical relativity. In Sec. III,
the weak-field limit is considered and our expres-

sion for the first-order quantum stress energy is
derived. Finally, in Sec. IV, we solve the linear-
ized semiclassical Einstein equation. Some tech-
nical issues concerning distributions in general,
and our Green’s function in particular, are dis-
cussed in the Appendix.

II. SEMICLASSICAL RELATIVITY

Let M, g, be a spacetime, ¢ be a quantum field®
on that spacetime (which is an operator on a free
Fock space of states &), and £ be a state in the
Fock space F. In semiclassical relativity, a phys-
ical system is described by a collection (M, g,;, ¢,
£) which satisfies the semiclassical Einstein equa-
tion :

Gop=81(& | T, | &), (1)

where T,, denotes a “stress-energy operator of
the quantum field ¢.” Roughly speaking, one can
interpret the semiclassical Einstein equation as
follows. One starts with a quantum matter field
in state £ and a classical gravitational field in
some configuration (determined, say, by initial
data). One now evolves this system by requiring
that at each point the classical Einstein tensor be
equal to the average value of the quantum stress-
energy operator.

Unfortunately, it turns out that there is no ob-
vious expression for the stress energy of a quan-
tum field in an arbitrary curved spacetime. We
now review this difficulty and discuss a possible
resolution,

Recall that the stress energy of a classical field
is.quadratic in the field, e.g., for a massless
scalar field:

T,p= VIV, =3 g,V V™. (2)

As is well known, in quantum field theory, i be-
comes an operator-valued distribution. The prob-
lem in defining a quantum stress energy is that if
one naively substitutes the quantum field into the
formula for T,, [e.g., Eq. (2)], one obtains an ex-
pression involving the product of distributions,
which is not defined. Furthermore, in order for
the semiclassical Einstein equation to make sense,
each expectation value of the quantum stress-en-
ergy operator must be a smooth tensor field (not
an arbitrary distribution) on spacetime. Thus
there appears to be no natural quantum analog of
the classical stress-energy tensor.

The standard procedure which has been adopted
for dealing with this problem is the following. One
formally forces the quantum field operator to be
defined at each point of spacetime, and substitutes
into the classical expression for the stress energy.
The result is an “operator” which, however, has in-



finite expectation values. One now removes the
singular part, a process which is called regular-
ization. In flat spacetime there is a natural regu-
larization prescription: normal ordering. Phys-
ically, this prescription corresponds to adjusting
the vacuum expectation value of T,, to be zero.

In an arbitrary curved spacetime, this prescrip-
tion is no longer available since there is no unique
vacuum state of the system.

In recent years several regularization prescrip-
tions for any curved spacetime have been pro-
posed, e.g., point-separation,®!° dimensional reg-
ularization,''+*? and zeta-function regularization.'
The question naturally arises as to which regular-
ization prescription should be used to obtain the
physical stress energy of a quantum field in curved
spacetime, This question has, to some extent,
been answered by Wald.!* In short, his answer
consists of first specifying a list of axioms which
any reasonable candidate for the stress energy
must satisfy, and then displaying a class of pre-
scriptions which yields all stress-energy opera-
tors that satisfy these axioms. We now discuss
this result in a bit more detail.

Consider the following axioms on a stress-en-
ergy operator T ,,:

(1) Matrix elements between orthogonal states
are given by the formal expression (which now
gives finite, unambiguous results).

(2) If the spacetime is flat (with standard R* top-
ology), then the vacuum expectation value is zero.
(3) Expectation values are conserved: V(7%

=0.

(4) Expectation values are causal: For a fixed
in-state (7,,(p)) depends only on the geometry to
the past of p. Similarly, for a fixed out-state
(T,,(p)) depends only on the geometry to the future
of p.

Notice the absence of an energy condition for (T,,).
Indeed, the existence of particle creation from the
vacuum suggests that (T,,) cannot satisfy an energy
condition.'® A priovi, it is not obvious that there
exists any stress-energy operator that satisfies
these axioms, i.e., the axioms might be inconsis-
tent. However, Wald has shown'® that for a large
class of spacetimes, there indeed exists a stress-
energy operator T,, satisfying these axioms. Fur-
thermore, it is easy to show that the class of all
stress-énergy operators that satisfy these axioms
consists precisely of those that can be obtained by
adding a conserved local curvature tensor'’ times
the identity operator to 7,,. [Adding a multiple of
the spacetime metric violates axiom (2) and hence
is excluded.] Thus the axioms do not uniquely de-
termine a quantum stress-energy operator, but
given any one, the remaining freedom is well
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understood. Unfortunately, this remaining free-
dom is quite large. We now impose the additional
condition that the quantum stress energy cannot
depend on sixth-order derivatives (or higher) of
the metric. The motivation for this condition is
twofold. On the one hand, we desire some addi-
tional condition to make the theory of back reac-
tion more manageable, and on the other, it is
known'® that this condition is the greatest restric-
tion on the order of derivatives of the metric which
is consistent with the axioms,!®

We now return to the semiclassical Einstein
equation [Eq. (1)]. In principle, to answer any
question regarding the interaction of quantum
fields and gravity, one would simply solve this
equation (with some choice of the stress-energy
operator) for the situation of interest, and study
the resulting solution. In practice, however, it
has proved difficult to proceed in this manner.
The regularization prescription which relates a
given stress-energy operator to the curvature of
spacetime turns out to be very complicated, mak-
ing solutions to Eq. (1) difficult to find. In fact,
I am aware of only two classes of solutions to the
semiclassical Einstein equation (for any choice of
stress-energy operator). The first class consists
of simply Minkowski spacetime, any quantum
field, and the in-vacuum state of the quantum
field, i.e., (M,7n,,,¢,0). This solution can be
viewed as the vacuum solution of semiclassical
relativity. Note that for any nonvacuum in-state
£, (M,n,,, ¢, £) is not a solution. (The expectation
value in-state ¢ of the normal-ordered stress en-
ergy is nonzero.) The second class of solutions to
the semiclassical Einstein equation consists of a
Robertson-Walker spacetime, a conformally in-
variant quantum field, and the in-vacuum state of
the field: (M, a#n,,,$,0). Substituting this form
of a solution into Eq. (1) one obtains a fourth-order
ordinary differential equation on the conformal
factor a(#) which can be solved, e.g., numerically.

We now linearize the semiclassical Einstein
equation about its vacuum solution,

G,p=81(0|T,, |0}, (3)

where a dot over a tensor denotes the correspond-
ing linearized tensor. What is the freedom in the
right-hand side of this equation? We have seen
that if 7%, and T2, are two stress-energy operators
satisfying Wald’s axioms and our additional condi-
tion, then (0|7%,]|0)—(0|TZ |0) is a conserved
local curvature tensor with less than six deriva-
tives of the metric. Therefore (0 ]T;b |0)
-(0]|72,]0) must be a linearized curvature tensor
with these properties. But the only linearized
curvature tensors with these properties are® the
linearized Einstein tensor Ca,, and the linearized
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form of
- = J mnrs 4
Aab 2-&2? Cmn'rsc €cdef s ( )
— 6 2 5)
B =ggar J B s (
that is,
Aab= —ZVZéab - %Vavbémm+ %nabvzémm ’ (6)
B,,=2n,,V2G™, - 2V, V G . (7

Thus there exists a three-parameter family of
candidates for the linearized stress-energy op-
erator of a quantum field. However, we see from
Eq. (3) that the change in the theory produced by
adding a multiple of Cab to the stress energy is of
a trivial nature (essentially, one is just changing
the value of the gravitational coupling constant).
Therefore, we shall concentrate on a two-param-
eter family of stress-energy tensors that differ
by multiples of Aab and Ba,,.

