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Second-order mass-breaking effects on hadron masses
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SU(4) second-order mass-breaking effects on charmed hadron masses are studied in a dynamical
consideration. We consider the process S + B—B + S in the s, ¢, and u channels, where S is the first-order
symmetry-breaking spurion. Assuming that the nonexotic intermediate states dominate, several mass sum
rules are obtained. Charmed isomultiplet masses are also estimated.

I. INTRODUCTION

The conventional approach to mass splitting in
SU(4) is to assume that the mass-breaking Hamil-
tonian transforms like the T3 +y7'; component of
the _1_5_ representation.1 Hadron mass relations up
to the first-order perturbation have been obtained
by many authors.? Since SU(4) symmetry is badly
broken, contributions from higher orders of per-
turbation are expected to be significant. In the
case of charmed hadrons, not much experimental
information is available, but the observed charmed
mass spectrum seems to require a nonzero con-
tribution from higher orders of perturbation. Ob-
served masses® of the charmed mesons do not
satisfy first-order mass sum rules in quadratic
form and favor linear mass formulas poorly. Even
in the uncharmed sector, 7*#7° and =* -2’2 2"
-2 indicate the presence of a higher-order sym-
metry-breaking interaction.! Second-order mass
breaking has been considered earlier in the cur-
rent-algebra framework.’® Two of us (RVC and
MPK)6 have also derived higher-order mass for-
mulas by assuming that the second-order mass-
breaking Hamiltonain transforms like the 20” and
84 representations of SU(4).

In the present work, we study the second-order
mass-breaking contribution to various hadron mul-
tiplets in a dynamical consideration. We assume
that the second-order mass breaking arises
through the process S+ B—~B +S, where S is the
first-order mass-breaking spurion. We consider
the transition in all three s, £, and # channels and
express the amplitude for the process in terms
of eigenamplitudes corresponding to the interme-
diate states present in these channels. We obtain
constraints on the matrix elements by assuming
that the nonexotic intermediate states contribute
dominantly.

We find that the f-channel contribution obeys
the mass relations of the first-order perturbation.
This is an obvious consequence of the fact that
only the 15 and singlet intermediate states are
allowed to appear in the ¢ channel. However,

the s- and u-channel contributions are different
from first-order mass breaking. We express the
second-order mass parameters in terms of the
masses of hadrons and thereby relate the dis-
crepancies present in the first-order mass for-
mulas. First, we neglect the electromagnetic in-
teraction and obtain relations among various iso-
multiplets. Then the electromagnetic (em) mass
differences among different charge states of iso-
multiplets are related.

II. MASS RELATIONS

The first-order mass-breaking spurion is as-
sumed (neglecting electromagnetism) to transform
like the Tg +ny‘4 component of the 15 representa-
tion.! The inclusion of the em mass breaking mod-
ifies the interaction to

Si~aT}+bT3+cTj. (1)
— +
A = % baryons

The parity -conserving mass-breaking Hamiltoni-

~ an for the process

S+B(3)~B(z")+S (2)
has the form
ay(Ble,q B ’SiS) + ay(Bi., . BL S 3ST)

+ay(Ble,41B5 5eS5) +ay(Bfy, 01BL SIS}
+a5[(Efe,d)B£2'”S?tS;)+(§fe,a Lrdisism]
+agl(Bfe,q 1B " SES5) + (Ble, 438" 4 S5S7)]
+aq(Bf,, 4 1B S0S5) + (Ble,a B SSH],  (3)

where the tensors B{*”’ and B, ., represent bary-
on (20°) and antibaryon (_2_—9’) multiplets, respec-
tively, and Sj is the spurion transforming like a
member of the 15 representation.

Thus the second-order mass breaking involves
seven parameters, yielding no useful relation.,
In order to reduce the number of parameters we
assume:

(i) The nonexotic intermediate states appearing
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in the direct product 4®4®4 contribute dominantly
to the process. This leads to the conditions

20y =—ay=—as=—ag=2aq, (4)
for the s and u channels, and
ay=ay=a,=ag=0, (5)

for the ¢ channel.

(ii) The process is symmetric in the s and u
channels. Physically speaking, we essentially
assume the identity of reduced matrix elements
in s and # channels.” This leads to

Ay =as . (6)

Therefore, the s and # channels effectively involve
two independent matrix elements.

1. Mass relations excluding electromagnetism

The ¢-channel contribution obeys the first-order
mass-breaking relations.? This result is similar
to the one in the nonleptonic decays,” where the
t-channel contribution to the decay amplitude is
negligibly small in the parity-conserving mode.
Here, the process being parity conserving, there
is effectively no contribution to the second-order
mass breaking due to the ¢ channel.

