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Dynamical effects in two-body charm decay
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Two-body nonleptonic decays of the D(1865) mesons are studied. Three mechanisms —quark-mass-

dependent effects, final-state interactions, and mixing-angle effects in the six-quark model —are shown to
have the capability to substantially modify naive theoretical expectations for SU(3) and quark-model
relations among the various modes.

I. INTRODUCTION

r(DP-m'K ) =cot'8cI'(D'-K K )

=cot'8, r(D r I), '

r(D'-K'K'} =0,

r(D'- v"K') = 2 cot'8, r(D'- ~'m').

(la)

(lb}

(lc)

(ld)

Equations (la) and (lb) have been tested recently
and, although with large experimental errors,
have been found to be violated:

The dominant decay modes of strange and
charmed particles are into purely hadronic final
states. The variety of available final states for
charmed-meson decays make them especially
interesting and challenging to study. The main
purpose of this paper is to discuss possible dyn-
amical mechanisms which may cause violations of
SU(3) sum rules' based on the Glashow-Iliopoulos-
Maiani (GIM) Hamiltonian of the Weinberg-Salam
model. ' This is of special interest in light of a
recent experiment indicating possible violations
of two of these sum rules. '

Charm decays in the four-quark GIM theory
have a three-tiered hierarchy of channels. The
three sets of interactions form a U-spin vector,
with the "Cabibbo-favored" modes (having ampli-
tudes proportional to cos'8c) transforming as b, C
=b 8 = -1, bI =1, U, =+ 1, the Cabibbo-suppressed
channel (proportional to cos8c sin8c) obeying b, C
=-1, AS=0, AI= ~, &, U, =O, and doubly sup-
pressed decays (proportional to sin'8c) with AC
= —1, A$ =+ 1, hl = 1, U, = -1. From these prop-
erties, indePendent of the Possible short distance-
strong-interaction enhancement of quantum chro-
modynamics (@CD) [but assuming SU(3) symme-
tryj, several sum rules can be derived relating
favored and suppressed modes. Those in which we
will be especially interested below are'

(, ~
)

=(2.3+0.6) tan'8c,

p +

+ }
= (0.66 + 0.30) tan'8c .

1 D w K

(2)

In the six-quark model' there are additional
unknown mixing angles which can change these
predictions. We consider the effects of extra mix-
ing angles and of the "penguin diagram, " in the
context of the six-quark model, in Sec. IV. A
smaller SU(3)-breaking effect is that of phase
space. The predictions which follow are always
for the reduced width, with corresponding phase-
space factor divided out.

Not all decay rates are connected by SU(3) con-
siderations alone. The quark model can be used
to provide additional relations. For example,
Cabibbo and Maiani, using the vacuum-intermed-
iate-state method, give definite predictions for
all two-body charm decay rates. ' One such re-
lation is

I'(D -vK)
r(Dp K }

0.025

which will be discussed in more detail later since,
in addition to discussing the violation of SU(3) sum
rules, we wish also to explore the dynamics which
could invalidate such quark-model predictions.

In Secs. II-IV we discuss three separate mech-
anisms which will affect two-body charm decay.
Section II is devoted to a helicity-dependent effect
in the matrix elements. Section III discusses the
role of final-state interactions, and in Sec. IV we
consider the effect of heavy quarks in the Cabibbo-
suppressed decays. The summary, Sec. V, con-
tains some additional brief comments and a com-
parison with other recent work.
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II. HELICITY SUPPRESSION MECHANISM

A dynamical theory of nonleptonic processes has
been long sought. Recently, techniques have been
developed which allow an understanding of the 4I
= 2 rule in AS =1 nonleptonic decays. ' For non-
leptonic meson decays —K 2m, sm' —the crucial
ingredients are (a) QCD radiative corrections to
the weak Hamiltonian and (b) suppression of n.f = 2

effects by helicity and color factors. It is natural-
ly of interest to apply similar techniques to
charmed-meson decays. Below we present such
an evaluation and find mechanisms which break the
U-spin sum rules in the experimentally found fash-
ion. However, we first present a general discus-
sion of the underlying physics before attempting a
numerical evaluation.