III. LINEARIZED QUANTUM STRESS ENERGY

In this section we derive an expression for the
linearized quantum stress energy in terms of the
gravitational perturbation. (This expression is
equivalent to one previously obtained by Capper
et al.*®) Our approach consists of introducing a
Green’s function and expressing?? (Ta,,> in terms
of an integral over the gravitational perturbation.
Surprisingly, it turns out that the appropriate
Green’s function can be essentially determined
from its general properties. Notice that we are
using a Green’s function in a manner which is dif-
ferent from most other applications in physics.
Typically, Green’s functions are employed to solve
a given linear differential equation. Although sym-
metry properties (e.g., Poincaré invariance) are
often invoked to help determine the Green’s func-
tion, the essential ingredient in its determination
is that it satisfy the given differential equation.

By contrast, the Green’s function for the linear-
ized quantum stress energy will be determined
without the use of a differential equation relating
(T, t0 ¥4, We now proceed to carry out this
analysis.

Let M, n,, be Minkowski spacetime and let y,,
be an arbitrary linear perturbation which has com-
pact support.® Consider a massless quantum field
on the perturbed spacetime and let (7,,) denote one
of the possible candidates for the in-vacuum ex-
pectation value of the first-order stress energy of
this field. Clearly, (7,,) depends linearly on y,,.
If we make the reasonable assumption that (T,,)
depends continuously (in a suitable sense) on y,,
as well, then we conclude that there must exist a

tensor distribution H,,”"(x,x’) (see Appendix) such
that )

(F ()= T 4 Hy, e 27y k') (8)

where the indices ab denote tensors at the point x
and m’'n’ denote tensors at the point x’. Notice
that the distribution H,,”" is our desired Green’s
function, i.e., it yields the first-order quantum
stress energy in terms of the gravitational per-
turbation.

We claim that H,,;""(x,x’) satisfies the following
five properties:

(1) Poincaré invariance (i.e., invariant under
any Poincaré transformation of both x and x’ si-
multaneously);

(2) symmetry under interchange of g and b, and
similarly of m’ and »’;

(3) vanishing divergence on any index;

(4) support on the past light cone of x [i.e., for
fixed x, H,,™"(x,x')=0 for x’ off the past light
cone of x];

(5) dimension cm™8,

The first property is immediate (Hab’"'"' is inde-
pendent of the perturbation y,,). Symmetry under
interchange of ¢ and b, and m’ and n’, reflects
the symmetry of (7,,) and y,,, respectively. Van-
ishing divergence on the index a or b follows from
conservation of (Tab). Vanishing divergence on the
index m’ or »n’ follows from gauge invariance of
(T,,,,>: Consider a perturbation which is pure
gauge, i.e., v, .=V .&. for some vector field £,
of compact support. Then

0= fHabMI"'V(m’gn')= - f(vm'Habm'"')gn’ . (9)
M

Since this must be true for all £,, H,,”" must have
vanishing divergence on m' (and similarly »’). For
the fourth property, fix x and consider a perturba-
tion whose support does not intersect the past

light cone of x. Since the retarded Green’s func-
tion for a massless field at x has support on this
past light cone, we see that the field operator at

x will be the flat spacetime field operator, and
hence the stress energy must be the flat space-
time stress energy, i.e., it must vanish. The final
property follows from noting that the stress energy
has dimensions cm”2, 7% has dimensions cm?, the
integral has dimensions cm*, and the perturbation
is dimensionless.

Recall that (7,) in Eq. (8) was chosen arbitrarily
from the family of candidates for the quantum
stress energy. Therefore, any stress energy in
this family must be expressible in terms of a dis-
tribution H,,™" which satisfies the above five
properties. We now determine all such distribu-



tions. The approach will be to use properties (1),
(2), and (3) to convert H,,™™ into a scalar Green’s
function, and then use properties (1), (4) and (5)
to determine the allowed class of scalar Green’s
functions.

As shown in the Appendix, translation invari-
ance alone implies that there exists a distribution
H,, ,such that

a

fHabm'"l (%, %)V mne(x") = f Hpeg(x = x")y¢4(x’)  (10)
M M

for any smooth v,, of compact support. We now
fix an origin in Minkowski spacetime and take the
Fourier transform of Eq. (8), obtaining

(Ty(R)) = Bl ()R (11)

where the caret denotes the Fourier transform.
Since H,,"™(x,x’) was Poincaré invariant,

H . (x —x') is Lorentz invariant, and therefore
Tabcd ’

]

a

Substituting back into Eq. (11) we notice a surpris-
ing simplification. "The two tensors multiplying

g, and g, are precisely the Fourier transform of
the linearized conserved local curvature tensors.
A,, and B,, given by Egs. (6) and (7).2* Therefore,
taking the inverse Fourier transform we obtain®

(T =11 [ Gl =5V Ay (")

w11 [ Gl =B (x), (14)

where G, and G, (the Fourier transforms of g, and
g., respectively) have yet to be determined.

We have thus replaced the original tensor dis-
tribution by two scalar distributions G; and G,.
We must now determine the class of scalar dis-
tributions which satisfy the remaining properties.
These properties are Lorentz invariance (1), sup-
port on the past light cone of x(4), and dimensions
em™(5). To begin, fix a point x in Minkowski
spacetime. Define a scalar field ¢ on M by setting
for each point p, o(p) equal to one-half the square
of the geodesic distance from x to p. Consider the
distribution H defined by its action on a test func-
tion f (i.e., C~ function of compact support) as
follows. For each real number a<0, let F(a) de-
note the value of the integral of f over the past
hyperbola consisting of all points satisfying o= a.%¢
Thus F is a real-valued function defined on (-,
0]. Now define
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A,,.,k) must be Lorentz invariant as well, i.e.,
invariant under Lorentz transformations in mo-
mentum space. Consequently, Flabcd(k) can be ex-
pressed (see Appendix) as a sum of terms, each
consisting of a Lorentz-invariant scalar distribu-
tion times a tensor product of the position vector
field in momentum space k%, and the metric 7,,.
Using this fact, together with property (2), i.e.,

PN

H,.0= H pycay» We conclude that

ﬁabccﬁ (g + 28, R ok ok R+ Ikl Ry Mo+ Mok ™R Ny (R g
+ Rk Tk R g+ Rk gy Toq + 810 My Mays 5 (12)

where g, &, #,. .., h, are distributions which
have yet to be determined. The divergence-free
property of H,,™™ translates into the condition that
H,,., be orthogonal to 2 and k°. Imposing this
condition in Eq. (12) we obtain four linearly inde-
pendent equations which can be used to express
the 7,’s in terms of the g,’s. We obtain

avca= 81l SRRk R+ RH Mgk + RkyTleg) = 28k (Tyy R ay = 5 Mgy Tlpat B TlycMays )
+ 82 [2kakbkckd - Zkz(nabkckd+ kakbncd) + 2k4nabncd] .

(13)

[ = xr()= lim [F(e)+ 27 1n(- )7 ()]
M

(15)

In coordinates, if #,v are the standard retarded
and advanced time coordinates with origin x, and
dS) is the standard unit of solid angle,

o)

s L [£]

Xdud$ . (16)

1 of
. In(—2) + 350

It is not hard to verify that # is indeed a continu-
ous linear map from test functions to the real
numbers and- hence defines a distribution. It
follows from a theorem due to Methée?” (see Ap-
pendix) that each of the scalar distributions G,
and G, appearing in Eq. (14) must be some multiple
of H plus some multiple of the Dirac 6 distribution
at x, i.e., G,=aH+ ad,, G,=bH+ 6, for some con-
stants a,b, @, 8.