The s~ and #-channel contributions relate the
discrepancies present in the first-order mass sum
rules as follows:

(B =2 - (@, - E)=3[3A +Z -2(N + E)],

(0.012 GeV) (M
(91"21)"(92"5—:‘3)= E_Z)J
(0.125 GeV) (8)

E{=A{)+2(Q, - E) - 3(E,-Z)= 2(Z-A),
(0.156 GeV)  (9)

[2(21 — ) 2%, - E +35] 1]
2(N + 5y) - 3A{ -3,
_[2(2, =%) =25, -5 +35]
- 2IN+E)=3A -2
2(N + E,) - 3A] - z,]“
2IN+E)-3A -2

+

(10)

Relations (7) and (8) have been derived earlier by
two of us, assuming that the second-order mass
breaking lies in the 84 representation.®

At present, there is some evidence for the
existence of a few charmed baryon states. Peaks
observed in the BNL neutrino-proton collision®

vp—uArr " (11)
and Fermilab photoproduction data!® on
7+ Be—~A + pions (12)

indicate the existence of the J¥ =" states, A{"

TABLE I. Masses of charmed baryons /= -;—*.

First-order

Charmed breaking Present analysis
isomultiplet (GeV) (GeV)
z 2.43% 2.432
B 6 1 0 D
c(=)1 Ey 2.62 2.62+f
2 2.81 2.81 +2f
B@3) N 3.67 3.67+g
C=2 Q, 3.92 3.92+2f+g
B(@3) Af 2.262 2.26%
c=1 = 2.49 2.49 +£/3
2Inputs.

(2.26 GeV) and =} (2.43 GeV). Using these mass
values and those of the ordinary baryons, we es-
timate the masses of charmed baryons as dis-
played in Table I. Masses of isomultiplets involve
parameters f and g giving the extent of the second-
order SU(4)-breaking interaction.

2. Mass relations including electromagnetism

Taking the electromagnetic mass breaking into
consideration, we obtain the following relations.

For the ¢ channel, the first-order mass-breaking
relations are

2 -E)-("-2)=(-p), (13)
Ey =) =(Z{ -2 =(m-p), (14)
Cr-Zp=(E-E)= (='-2%) = (='-2)),
(0.003 GeV) (0.005 GeV)
++ + - (15)
(' -E)= (E°-E),
(=0.007 GeV) (16)
6(={" - E{)=(n -p) - 5(2* - ),
(0.036 GeV) (17)

Mpqvpy =MApd =Mz 020 =Mz +zy
=(/V3[(2* - 27) - (E' - E)].
(0.0012 GeV) (18)

Relation (13) is the well known Coleman and
Glashow relation and (14) is its charmed analog.!!

In the presence of s- and #-channel contributions,
we get the following results:

(i) Coleman and Glashow relation (13) and its
charmed analog (14),
(i) Z{'+20-22{=2"+3"-227,
(0.002 GeV) (19)
and
(iii) (B =E3) =2(Z{-3)=(='-E)-2(="-2).
, (0.003 GeV)  (20)
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Relations (13), (14), and (19) have been obtained
in the general quark model!! considerations. In
fact, it has earlier been noted by two of us that
these sum rules are obeyed in the presence of
second-order mass breaking belonging to the 20"
and 84 representations.®

B. JP= 3" baryons
Here the parity-conserving transition
§+D(3")=-D(E")+S (21)
involves the following components:
T T
@ (D ™D {np 5552 + D ™Dty $55] . (22)
'13[5[ "““”D[,,,,,”Sﬁsf;] ’

where the tensors D ,,.; and D'®°? represent J°
=3" baryons and antibaryons lying in the 20 and
20 representations, respectively.

There are apparently three parameters expres-
sing the second-order contribution, but effectively
there is only one, i.e., a3, since a; and a, obey
the equal-spacing rule given by the first-order
perturbation. The discrepancies in the equal spac-
ing rule are related through the relations given '
below.

1. Among isomultiplets

We obtain the relations

Q-4a) = 3(E*-Z%),
(0.443 GeV) (0.447 GeV) (23)
@ -2)=3(= -7, (24)
(QF - Q) =3(2r - Q) (25)
QF+TF-2EF=0Q+T*-25%,
(0.007 GeV) (26)
QF +T*-2EF=EF+A-2Zf. (27)

These sum rules have earlier been obtained by
Hendry and Lichtenberg in the quark model.!!
Two of us have also derived these sum rules by
considering the second-order effect arising from
the 84 representation.’

Assuming nonexoticity of the intermediate states
we get the following conditions:

ay=a,=0 for the s and » channels (28)
and
a3=0 for the ¢ channel. - (29)

Here the s- and #-channel symmetry of the
transition leads to no additional constraints. We
notice that the #-channel contribution obeys the
equal spacing rule and the s- and #-channel con-

TABLE II. Masses of charmed baryons J% = %*.

First-order
Charmed breaking Present analysis
isomultiplet (GeV) (GeV)
zf 2.48° 2.482
D
(=6)1 chy 2.63 2.63 +f’
o 2.78 2.78 + 2f"
D(3) By 3.73 3.73 +g'
C=2 Qf 3.88 3.88+2f +g
D(_l) Q5 4.98 4.98 + 3¢’
2Inputs.

tributions simply lead to relations (23) to (27).

In the Knapp photoproduction experiment,!°
there is also evidence for the J* =3 state =j° at
2.48 GeV mass value. Using this value as input
we get the masses of other charmed isomultiplets
as shown in Table II. Isomultiplet masses involve
parameters f’ and g’ which give the extent of the
second-order SU(4)-breaking interaction.