Part of the reason for suppression of bI = ~ ef-
fects in nonleptonic kaon decays is that such tran-
sitions occur solely via an operator which is the
product of two left handed -currents. Pseudoscalar
meson matrix elements of such operators have a
strong helicity suppression in that the effect of the
upper components in quark wave functions are can-
celed by the lower components. ' In Ref. 7, it was
argued that this is a general feature of such mes-
onic matrix elements of (V -A) (V -A.) operators.
A related consequence of this is that the sizes of
the weak nonleptonic matrix elements are quite
sensitive to the quark masses involved, since, as
the quark masses decrease or increase, the hel-
icity cancellation becomes increasingly or de-
creasingly complete. In charm decays, the domi-
nant operators are again (V-A. ) (V-A) products.
However, operators which give rise to the decays
D' K'K, D' 7t'K, and D' w'm' involve 2, 1,
and 0 strange quark fields, respectively. We shall
demonstrate that increasing the average quark
mass involved in the transition makes the helicity
cancellation less complete, i.e., the matrix ele-
ment becomes larger. This will then introduce
SU(3) breaking in the form

&cot'0 I'(D'-v & ),
as will be borne out by more careful analysis.

Our previous calculations of hS =1 kaon decay
parameters utilized current-algebra and PCAC
(partial conservation of axial-vector current)
techniques in order to reduce K 2m, Sm matrix
elements to calculable K w transitions. In the
absence of reliable methods for the treatment of
charm decays we shall employ similar procedures
to those utilized in analysis of the kaon sector.
One should be well aware of possible problems
inherent in this approach —e.g. , the much larger

extrapolations to the soft-pion limit and previous
difficulties in accommodating charm systems wxth-
in the MIT bag model. ' However, given that we
are only concerned with ratios of decay rates, it
is likely that many such uncertainties will tend to
cancel out, such as those related to the soft-pion
continuation and to normalization uncertainties
within the bag model. Also, recent work by Ponce'
has shown how charm may be accommodated within
a ~odified bag approach. The results obtained ap-
pear reasonable and bear out our general dynami-
cal expectations.

The existence of current-algebra-PCAC con-
straints" together with the required vanishing of
the mesonic amplitudes in the SU(4)-symmetry
limit" [the generalization of the theorem which
requires K$ 2w in the SU(3) limit"] imply a sub-
stantial momentum dependence for the decay amp-
litudes. If we expand to first order in momentum
these constraints uniquely determine the form of
the decay amplitude

(M, M,' ~8)Dy) ~- (h' —q, '}(M, [[Es,e]~D~)

where I'~ is the axial charge which has the same
SU(3) transformation properties as the meson M,
of which I'„ is the meson decay constant.

Via this algorithm, then, all tw'o-body charm-
decay amplitudes can be written in terms of com-
binations of D -K and D - m matrix elements,
which can be calculated for a quark model in terms
of standard spin and flavor counting factors and a
dynamical reduced matrix element. " Calculation
of this reduced matrix element xn the MIT bag
model reveals a rather small number due to can-
cellation between the upper and lower components
of the quark wave functions —a result we term
"helicity suppression. ""A physical understanding
of what is going on here can be obtained by con-
sidering D ev. 'With the weak interactions con-
structed of a product of V-A. currents this amp-
litude is suppressed by the difficulty of forming
the helicities of e and v into a pseudoscalar state,
and in fact the amplitude vanishes as m, -o. The
reduced matrix element we are dealing with is sup-
pressed for a similar reason —except that in our
case the role of e v is played by qq quarks which
form the final meson. The smaller (larger) the
constituent quark masses in the qq system, the
more (less) complete the helicity suppression and
the smaller (larger) the value of the reduced ma-
trix element. The D K transition involves two
light quarks (u, d) plus a charmed and a strange
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A(D K)
A(D - v)

(5)

for reasonable choices of parameters.
We can now proceed to calculate the decay amp-

litude. For the weak Hamiltonian we use the GIM
form as modified by the strong interactions and
calculated via short-distance-expansion and re-
normalization-group techniques":

quark while the D- m amplitude involves a charmed
quark plus three light quarks. Thus we expect the
D K amplitude to be larger (the helicity suppres-
sion to be less complete), and this is borne out by
MIT bag model calculations, which yieM

cot'8cI'(D'- m's )
1(D'- ~"K )