We have now determined the scalar distributions
G, and G,. Substituting into Eq. (14) we obtain the
result

(T,p(x))= h’{ f H(x = x")[aA,(x") + 0B, (x") ]

+ QA (x)+ BB, (x) } y (17)

where H is the Green’s function given by Eq. (16),
A,, and B,, are linearized conserved local curva-
ture tensors given by Egs. (6) and (7), and q,b, a,
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B are constants.

To summarize, using only general properties of
the quantum stress energy and none of the details
of a specific regularization prescription, we have
shown that any candidate for the linearized stress
energy of a massless quantum field must be given
by Eq. (17) for certain values of the constants a,
b, a, and B. Thus there is a four-parameter fam-
ily of candidates for the first-order quantum stress
energy which satisfies our five properties.

There appears, however, to be a problem with
Eq. (17). Recall that any two stress-energy ten-
sors for a given quantum field on a given space-
time satisfying Wald’s axioms (discussed in Sec.
II) can differ by at most a local curvature tensor.
However, it is clear that the stress energy de-
fined by Eq. (17) for one choice of the constants
a and b will differ in a nonlocal way from the
stress energy defined by this equation (with the
same perturbation) for another choice of @ and b.
The resolution of this apparent contradiction is
that the five properties we have used to obtain our
Green’s function formula for the stress energy do
not fully capture the content of Wald’s axioms.
For example, we have considered only the in-
vacuum expectation value of the stress energy and
have not required that the out-vacuum expectation
value of the stress energy be causal. Since the
difference between any two stress-energy tensors
satisfying Wald’s axioms must be a local curva-
ture tensor, the subset of stress-energy tensors
(for each quantum field) given by Eq. (17) which
are consistent with the axioms must consist of
precisely those with a fixed value of a and b.

To determine the constants ¢ and b we proceed
as follows. Fix a perturbation y,, on Minkowski
spacetime (M, 7,,) and a massless quantum field
on this perturbed spacetime. First compute the
stress energy <Tab) created by the perturbation
.5, and then compute the stress energy (T,,)
created by the perturbation y,, =4y,, on the space-

time with metric 7,,=4n,,. We find that A, =LA
and B,,= £ B,,. However, (T,,)#3(T,,). The pres-
ence of the logarithm in the definition of H [see

Eq. (15)] implies that
(T,)=%(T,,)+ 1 1n2(ad ,+ bB,,) . (18)

Now let g,,(¢) be any one-parameter family of met-
rics such that g,,(0)=17,, and g,,(0)=v,,. Take any
regularization prescription satisfying Wald’s ax-
ioms and compute for each ¢ the stress energy
(T,,(t)). Then compute for each ¢ the stress energy
(T,,(#)) resulting from the metric g,,(¢)=4g,,. One
finds

(T(8)y=1 (T,(1))
+mHIn2[AA ,(t)+ BB,(1)], (19)

where A and B are constants (independent of both
the parameter ¢ and spacetime point) which are
now known. Therefore linearizing this equation
and comparing with the one above [Eq. (18)] we
find that the stress energy given by Eq. (17) will
be consistent with Wald’s axioms if and only if a
=A and b=B. Fortunately, the values of A and B
and hence g and b for several quantum fields have
already been determined.®*? In Table I we list
the values of these coefficients for massless quan-
tum fields of spin 0, 3, and 1. The first-order
stress energy of two or more massless quantum
fields interacting only with gravity is given by Eq.
(17) with g and b equal to the sum of the appropri-
ate coefficients for each field. -

Strictly speaking, the fact that (T,,) #3(7,,)
means that the stress energy defined by Eq. (17)
does not have the correct physical dimensions of
cm™2 In order to correct this, we introduce a
preferred length A into the theory.'>?® Define a
new distribution H, by replacing In(-a) by In(-a/
A% in Eq. (15). In terms of coordinates the action
of H, on a test function f is

o

[ == [[T[L] w32

X dS2du . (20)

We now replace the distribution H in Eq. (17) by
H,. It is easy to verify that the stress energy so
defined now has the correct dimensions. Since
the length scale X is arbitrary, we can view it as
another free parameter of the theory. However,
it is not independent of the parameters a and B.
Notice from Eq. (20) that

le.(x -x")f(x") - th(x —x")f(x")=4m In(A/A")f (x) .

(21)

Therefore, by adjusting the value of A we can re-
write Eq. (17) so that aAab(x) does not explicitly

TABLE 1. Values of the coefficients “a¢” and “b” ap-
pearing in Eq. (17) for several choices of massless qua-
tum field.

Quantum field a . b
Klein-Gordon field 1 1
© (4m)(9607?) (4m)(576m2)
Conformally invariant 1 0
scalar field (4m)(96072)
. . 3
Neutrino field _—_(41r)(9601r2) 0
Maxwell field — 12 0
(4m)(9607?)
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appear,

We thus obtain our final expression yielding the
first-order stress energy in terms of the gravi-
tational perturbation®:

(T, ()= {L‘H,‘(x —x')[ad,,(x") + BB, (x") ]+ BBa,,(x)},

(22)

where X and g are arbitrary parameters, H, is
the Green’s function given by Eq. (20), a and b
are the fixed coefficients (depending on the quan-
tum field) given by Table I, and Aab and Ba,, are
the linearized conserved curvature tensors given
by Eqs. (6) and (7).

Equation (22) has the following immediate con-
sequence: Fov a perturbation in Minkowski space-
time satisfying the lineavized vacuum Einstein
equation, the fivst-ovder stvess enevgy of any
massless quantum field vanishes everywhevre.

To see this, one simply observes [from Egs. (6)
and (7)] that if G,,=0, then A, =5,,=0 as well.
Physically, this fact means that for perturbations
satisfying the linearized Einstein equation, there
is neither particle creation nor vacuum polariza-
tion to first order.®°

It is easy to verify that Eq. (22) is equivalent to
an expression obtained by Capper et al.'?: If one
takes the Fourier transform of Eq. (22) [see Ap-
pendix, Eq. (A23)], and restricts v,, to be in an
appropriate gauge, then one finds that this ex-
pression, e.g., for a quantum Maxwell field, is
equivalent to the expression for the one-loop pho-
ton contribution to the graviton self-energy com-
puted by Capper et al. using dimensional regular-
ization. In particular, our expression incorpo-
rates the standard trace anomaly®'+*2for conformally
invariant quantum fields.

IV. LINEARIZED SOLUTIONS

In this section we use our Green’s function for-
mula [Eq. (22)] for the linearized stress energy
of a massless quantum field to investigate the so-
lutions to the linearized semiclassical Einstein
equation

G,y =81(T,,) - (23)

Notice one important difference between this equa-
tion and the linearized classical Einstein equation.
Unlike G,,=0, Eq. (23) is nonlocal. That is, given
a perturbation y,, defined only in a neighborhood
of a point, one cannot ask whether vy , is a solution
to Eq. (23) in this neighborhood. For the quantum
stress energy evaluated at a point x involves an
integral of the perturbation over the entire past
light cone of x. Physically, the nonlocal character

of the quantum stress energy can be interpreted
(in part) as resulting from particles created by the
curvature at a point x’ propagating through space
and contributing to the stress energy at the point x.

We now begin our investigation of the linearized
back-reaction problem. That is, we fix a quantum
field, fix values for g and A, and seek perturba-
tions y,, which satisfy the linearized semiclassical
Einstein equation [Eq. (23)], where (7,,) is given
by Eq. (22).