2. Among em mass differences

The second-order symmetry-breaking Hamiltoni-
an (22) relates the discrepancies in the first-order
em mass relations as

(A" =-a7)=3(a"-24", (30)
THer T —2TF ="+ a7 =240

=T* 4 T* 230,

(0.0058 GeV) (31)
(B —Ex) +(A" = A7) =2(2* = =%7) (32)
(B -Ep +(A' - ANy =20z - 27Y). (33)

These sum rules have already been obtained by
Franklin!! and two of us® in quark-model and SU(4)-
symmetry considerations, respectively.

In our present analysis we also obtain the follow-
ing relations:

G675

(=2 -z
TLEF-ZH - (ZF-2)

Emma) ”

(D** = 20) = (Z%0 _px7)  (EX0 - Ex) - (2¥0 - 547
(BB - (¥ -2F) T (BX-TH-(2*-4)

(35)
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(B —EF %) - (2} - E*;°>=[ B -2} - (% - A)]"z
E-E)-EF-TF)  LEF-TH-EF-2)

(36)
Notice that the mass relations (35) and (36) relate
the isomultiplet mass differences and the em mass
differences. Since the masses of JP=3* baryons
are not known accurately, these relations are un-
testable. However, the present mass values of
the left-hand side (LHS) and the right-hand side
(RHS) give

LHS=5.8+6.0 MeV and RHS = 0,69 +4.4 MeV

for relation (35).

C. Psuedoscalar and vector mesons

We consider the mass breaking arising through
the process

S+P-P+S (37

in different channels. Including only the nonexotic
intermediate states belonging to the 15-plet and
singlet, the following contractions appear:

a}(PgPISISS) + (aty +aly )[(PPESYST) + (PLPSISY)]
(38)
]

Linear formula
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in the ¢ channel and
a3 “(PyPISESy) + afs X (PyPIS;ST) + (PRPSTSY)
+af M (PyPISeS?) + (PAPESES™)] (39)

in the s and # channels.

Here also the ¢ channel obeys the first-order
mass relations. At present, the masses of all
the charmed mesons® are known. However, these
"mass values do not seem to satisfy the first-or-
der mass relations in the linear form as well as
in the quadratic form, e.g.,

F-D) = (K=-m
(0.1745 GeV) (0.357 GeV) linear formula (40)
(0,67176 GeV?) (0.2266 GeV?) quadratic formula,

indicating a large second-order mass contribution,
which may appear through the s and # channels.
Even in the uncharmed sector, #*#7° has been in-
dicating the presence of nonzero second-order in-
teractions. Since s and # channels involve four
parameters, no useful relation could be obtained.
However, discrepancies in the sum rules are
found to be

Quadratic formula

(F-D)= (K-m) =(-0.183 GeV)  (0.4554 GeV?) (41)
3(n-m)-4(K-7) =(-0.195GeV) (- 0.0568 GeV?) (42)
2(n° - 7*) =(-0.010 GeV) (- 0.0028 GeV?) (43)
(K*- K°)+ (D* = D°) = (+0.001 GeV) (0.0236 GeV?), (44)

Similarly for vector mesons one can see that the
first-order mass relation is not satisfied, e.g.,

(F*-D) = (K*-p) (45)
(0.133 GeV) (0.122 GeV) linear formula
(0.557 GeV?) (0.1937 GeV?) quadratic formula,

which again shows the large second-order mass
contribution, especially in the quadratic form.

III. CONCLUSION

In the present paper, we have studied the second-
order mass-breaking contributions to-the baryons
and mesons in a dynamical model. We have as-
sumed that the second-order mass breaking arises
through the process S+B-~B+Sins, ¢, and u
channels and obtains dominant contribution from
the nonexotic intermediate states. In the case of
the charmed baryons, not much experimental data

are available to check the presence of higher-or-
der breaking. But in the case of the charmed me-
sons, (F—D)#(K - ) does indicate a substantial
contribution from the second-order breaking.
Even the inequalities of the em mass difference
among uncharmed isomultiplets, namely 7* #7°
and Z*-2°#3°~ =7, have already demanded addi-
tional symmetry-breaking interaction. We notice
that the #-channel contribution obeys the mass
relations obtained in the first order of perturba-
tion, as a consequence of the presence of the
singlet and 15 as the intermediate states. Thus
the second-order mass-breaking contribution ap-
pears effectively from the s and # channels. For
the mesons, the s- and u-channel contributions
involve many parameters making the estimation
of mass difficult. For the JP=3" and § baryons,
we have estimated the masses of charmed iso-
multiplets in Table I and II, using A!*(2.26 GeV),
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9(2.43 GeV), and £¥°(2.48 GeV) as inputs which
have been observed in BNL neutrino-proton colli-
sion and the Fermilab photoproduction experi-
ments. Among the em mass differences, we no-
tice that the second-order perturbation preserves
the Coleman and Glashow relation and its charmed
analog for the 3* baryons.
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