(10a)

If we had included the extra mixing angles in the
six-quark model, they would reduce this slightly:

We note that there is a specific pattern for vio-
lation of the U-spin sum rules. For example,

I'(D'-K'K ),F,'
I'(D'- w')t-) " F,'

independent of enhancement factors, Using Fs/F~
=1.2 (Ref. 1V) and Eq. (5) this ratio is between 1.5
and 2.3. Other ratios depend on the values of c,
c+, and q. For example, using c =2, c,=l/2t2,
andy'=3, we find

X = [cos'8, (c Z( )+c,S("}
22

- cos8c sin8c(c 8' '+c,e"')
+ 0 (sin'8c)],

where
&"' = ur„(1+ r,)dsr" (1+r,}c

vuy, (1+ ro) csr (1+ y,)d,
+ = uy&(1+ yo)dd y" (1+ y, ) c

+uy„(1+ r, ) «r" (1+y, )d

ur„(1+-r, ) ssr" (1+ r, ) c

+uy, (1+ y, ) cs y" (1+ y, ) s.

(ea)

2 cot'8c I'(D'- s' 7')
I'(D w+K )

(10b)

I (D' K+K')
I'(D KK) (12)

Both of these are rather sensitive to the interplay
of rt and c, /c . The U-spin prediction

r(D'-K'K') =0

remains unchanged.
This procedure also predicts relations among

decays which are not related by SU(S) sum rules.
For example, independent of enhancement factors
or SU(2) breaking,

G (=10 'm~ ') is the conventional weak-coupling
constant, 8c (= 15'} is the Cabibbo angle, and
c, c+ are the usual renormalization-group en-
hancement factors"

c -(4)o'cs c (4) o'24

As we are only interested in ratios, we can ex-
press the two-body decay amplitudes in terms of
the coefficients c, an overall factor A„and the
reduced matrix element ratio q:

A(D' m'K ) =A, (c —2c,)q r+4c, ,E.
A(o' 2'l7') =A, (c. — c,) 2 22 —-)),
A(D'-Kov') = A., (c —2c,)-q r —(c +2c,},
A(D'-s')) }~A t o8an( c+c2c,)

A(D'-K K ) =A, tan8c(c +2c,)q,

The Cabibbo allowed mode D' K'm' has an inter-
esting cancellation between c, and c which forces
it to be reduced to the level of the Cabibbo-sup-
pressed channels. For example,

r (D'-Ko vo)

I'(D'-K'K )

c —2c, ))'(2(Z /2' )2-))= —, cot'Oc
+2c+ ]

= 0.05 cot OG,

=1

where the numbers correspond to c =2, c =I/2t2
g' =3. The main effect which leads to this strong
suppression is a color-counting factor which gen-
erates the term (c —2c,). This is a rather gen-
eral feature of quark models and has been previ-
ously noted. ' However, in Sec. III we will show
how final-state interactions can dramatically mod-
ify this result.

A(D'- v'~') =A, tan8, (c 2c,)C " + y
A(D K K)=0,
A(D'- w' s') =A.,tan8, 2&2c.—,
A(D'-K'Ko) =A, tan8c(c +2c,) rt.

III. FINAI STATE INTERACTIONS

Unfortunately, although the results given in Sec.
II are simple and reproduce the experimentally
observed pattern for the violation of the SU(S) sum
rules [Eqs. (la) and (1b)], this picture is too naive
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to provide other than rough semiquantitative guid-
ance concerning the relative rates for these decay
modes because of the omission of another impor-
tant dynamical mechanism of SU(3} breaking—
final-state-interaction effects. In order to see how
crucial such effects can be in determining the rel-
ative decay rates consider the Cabibbo-allowed
modes

D'-z n', z'7to

~a D,(s)

a, D,(s)

(19)

The I = —', channel has no resonances from thresh-
old to S =MD' and so we take

However, for the physical decay amplitudes in the
unitarized model we have

whose ratio in our amplitude model [Eq. (8}] is
given by

I'(D -K~v') —,'[2(F /F )q —1]'(c —2c,)'
I (D'-K n') [4c,+(c 2c,)q-F, /F, ] '

1

D,(s}
=1.