Recall that the local curvature tensors A and

» appearing in the equation for the 11near1zed

quantum stress energy can both be expressed in
terms of the linearized Einstein tensor [see Egs.
(6) and (7)]. Thus the semiclassical Einstein
equation can be viewed as an equation on a sym-
metric, conserved tensor éab. Therefore, we
adopt the following program for finding metric
perturbations v,, satisfying Eq. (23). We first
solve Eq. (23) for G,, and then (imposing, say the
Coulomb gauge) solve

- éVZ(,yab‘__lz_ Y'",,,Tlab) = Cab (24)

for y,,. Since Eq. (24) is easily solved once G,
is known, we concentrate on solving Eq. (23) for
Gy

One solution to Eq. (23) for any choice of A B
and quantum field is clearly Gab= 0. Therefore,
every solution to the linearized classical Einstein
equation is also a solution to the lineavized semi-
classical Einstein equation. Physically, these
solutions can be interpreted as weak gravitational
waves which do not interact with the quantum
field. To find additional solutions to the semi-
classical Einstein equation we consider special
choices of the quantum field and parameters A and
B.

For simplicity we consider first a quantum Max-
well field and we set =0, A#0 in the formula for
the linearized stress energy. In this case the
semiclassical Einstein equation becomes

Gl = s L Hyx = x)A (") . (25)

Taking the trace of both sides of this equation we
find G"‘ =0. Therefore using the expression for
A p 1D terms of Ga,, [Eq. (6)] we can rewrite Eq.
(25) in the form

Gorl) =g l Hyx ~x")V"%6x") , (26)

where V’2 is the wave operator in x’. Equation
(26) thus describes the interaction of a quantum
Maxwell field with a weak gravitational field in
semiclassical relativity with B=0. We now in-
vestigate its solutions.

We first find all asymptotically well-behaved
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solutions to Eq. (26), i.e., all solutions G,, which
can be Fourier transformed. Taking the Fourier
transform of Eq. (26) we obtain

2 7 -t
Car=55.7 k*H,G,, , 27)

where a caret denotes the Fourier transform. It
turns out that the Fourier transform of the distri-
bution H, can be represented (see Appendix) by the
function

H,=-2r[In\?|#?| + 2y —1+im6_(R)] , (28)

where y is Euler’s constant and 6_ is the step func-
tion that has the value -1 inside the future light
cone in momentum space, +1 inside the past light
cone, and 0 elsewhere. Substituting (28) into (27)
we obtain

FEIE,k)=0, (29)

where
FR)=1+ i—% R*[InA? %% | + 2y =1 +im0_(R)] .

For C';ab to satisfy this equation, it can be nonzero
only when f=0. It turns out that the zeros of f de-
pend upon the relative values of A and a critical
value on the order of the Planck length: X,
=¢™(n/10m)*/% If A>A_,,, one finds that f is non-
zero everywhere in momentum space. Thus the
only solution to Eq. (29) is G,,=0. Consequently,
Jor A>X ., the only asympotically well-behaved
perturbations v, which satisfy the lineavized
semiclassical Einstein equation (with a quantum
Maxwell field and B=0) are those satisfying G,
=0, i.e., solutions to the linearized classical
Einstein equation. For A=X_,,, one finds that
there exists precisely one value of k* at which f
=0. It turns out that this value is positive (i.e.,
k¢ is spaceliké) and therefore f vanishes on a
timelike hyperbola 3¢ in momentum space. Now
recall that Gab must be conserved, so pab must
be transverse to the hyperbola, i.e., kG,, = 0.
Therefore, for A=X_,,, the general Fourier
analyzable solution to Eq. (26) is obtained by
specifying on the hyperbola 3¢ any symmetric,
transverse, trace-free tensor field L,, (which is
suitably well behaved asymptotically) and setting

G,y %) = L L (R)ei. (30)

[if we want G,, to be real, we must additionally
choose L,, such that L (k)= L, (~%), where a bar
denotes complex conjugation.] Finally, for A
<A, One finds that there exist precisely two
values of %% at which f=0. Both of these values
turn out to be positive, and therefore f vanishes
on two timelike hyperbolas j¢, and 3C,. Thus the

solutions to Eq. (26) with A<\, are given by a
formula identical to Eq. (30) with 3¢ replaced by
3¢, U3C,. Notice that since k° is always spacelike
in Eq. (30), these solutions represent gravita-
tional waves which (in some sense) travel faster
than the speed of light. Thus for A<2_,,, semi-
classical relativity admits “tachyonlike” solu-
tions.

We now ask whether there exist solutions to Eq.
(26) which are initially well behaved, but grow ex-
ponentially in time. (Solutions of this type would
not be Fourier analyzable and hence would not be
included in the analysis of the above paragraph.)
Let ¢® be a constant unit timelike vector field in
Minkowski spacetime and define a time coordinate
by t,=V t. We try a solution of the form

Gap=L, €t (31)

where L, is a constant, symmetric, trace-free,
spatial (i.e., ¢°L,,=0) tensor field and w is a com-
plex constant (with positive real part). Note that
the (';a,, given by Eq. (31) is indeed conserved. We
now substitute this form of G,, into Eq. (26) and
evaluate the integral using Eq. (20) for the Green’s
function H,. We obtain the following equation on w:

N YN
1—_10ﬂw(1n)\w+2y—1). (32)

Are there values of w which satisfy this equation?
The answer is yes (for any value of A). Qualita-
tively, the dependence of the solutions on A is the
following. In general, theire exist two solutions.
For A <, one solution is much less than w
=(107/m) /2~ 10 sec™ and the other is much
greater than this frequency. As X increases
toward A, the two solutions approach each
other, and when A=2x_,,, they coincide at w=w_,,.
As X increases past A_;,, both solutions become
complex, but in the limit X -~ <, they both approach
w=0., In short, for any value of X, there exist ex-
ponentially growing solutions to Eq. (26). Phys-
ically, the existence of these exponentially grow-
ing perturbations indicates that the vacuum solu-
tion of semiclassical relativity (i.e., Minkowski
spacetime with the in-vacuum state of the quan-
tum field) is unstable.

To summarize, we have been considering a
quantum Maxwell field interacting with a weak
gravitational field in the framework of semiclas-
sical relativity. We have set the free parameter
B in the definition of the quantum stress energy
equal to zero. For all values of the remaining
parameter A, we found that there exist both well-
behaved solutions (perturbations satisfying Cab= 0)
and badly behaved solutions (perturbations grow-
ing exponentially in time). In addition, we found
that if X is less than a critical value (on the order

crit
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of the Planck length) then there exist tachyonlike
solutions (perturbations that are a superposition
of plane waves traveling in spacelike directions).
Since this last class of solutions is presumably
unphysical, it is fortunate that semiclassical rel-
ativity provides a natural way to eliminate them.
We simply restrict the free parameter A to values
greater than this critical value.

The existence of a critical value of A should
perhaps be emphasized. Recall that in the defini-
tion of the quantum stress energy, A was com-
pletely undetermined. We have now found, how-
ever, that when this stress energy is substituted
into the semiclassical Einstein equation, there
emerges a preferred value of A (or at least a re-
striction on the allowed range of A). In other
words, the requirement that semiclassical rela-
tivity have reasonable dynamics can b€ used to
help determine the appropriate stress energy of
a quantum field.

We now set the free parameter B equal to a non-
zero constant, and investigate its effect on the lin-
earized back-reaction problem for a quantum
Maxwell field. The semiclassical Einstein equa-
tion now becomes '

Gp(x) =872 [3-2—10;5 ’£H)~(x —x)A,(x)+ BBab(x)] .

(33)
Recall that Bab depends only on the trace of G,
By, =2n, V36" -2V V,G" . (7

Further, recall that every solution G,, to the
semiclassical Einstein equation with f=0 has
vanishing trace. Therefore we immediately con-
clude that every solution to the semiclassical
Einstein equation with =0 is again a solution to
this equation with g#0. In particular, there exist
exponentially growing solutions and (for certain
values of A) tachyonlike solutions to Eq. (33).
However, it turns out that there are additional
solutions to Eq. (33) which we now investigate.

To find all asymptotically well-behaved solu-
tions to Eq. (33), we again take the Fourier trans-
form. Proceeding as before, we find that in addi-
tion to the trace-free solutions we found earlier,
there now exist the following “pure trace” solutions.
Let 3¢, be the hyperbola in momentum space con-
sisting of all points satisfying k%, = —(481rﬁB):1. )
Let h,, be the induced metric on 3C;, and let ¢ be
any asymptotically well-behaved function on 3¢,.
Then

C,,ff,c Phye® = o, - (48THP)V,V, 0 (34)
8

is a solution to Eq. (33) (where ¢ is the Fourier

transform of ¢3). In fact, this exhausts the class
of additional well-behaved solutions to Eq. (33).
That is, every Fourier analyzable solution to Eq.
(33) can be expressed as the sum of a solution giv-
en by Eq. (30) and one given by Eq. (34). What is
the physical interpretation of these new solutions?
It is easy to check that Aab= 0 for any perturba-
tion given by Eq. (34). (They can be generated by
conformally flat metric perturbations.) Thus the
quantum stress energy is purely local.®® Hence
one might interpret these solutions as weak gravi-
tational waves which induce vacuum polarization,
but not particle creation. Notice that if <0, then
the vectors k% in Eq. (34) are again spacelike,
Thus we are once again led to restrict the values
of the parameters in semiclassical relativity (in
this case f=0) in order to rule out unphysical
solutions. (Surprisingly, the most natural regu-
larization prescriptions usually involve negative
values of B.) If one considers exponentially grow-
ing solutions to Eq. (33), then one finds—in addi-
tion to the exponentially growing solutions for the
case B=0—additional solutions of this type when
B<0, e.g.,

éab= (nab+ tatb)ewt ’ (35)

where w=(-487m7p) /2

So far we have been considering the interaction
of gravity with a particular quantum field—a Max-
well field—in the context of semiclassical rela-
tivity. How does gravity interact with other quan-
tum fields in this framework? For conformally
invariant scalar fields or neutrino fields, there is
essentially no change. This can be seen imme-
diately from the expression for the stress-energy
tensor [Eq. (22)] and the values of the coefficients
in Table I. The only change in the semiclassical
Einstein equation when passing from Maxwell to,
e.g., neutrino fields is in the value of the numeri-
cal coefficient in front of the curvature tensor Aa,,. _
Thus the solutions are qualitatively the same. For
the massless scalar field, however, the situation
is slightly different. One now has a nonlocal con-
tribution to the stress energy from the curvature
tensor Ea,, as well as Aab. One can analyze the
semiclassical Einstein equation for this field in
exactly the same manner as for the Maxwell field.
The most important difference in the character of
the solutions turns out to be the following. There
now exist tachyonlike solutions for all values of
the parameter . Thus for a massless scalar
field, unlike a conformally invariant field, one
cannot eliminate these unphysical solutions by re-
stricting A in some way.

We conclude this section with a brief discussion
of semiclassical relativity in the presense of a
classical stress energy. Although all matter can
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be expressed in terms of some quantum state, it
is often convenient to approximate part of a physi-
cal system (e.g., a star) as being classical. Thus
instead of trying to solve

Gab=8ﬂ<‘p}Tab|¢> (36)

for some complicated in-state ¢ of the quantum
field, one considers

Gop= 87(CE | Ty | )+ 7o), (37)

where £ is a relatively simple (e.g., vacuum) in-
state and T, is a classical stress-energy tensor.

We now linearize Eq. (37) off the solution con-
sisting of Minkowski spacetime, the in-vacuum
state of the field, and zero classical stress en-
ergy. The linearized equation is

Gop=8T((T )+ Top) - (38)

Equation (38) might be used in the following man-
ner. One fixes a classical stress energy <'Tab on
Minkowski spacetime and asks for perturbations
Ya Which satisfy this equation for a given quantum
field and given values of A and 8. If the classical
stress energy ‘i’ab has a Fourier transform, then
these solutions can be found quite easily. [We
again follow the program of first solving Eq. (38)
for Ca,, and then solving Eq. (24) for v,,.]

For convenience we consider a quantum Maxwell
field and set B=0, A>}_,,, in the formula for the
quantum stress energy. Taking the Fourier trans-
form of Eq. (38) we obtain

F(B)G,,(k) =87 ‘?a,, , (39)

where the function f is given by Eq. (29). Since we
have chosen A>2x_;, (to rule out unphysical solu-
tions in the theory), f is nonzero everywhere.
Therefore, one solution to Eq. (38) is simply
4

Go=tr [ ";g" eik'xé%% . (40)
In fact, this is the only asymptotically well-be-
haved solution to Eq. (38). [If there were two,
their difference would satisfy Eq. (38) with 7,,=0.
But we have shown that the only asymptotically
well-behaved solution to this equation—with A
> A oy —is the zero solution.] If 7,, does not have
a Fourier transform, then in general it is more
difficult to solve Eq. (38). In fact, for some
choices of ‘i’ab there may exist no solutions at all
(e.g., if ‘i‘ab grows exponentially near past null in-
finity).

The form of Eq. (38) suggests a natural recur-
sive procedure for approximating solutions (which
is valid for T,, asymptotically well behaved in the
past). To zeroth order we set Go,=877,,. To first
order, we set Gi, =8m(T,,), where (T',), is defined
by substituting C:b into the expression for (T ,,)

[Eq. (22)]. To second order, we set G2,=81(7T,,),
etc. One thus obtains an expansion of the solution
in powers of 7.

As an example of this recursive procedure, we
estimate the first-order quantum correction to
the gravitational field around the sun (which will
yield, e.g., the quantum correction to the bending
of light). For <1"ab we take the linearized form of
the stress energy for a static, spherically sym-
metric perfect fluid, i.e.,

Top= Pty s (41)

where the density p is a function only of # and the
4-velocity ¢, is a constant unit timelike vector
field in Minkowski spacetime. (The linearized
pressure vanishes.) Following the above approxi-
mation procedure, to zeroth order we have Gf,’,,
=8mpt,t,. This is simply the classical general
relativistic description of the gravitational field
around the sun. To first order, we find (say, for
a quantum Maxwell field and B=0) '

. n
G;bzﬁ {.{H,L[—szpta t,,+§Vapr—§nabV2p]}. (42)

Notice from Egs. (21) and (42) that changing the
free parameter A changesvc'v‘},b by terms involving
second derivatives of p, e.g., V,V,p. One can
show, however, that these changes do not affect
the description of the gravitational field (i.e., the
appropriate metric perturbation y,,) in the region
where p=0. Similarly, one can show that includ-
ing a nonzero value of B in Eq. (42) does not af-
fect this description.

Thus, the prediction (in semiclassical relativity)
of the first-order quantum correction to the grav-
itational field outside the sun is independent of
the free parameters of the theory. What is its
magnitude? If we crudely estimate Vp~ P/Ro
where Rg is the radius of the sun and [ H,p~p
for points near the sun, then we find that the rel-
ative size of this quantum correction is

G _ I -
& ke

(rather small indeed).

V. CONCLUSIONS

For what physical systems might one expect a
semiclassical theory of matter and gravity to yield
interesting predictions? Certainly, these systems
do not include ordinary stars such as the sun. In
fact, it might appear from Eq. (42) that there ex-
ist no physical systems for which a semiclassical
theory is appropriate. For this equation seems to
imply that the first-order quantum correction to a
classical gravitational field will be negligible un-
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less that gravitational field changes on the scale
of the Planck length. And one expects that the
quantum effects of gravity itself will be important
on these scales. Nevertheless, there may still be
an interesting regime of applicability for a semi-
classical theory,as we now indicate. Consider a .
system in which particles are created by a gravi-
tational field and accumulate over a long period of
time (e.g., the age of the universe). Although in-
itially the effect of the particles is negligible,
eventually the accumulated stress energy could
become significant and lead to macroscopic
changes in the system. (This is in fact what is be-
lieved to occur in the evaporation of a black hole.)