However, the I = 2 channel possesses a reso-
nance —the z—at about 1.4 GeV, whereby

(20)

=0.028 &&1. (14)
1

D,(s)
(21)

s =(ps+ p, )'~ o
m (16)

It is easy to imagine that final-state interactions
may be quite important in these decays. The in-
variant mass of the Km system is M~ =1.865 GeV,
which lies in the resonance region. Indeed, there
is a strong En S-wave resonance nearby —i.e., the
z at 1.4 QeV. Final-state interactions will allow
the K m'- mode to convert into K'7t', thereby popu-
lating the latter channel, against the predictions
of the naive quark model.

The calculations in Sec. II which lead to Eq. (14)
hopefully hold with some degree of credibility at
the soft-pion point

1 =-2.5,D, (s = mD') (22)

which predicts

R =0.9, (23)

in very good agreement with the recently mea-
sured value at SLAC'

has a dispersive shape and changes sign between
s&mK2 and s&mK2. 19 Thus the physical ratio may
well have a very different value than that at the
soft-pion point. A recent estimate by Kaptanoglu"
gives

while the physical decay occurs at R =0.8+0.4. (24)

S=my) ~
2 (16)

A(D'-K'v') = v 2 ('
)

— (' ),

In order to connect these two points believably we
cannot use the simplistic approach of Sec. II but
rather we need some sort of analytic continuation
which takes into account the strong interactions in
the final state. As a crude model, which main-
tains unitarity during such a continuation, con-
sider the forms

Thus, charge exchange originating in final-state
interactions can have an appreciable effect and
must be included for reliable predictions of charm
decays.

The final-state-interaction mechanism given
above has an interesting consequence. Since it
enhances the I = —, final state, it leads to a rel-
ative enhancement of D' modes over D', since
D' final states must be pure I = —,'. Indeed, our
rate prediction [corresponding to Eq. (22)] is

r (D'- v'K')
r(D'- w'K )

A(D Kv')= ()+v& ( ), (17)
However, the branching ratios for the modes have
been measured

=OO2 2«1.(
2a a -li'
a, /a, +W &

(18}

A(D'-Kov') = 3
D,(s} '

where a, , a, are (real} amplitudes for decay into
the I = —,', 2 channels, respectively, while D,(s),
D,(s) are the corresponding Omnes functions"
normalized to unity at the soft-pion point. We
require [cf. Eq. (14)] the soft-pion condition

)
=0.'f6+0.1I.

BtD ~& K

These are consistent only if the D' lifetime is
shorter than that of D

~' -0.14.
7D+

This lifetime difference has in fact been recently
observed at SLAC":
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&0.17~ 0.05.
7 D+

While our calculation does not by itself explain the
lifetime difference, it is consistent with it and
does suggest that the explanation may simply be
that I = 2 final states are favored over I = —,

' in all
channels. Hosen has detailed some of the conse-
quences of this assumption. "

Of course, similar final-state interaction cor-
rections also affect the Cabibbo-suppressed de-
cays D'- m'n, K'K . However, here the analysis
is considerably more involved because of the ex-
istence of two I=O 0' resonances coupling both. to
vn and KK—S*(980) and e(1300). Inelasticity prob-
ably plays then a large role —mm-KK can proceed
strongly near these resonances —and a reliable
analysis will require very careful and detailed
study.

It is certainly possible (and likely) then that in
addition to helicity suppression contributions,
final-state-interaction effects also play a role in
producing the observed enhancement of D K "K
relative to D' m'm . Indeed, temporarily ne-
glecting the e(1300), we might speculate that since
the properties of the I=1,0 resonances 5(980),
S*(980) are quite close, the Omnes functions for
I=1 and I=0 KK channels mill be correspondingly
similar. In this case the predicted O'-KK ratio
will not be strongly affected by final-state inter-
actions. On the other hand, since there is no res-
onance in the I=2 mm channel corresponding to the
S*(980) in the I=0 vn channel, we should find an
effect similar to that seen in the Cabibbo-allowed
case [Eq. (19)]—a strong mixing between the naive
D'- ~'7t and D'- m'm' amplitude which, since the
D'- r'm' amplitude is suppressed by the strong in-
teraction coefficient c —2c„mhich will tend to
reduce the D' n'm amplitude relative to D
-K'K . Homever, it will require a careful and
detailed analysis, including both inelasticity and
e(1300), in order to determine the size (and direc-
tion) of this effect reliably.