Given that there may exist physical systems for
which the quantum nature of matter is significant
but the quantum nature of gravity is still negli-
gible, one can now ask for a theory that yields a
valid description of these systems. The most na-
tural candidate for such a theory is semiclassical
relativity. However, we have encountered two un-
pleasant features of this theory. The first is that
it predicts the existence of weak gravitational
waves that seem to travel faster than light. The
second is that it predicts the instability of the
vacuum. Fortunately, for most quantum fields,
the first difficulty can be eliminated by suitably
restricting some of the parameters in the theory,
i.e., A>X ., 82 0. (Infact, the only known mass-
less field for which one cannot eliminate these so-
lutions—the massless scalar field—does not ap-
pear to be present in nature.) However, the in-
stability of the vacuum state of semiclassical rel-
ativity (described by Minkowski spacetime and the
in-vacuum state of the quantum field) is a more
serious difficulty of this theory. (Clearly, the
" space around us is not unstable to suddenly be-
coming strongly curved.) There are a variety of
viewpoints that one might take toward this difficul-
ty, which we now discuss.

Assume that there exists some reasonable theory
describing the interaction of a quantum matter
field and a classical gravitational field. Then one
might adopt any one of at least four different view-
points toward the fact that the vacuum state of
semiclassical relativity is unstable. The first
viewpoint may be expressed as follows: Semi-
classical relativity yields a valid description of
nature. The existence of linearized exponentially
growing solutions gives very little information
about the actual stability of the vacuum in the full
theory. When higher-order effects are included,
one will find that the vacuum state of semiclassical
relativity is in fact stable. The second viewpoint
is the following®®: Semiclassical relativity is val-
id, but its parameter X is very large. Recall that
the time scale for the instability of the vacuum in-

creases with A, Thus although the vacuum is in
principle unstable, in practice one never notices
this fact because the time scale is so large (e.g.,
greater than the age of the universe). The third
viewpoint one might adopt is: Semiclassical rela-
tivity, as discussed here, is not quite the correct
semiclassical theory. One must now add some re-
strictions (e.g., future boundary conditions) to rule
out these irrelevant exponentially growing solu-
tions. Finally, one has: The appropriate semi-
classical theory is simply not semiclassical rela-
tivity. Although this theory is the most natural
extension of Einstein’s theory, ‘it does not accu-
rately describe nature.

It might, however, turn out that none of the
above viewpoints are correct. There may exist a
reasonable semiclassical theory of matter and
gravity only in regions of strong gravitational
fields. If this is indeed the case, the appropriate
semiclassical theory may turn out to be a suitable
strong field limit of semiclassical relativity.

Finally, one is left with the possibility that there
is simply no reasonable semiclassical theory of
matter and gravity. The only consistent way to de-
scribe gravity coupled to quantum fields is by tak-
ing into account the quantum nature of gravity it-
self.

It is hoped that future research in this area will
shed more light on the status of semiclassical
relativity, and perhaps lead to new insights into
a full theory of quantum gravity. 2
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APPENDIX: TENSOR DISTRIBUTIONS IN
MINKOWSKI SPACETIME

This appendix is divided into three parts. First,
we review some basic definitions and properties
of tensor distributions in Minkowski spacetime.
Next, we characterize distributions which are in-
variant under the action of the Poincaré group.
Finally, we discuss the distribution H, which ap-
pears in the formula [Eq. (22)] for the linearized
quantum stress energy. Only sketches of proofs
will be provided. For more details see, e.g.,
Schwartz* or Friedlander.®®
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1. Basic definitions and properties

Let V,, ,, denote the vector space of all smooth
tensor fields of rank (r, s) on Minkowski space-
time (M, n,,) which have compact support. Ele-
ments of V., will be called“test fields.” Recall
that a tensor distribution of rank (r,s) is a map
from V, ;, to the real numbers which is linear
and (in a suitable sense) continuous. For ex-
ample, any vector field V, on M gives rise to a
vector distribution, whose action on the test field
u? is the real number obtained by integrating vV, u?
over the spacetime. (The convergence of the inte-
gral is guaranteed by the compact support of u%)
Thus every tensor field gives rise to a tensor dis-
tribution. Of course, there exist distributions
which do not arise from tensor fields in this man-
ner. For example, fix a point pe M and consider
the scalar distribution (the “Dirac 6 distribution
at p”) defined by 6,(f)=f(p) for all test functions
f.

Many operations on tensor fields can be extended
to distributions. The method for doing so is the
following: One requires that when a given opera-
tion is applied to a distribution arising from a
tensor field, the operation reduce to the familiar
one on the tensor field. Several examples of op-
erations on distributions are given below. Al-
though a particular rank distribution is used in
each example, the generalization to other distri-
butions is immediate.

(1) Addition. If R, and S, are two vector distri-
butions, their sum is the vector distribution de-
fined by

(R, +S,)(19) = Ry(1) + S,(17) (A1)

for all p® in V, o).

(2) Outer product by tensor fields. If S, is a vec-
tor distribution and V, a smooth vector field, then
their outer product is the rank-(0, 2) distribution
defined by

V,Sp(1?) =S, (V) , (A2)

for all u® in V, . Notice that u®V, will always
have compact support, and thus the right-hand
side is well defined. )

(3) Contraction. If $° is a rank-(1,1) distribu-
tion, then S™  is the scalar distribution defined by

s™ (£)=5%(£0",) (A3)
for all f in V, o,, where &, is the identity tensor.
(4) Derivation. If S, is a vector distribution,
v,S, is the rank-(0, 2) distribution defined by
V,S,( 1) = = $,(V, ), (A4)

for all p® in V, o).
(5) Convolution. Fix an origin in Minkowski

spacetime. Recall that the convolution of two ten-
sor fields of compact support, e.g., V,, u® is
again a tensor field of compact support:

V% uo(x) = f Volx —x") p®(x")d*x’ . (A5)

If S, is a vector distribution and V, is a vector
field of compact support, then we define

V%S, ) = S, (V,* o), (A6)

for all p® in V, o, where V,(x)=V,(=x). That is,
the convolution of a vector field V, with a vector
distribution S, is the second-rank tensor distribu-
tion whose action on u% is the real number ob-
tained by acting with S, on the convolution of u®
and the reflection of V,. One can easily verify
that for a distribution $* arising from a vector
field, this definition reduces to the usual defini-
tion of convolution on vector fields.

(6) Action under diffeomovphisms: Let ¢: M—~M
be a diffeomorphism, and S, be a vector distribu-
tion. We define

¢S, (1) =S,(¢7 ), (A7)

for all p® in V; o). A distribution is said to be in-
variant under a diffeomorphism ¢ if ¢S,=S,.
There are at least two additional operations on
tensor fields which do not appear in the above list:
the product of two distributions and the Fourier
transform of a distribution. Each of these opera-
tions can only be defined on a restricted class of
distributions. Roughly speaking, the product of
two distributions S, and R, can only be defined
when “S, is more regular than R, is irregular.”
For example, the product of two distributions
arising from smooth tensor fields is clearly the
distribution arising from the product of the tensor
fields, while the square of the Dirac 6 distribu-
tion is not defined. A more precise statement of
the class of distributions on which multiplication
can be defined is given in Ref. 37. Now consider
the Fourier transform of a distribution. One
would like to simply define S(£)=S(7) for all test
functions f where a caret denotes the Fourier
transform (since this is the formula for distribu-
tions arising from functions). However, if fis a
real-valued function of compact support, then 7
may be neither real valued nor have compact sup-
port. Therefore, we enlarge the class of test
fields as follows. Let S, ,, denote the class of all
complex tensor fields of rank (r, s) whose compo-
nents (in the usual Minkowski coordinates) go to
zero asymptotically faster than any polynomial in
the coordinates. One can easily verify that if a
tensor field is in this class, then its Fourier
transform is also in this class. We now define
a tempered distvibution of rank (7, s) to be a con-
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tinuous linear map from S, ,, to the complex
numbers. The Fourier transform of a tempered
distribution, e.g., T, is now defined to be the tem-
pered distribution

T,(u)=T,(4%), (A8)

for all p* in S o). (Note that this equation now
makes sense.) Since tempered distributions take
values in the complex numbers, we can define the
complex conjugate of a tempered distribution to be

T(f)=T(F) (49)

for all fin S0, Where a bar denotes complex
conjugation.

One can prove several useful properties of dis-
tributions by combining the above operations. We
mention two examples. First, the product of a
tensor field and a distribution satisfies the Lieb-
nitz rule under differentiation, e.g., Va(V,,Sc)
=(V,V,)S, + V,(V,S,). Second, the Fourier trans-
form of the convolution of a tempered distribution
with a tensor field in S, ,, is the product of the
Fourier transforms, e.g., (V,*S,)"=7,S,.

The notion of the support of a tensor field can
also be generalized to distributions. The support
of a distribution S, is defined to be the complement
of the largest open set © CM such that S (u?)=0
for all test fields u® with support in 0. As ex-
amples, the distribution arising from the vector
field V* has the same support as the vector field,
and the Dirac 6 distribution has support at a single
point.

We now consider the assignment of dimensions
to distributions. Recall that a tensor field T¢,,
on M is said to have dimension (cm)? if 7,,=Q%7,,
(for constant Q) implies that T7°, =Q*T¢,, where
d=p — (number of covariant indices) + (number of
contravariant indices). (Thus the dimension of a
tensor field is independent of the location of its
indices.) Similarly, a tensor distribution %, is
said to have dimensions (cm)? if 7,,= Q%n,, implies
that

§%e(1,0) = Q4% (u,2?) (A10)

for all test fields u,* with dimension (cm)® For
example, consider the Dirac 3 distribution at the
origin §,. Since §, is independent of the metric,
8,(F)=0(f)=r(0) for any test function f of dimen-
sion (cm)°. Thus 3, has dimension (cm)™%. [It
would perhaps be more natural to omit the 4 in Eq.
(A10) and, e.g., assign 6, the dimension (cm)®,
The 4 is included, however, to be compatible with
the frequent integral notation for distributions,
e.g., [ 8,(x)f(x)d*x=£(0).] As a second example,
we have

(V,8)(8%) = (V3 )(Q"1£%) = @~ 1(V,6,)(£9) .

[Thus the derivative of the Dirac & distribution has
dimension (cm)~® as one might expect. As our fi-
nal example, consider the Green’s function G to
the massless wave equation (the “integrate over
the light cone” distribution). It is not hard to show
that G(f)=Q%G(f)=Q%G(f), and therefore G has
dimensions cm™2,

Finally, we remark on one useful generaliza-
tion of tensor distributions. A two-point tensor
distribution is a map V, ., XV, ,~R which
is continuous and linear in each factor. For ex-
ample, if S, and T,, are two- (one-point) distribu-
tions, then

Uy 1%, £7) = S,(1%) X T, () (a11)

defines a two-point distribution where the right-
hand side is just the product of two real numbers.
All properties and operations discussed above can
easily be generalized to two-point distributions.
For example, the action of a diffeomorphism ¢ on
a two-point tensor distribution U, is defined to be

G Uy 82, 1) = Ul p™ 1 £°, 07 1) . . (A12)

2. Poincare-invariant distributions

In this section we discuss a characterization of
two-point tensor distributions which are invariant
under the action of the Poincaré group. We pro-
ceed in three steps. First, Poincaré-invariant
two-point distributions are shown to be equivalent
(in a well-defined sense) to Lorentz-invariant
one-point distributions. Next, Lorentz-invariant
tensor distributions are expanded in terms of
smooth tensor fields and Lorentz-invariant
scalar distributions. Finally, Lorentz-invariant
scalar distributions are shown to be essentially
equivalent to distributions on the real numbers,
Thus, in terms of their distributional nature,
Poincaré-invariant two-point tensor distributions
are no more complicated than distributions on the
real numbers.

We begin by considering the translation subgroup
of the Poincaré group. We claim that if H is a
translation-invariant two-point scalar distribution,
then there exists a one-point distribution S such
that

H( ,g)=g*S, (A13)

for all test functions g. Roughly speaking, this
says that if H is translation invariant

J H(x,y)g(9)= [ Sx —y)g(y). The idea of the proof
is the following. One defines a distribution 7 on
the manifold M X M [with coordinates (x°,...,x°,
¥%...,3%)=(x,)] by first setting T (f(x)g(y))
=H(f,g) for each test function of M X M that can
be written as a product of a function of x times a
function of y, and then extending to all test func-
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tions using continuity and linearity. Now fix an
origin in M and define a smooth map §: MXM~M
by (x, y):x— y. Define a distribution S on M by
S(f)=T(cyf) where f is a test function on M, Jf is
the pullback of f to M XM, and c is a suitable cut-
off function on M XM which ensures that the argu-
ment of 7 has compact support. The last step of
the proof is to use the fact that H is translation
invariant to show that S is in fact independent of
the choice of ¢, and satisfies Eq. (A13). Notice
that the distribution S will in general depend upon
the choice of origin in M. Similarly, the opera-
tion of convolution depends upon the choice of ori-
gin. However, one finds that the distribution
g*S (for any test function g) is in fact indepen-
dent of the choice of origin [as it must be to satis-
fy Eq. (A13)]. '

Equation (A13) can be generalized from scalar
distributions to tensor distributions. For ex-
ample, if H . is a translation-invariant two-point
tensor distribution then there exists a one-point
tensor distribution S, such that

Hyl , 49 = 1245, (A14)

for all test fields u?. The proof consists essen-
tially of taking components and using the result
for scalar distributions, as we now indicate. In-
troduce four constant orthonormal vector fields
ed, i=1,...,40on M. Fixiand jand consider the
two-point scalar distribution H,;=e%e%H,,. (Re-
call that the multiplication of a tensor distribu-
tion by a smooth tensor field is well defined.) Let
S,; be the one-point scalar distribution satisfying
Eq. (A13) with H=H,,. Repeat for all { and j
(choosing the same origin each time) and set

4
Sap= Z €:€35i5 (A15)
i,3=L ‘
where el is the dual basis to e} at each point. One
now easily verifies that the distribution S,, so ob-
tained satisfies Eq. (A14).

Now let H,,. be a Poincaré-invariant two-point
distribution. Since, in particular, H,, is transla-
tion invariant, there exists a one-point distribu-
tion S, satisfying Eq. (A14). However, in addi-
tion, it is easy to show that S,, must now be Lo-
rentz invariant (i.e., invariant under Lorentz
transformations defined with respect to the origin
chosen in the definition of S;,). Thus, Poincaré-
invariant two-point distributions are equivalent
[in the sense of Eq. (A14)] to Lorentz-invariant
one-point distributions. We now examine Lorentz-
invariant distributions. We will only consider the
subgroup G of the full Lorentz group that pre-
serves a time orientation (but possibly reverses
spatial parity). Thus G has two connected compo-
nents.