In general, the effects of final-state interactions
can appear similar to the other effects discussed
in this paper. The only clear distinction is in the
D' K'K' channel. In both Secs. II and IV the
mechanisms considered leave intact the predic-
tion that this branching ratio must vanish. How-
ever, SU(3) breaking and inelasticity in the final-
state interactions can presumably generate this
Inode.

IV. THE SIX-QUARK MODEL

For ~S =1 nonleptonic decays, when W-exchange
graphs are replaced by effective four-quark op-

~c
c5 24

—
2 ln

in the AS =-1 case. Thus

c5 10 C5

(27)

(38)

and this appears much too small to have any im-
pact for Cabibbo-suppressed charm decays.

If, however, we consider a six-quark model
then there appears a penquin contribution from
quark loop diagrams involving the 5 quark. The

erRtors via the Wilson short-distRnce expansion,
QCD corrections calculated via renormalization-
group techniques modify the Wilson coefficients,
enhancing the coefficient of the 4I =

& operator
with respect to that of the operator carrying 4I = —,

'
by the factor c /c+ -(4)'"-3 which is insufficient
to explain the factor of 20 or so seen experiment-
ally. The effective operators generated thereby
still have the canonical (V-A) &(V-A) form.
However, when the charmed quark is treated as
heavy and careful attention is paid to the relation-
ship between c- and u-quark loop-diagram correc-
tions, (see Fig. 1) new operators with the struc-
ture (V-A) X(V+ A.) appear, as discussed by Shif-
manq Qainshtelnq Rnd Zakharov. These operRtor's
carry EI = -& and although they have rather small
Wilson coefficients, matrix elements of such op-
erators between mesonic states are greatly en-
hanced over those of the conventional (V-A)
X(V-A) variety since operators of the (V-A)
&&(V+ A) type can be Fierz transformed into a
form involving scalar and pseudoscalar densities
which are not affected by the helicity cancellation
mechanism described in Sec. II.' Estimates of
this effect in the MIT bag model give

(m[(v-x)~(v-x) [x)
(~)(v-x) &&(v+ a) )z)

for typical bag parameters.
These (V -A) && (V+ A. ) terms, generated by the

"penguin"" diagram of Fig. 1, were shown in Ref.
7 to be capable of providing the extra hI = 2 en-
hancement needed in order to understand nonlep-
tonic kaon decays.

Similar penguin operators appear for Cabibbo-
suppressed charm decays (but not for the Cabibbo-
allowed sector). However, the s quark cannot be
treated as heavy compared to the d quark since the
typical momentum flowing through the loop is of
order m, . Nevertheless, even if one could per-
form such a heavy-quark expansion, the Wilson
coeffrelent would be only"

2 2 2g, mc +tn5c ———ln mc'+ m„'

to be compared to
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effect of such diagrams has been considered by
Abbot, Sikivie, and Wise" who give the Cabibbo-
suppressed QCD-renormalized Hamiltonian as U, , C

X~ =- Cgc2sg C 6 +Cps
2

+ s'+ ' ' 3e'& k8S S C
3

Cy C2 1 FIG. 1. The diagram which is the lowest-order con-
tributions to the penguin terms of Sec. 1V.

k, =—1.3V, k, =—-0.42, k, = 0.030,

k, =0.006, k, =-0.03V, k, =-O.OOV,

are Wilson coefficients for the operators

6i= &&'yq(1+ ys)c»'yq(1+ ys) s

6, = uy&(l+ y, ) cs y~(l+ y, ) s,
6,=iy„(1+y, )X'cgy" (1+ y, ) &'Q,

~
= &y~( + y5) cQ y" (1+y, ) Q,

(30)

where c, , s, are the usual mixing coefficients for
the six-quark model, and be neglected. However, although k„k, are also

small their contribution must be retained since
we find, on taking matrix elements in the MIT bag
model, e.g. ,