Recall that every Lorentz-invariant tensor field
on Minkowski space time can be expanded in a sum
of terms, each consisting of a Lorentz-invariant
function times a tensor product of the spacetime
metric n,, and position vector field x°, e.g.,
(x™x,_)0,p+ %%, We now claim that an analogous
statement is true for distributions: Ewvery Lo-
rventz-invariant tensor distribution can be expanded
in a sum of terms, each consisting of a Loventz-
invaviant scalay distribution times a product of
7, and x°. The idea of the proof (say, for vector
distributions) is the following. Let L, be a Lo-
rentz-invariant vector distribution. Let {V i} be
a sequence of smooth vector fields such that the
distributions defined by these vector fields con-
verge to L,. (The existence of such vector fields
can be shown by taking components and using the
well-known fact that every scalar distribution can
be approximated by smooth functions—see, e.g.,
Ref. 35, p. 47). One now suitably Lorentz aver-
ages the vector fields {V }} to obtain a sequence
of Lorentz-invariant vector fields which define
distributions converging to L,. Finally, one uses
the fact that every Lorentz-invariant vector field
is of the form x,f for some Lorentz-invariant
function f, to show that L =x,L for some Lorentz-
invariant scalar distribution L. Notice that no ex-
ception is needed for Lorentz-invariant distribu-
tions that have support at a point, e.g. v 5,
=x,(-3V?0,) where §, is the Dirac 6 distribution at
the origin.

We now complete our characterization of Poin-
caré-invariant two-point distributions by showing
that every Lorentz-invariant scalar distribution
(e.g., the coefficients in the expansion of a Lo-
rentz-invariant tensor distribution) comes from a
pair of distributions on the reals. To begin, let
%: M~ R be defined by §(x)=3 x%,. In order to
distinguish the future time direction from the past,
we define 3, to be the restriction of i to the ex-
terior of the past of the origin [i.e., M — 1°(0)]and
similarly define ¢_ to be the restriction of ¥ to the
exterior of the future of the origin [i.e., M -7*?6)].
Given a distribution s on R we obtain a Lorentz-
invariant distribution on M - I’_((ﬁ by setting

@.8)(f)=s(g), (A16)

where f is a test function with support in M

~I7(0) and g is the test function on R whose value
at the point « is the integral of f over the hyper-
bola ¥, (). We similarly define the distribution
J.s. Methée® has proved the following important
theorem: Fov each Loventz-invariant distvibution
Son M, there exists a unique paiv of distributions
(s.,s.) on R (which agree on all test functions _
with support in R*) such that S=3,s, on M —17(0)
and S=19.s. on M =1*(0). The idea of the proof is
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similar tothe one involving translation-invariant
two-pointdistributions. GivenS, onedefines twodis-
tributionson R by s,(g) =S(c,J,g) ands_(g) =S(c_J_g)
where c,and c_are appropriate cutoff functions to en-
sure compact support. One thenverifiesthat since S
is Lorentz invariant, s, and s_are independent of the
cutoff functionsc,andc_, which completes the proof.
Notice that the distributions on R (s, and s_) only
determine the distribution S on M - {0}.  In gen-
eral, given a distribution defined only on M - {0},
there is no obvious way of extending it to a dis-
tribution on all of M.

3. The distribution H,

Let S be any Lorentz-invariant distribution
which has support on the past light cone and di-
mensions cm™%. By Methée’s theorem, there
exist two distributions (s,,s.) on R which give rise
to S on M —{0}. Since S has support on the past
light cone, s, must be the zero distribution and s_
must have support at the origin. But the only dis-
tributions on R with support at the origin are fi-
nite linear combinations of the Dirac & distribu-
tion and its derivatives, i.e., 6,, 8;, etc. (Ref.
34, p. 100). Since S has dimensions ecm™, s_
must be some multiple of 6]. Therefore on M
-{0}, S must be some multiple of $_.5;. That is,
the only Lorentz-invariant distributions on M - {0}
which have support on the past light cone and di-
mensions cm™* are multiples of ﬁ_ﬁ(,.

We now consider extensions of 5, to distribu-
tions defined on all of M. Methée* has given one
such extension:

H(f)= lim [¢'(a)+ 2rIn(-a) F(O)], (A7)
where g(a) is the integral of f over the past hy-
perbola y*(a) [cf. Eq. (15)]. However, one can
check that H does not have the correct dimensions
(due to the presense of the logarithm). This fea-
ture can be corrected by introducing a length scale
A (i.e., a parameter with dimensions of length)
and defining a new extension H, of 3.6} by Eq. (A17)
with In(-a) replaced by In(—a/A%). Thus the dis-
tribution H, is Lorentz invariant, has support on
the past light cone, and dimensions cm™*,

Notice that the distribution §_6, is the distribu-
tion on M — {0} that integrates a test function over
the past light cone. This distribution has a natural
extension to all of M which is simply the retarded
Green’s function G,,, for the massless wave equa-
tion. Therefore the Green’s function H, entering
the formula for the linearized quantum stress en-
ergy can be viewed as the derivative of the re-
tarded Green’s function G,,, for the massless
wave equation. We now compare these two Green’s

functions.

We first consider the equations that these dis-
tributions satisfy. Of course, G, satisfies the
wave equation

VG, oy = 4T, . (A18)

Is there an analogous equation for H,? It turns
out that there is:

V (xH,) = 475, . (A19)

This equation can be verified by directly applying
both sides to any test function f and using the ex-
plicit formula for H, given in Eg. (20). Can we
use Eq. (A19) to obtain a relation between the lin-
earized stress energy (T,,) and its source Aab?
which is independent of the Green’s function H, ?
Recall that if p is a test function and ¢(x)

= [ 4 Gootlx —x")plx’), then by virtue of Eq. (A18)
alone, we conclude that V3¢ =4mp. Now let A, be
a test field and set

TN =10 [ By =3l (A20)
M

Applying (A19) to (A20) we find
2™V, (T, (%)) — 41HA ,(x) = 7 fHk(x ~-x7)
M

X [x'™V! A(x")] .
(a21)

The reason we have failed to obtain an expression
which is independent of the Green’s function H,
can be traced to the appearance of the position vec-
tor field x° in Eq. (A19).

We next consider the Fourier transform of these
distributions. As is well known, the Fourier

transform of G, is

Gror= =47 [P(1/ED) + 1 in(6™ = 6%)], (A22)

where P denotes the principal value distribution
and 5" (6*) denotes the distribution which integrates
a test function over the past (future) light cone in
momentum space. Since H, is the “derivative” of
G, et» it may not be surprising that H turns out to
be the “integral” of G, ,:

A= -2n[Im\2 k2| + 2y =1 +im6_(R)] , (A23)

where y is Euler’s constant and 6_(%) is the step
function that takes the value ~1 inside the future
light cone, +1 inside the past light cone, and zero
elsewhere. Equation (A23) can be obtained by first
noticing that }}h must satisfy the Fourier transform
of Eq. (A19) [which yields the general form of Eq.
(A23)] and then actually computing a specific ex-
ample (to fix the numerical coefficients).

Finally, we remark on the existence of related
Green’s functions. Of course, there exists an ad-
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vanced Green’s function to the wave equation as
well as a retarded Green’s function. Similarly,
one can define an advanced Green’s function analog
of H,. Consider the distribution obtained by ex-
tending 3,5, (rather than 3_5), which was used to
obtain H,) to a distribution on M. This distribu-

tion is Lorentz invariant, has support on the fu-
ture light cone, and dimensions cm™?, It is the
advanced Green’s function counterpart to H,, and
would appear in the formula for the out-vacuum
expectation value of the linearized quantum stress
energy.
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