(32)

Here the factor —", is a color-counting coefficient
and will appear in any quark-model calculation,
while the terms A -3, 2+3 are bag-model inte-
grals defined in Ref. V. For charm-decay, nu-
merical integration gives the ratio as

6, = py„(l+ y, ) X'cQy" (1 —y, ) X'Q,

6,= ~y„(1+yn) cQ y" (1 y, ) Q—

A. +g
4 (33)

Here the operator Q is summed over the four
quark flavors gc, d, s, C. We will call 8,-8, gen-
erically by the name "penguin operator, " although
8, and 8, are the result of the extra mixing angles
in the six-quark model and not a consequence of
Fig. 1. The coefficients k3, k4 are small and can

which is sizable because 5 does not respect the
helicity suppression, as discussed earlier. Thus,
there can be a substantial contribution from the
penguin operator depending on the size of the mix-
ing angles. Evaluating the O' E'g, m'm decay
amplitudes as in Sec. II, we find

A(D'-m'w ) =A tan8 (c +2c,) —~f(k, + —,', k, ) A

A (D '-g "& ) =A, tan 8c q (c + 2c,) —Sf(k, + —,', k, ) + ",f (k, + —,', k,)—A

A(D'-K'17') = 0,

A(DO moro) =Aotan8c r (c -2c,) ——', f(k, + ~6k, )

(34)

A(D'-m's') =A, tan8c r 2v2 c+,

A(D' K'g')=A, tan8cq (c +2c+) -Sf(k, +~8k, )+ ",f(k, + —,', k, ) A—

Here

f=( ' 'e' ee'
S S C

3 )
Cg C2

(35)

and the relative minus sign between the 8, , 8 6

and 8' ', 8' ' contributions to the w'n' and g'K
modes arises from the fact that 8„8,transform

as tJ-spin singlets, whereas 8 ' ' are components
of a U-spin vector. However, the "left-right" op-
erators 8» 8, are not the most important effect
of the penguin diagram. Because of its color
structure 8, has a large color counting factor,
which, combined with the sizable coefficient k, ,
makes it the dominant penguin operator. The fact
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that the 8, couples only to kaons leads to a break-
ing of the SU(3) relations of the four-quark theory.
Thus, using, for exaple, the numercial estimates
of the Wilson coefficients and helicity suppression
factors given earlier, we find

A(D w'v ) =A, tang —.-r- (c +2c,)(1+0.24f),
(36)

A(D'-K'Z' ) =A, tanecq(c +2c,)(1 —2.6f).

Thus, for values

which are certainly not out of the question. " These
heavy-quark QCD corrections can also play a ma-
jor role in shaping the pattern of Cabibbo-sup-
pressed charm decay. Note, however, that f
needs to be negative if it is to enhance g'K mode.
It is difficult to generate a negative value of f of
sufficient size to account, by itself, for the cen-
tral values of the observed branching ratios.

We conclude then that any one or some combin-
ations of the three aforementioned effects —helicity
suppression, final-state interactions, and penguin
diagrams —can have an appreciable effect on two-
body charm decays. This makes a. phenomenologi-
cal study of the decays difficult. There are un-
certainties inherent in the evaluation of each of the
mechanisms discussed and present techniques are
unable to perform a reliable calculation which in-
cludes a,ll three contributions systematically and
correctly. However, for future work to be cred-
ible, we believe it will have to ca,refully consider
all three points.

While we have not been able to give a, definite
prediction for the combined result of all effects,
t s po rta, tto ot th tth 1 t'o ofth

rules arises not from an exotic new process, but
rather from conventional sources. Therefore, the
experimental indications of sum-rule violation are
not surprising and, unfortunately, need not signal
any new physics. Likewise, the violation of the
quark-model prediction for I'(O' K'v')/
I'(O' K v') need not imply anthing more dramatic
than the presence of final-state interactions.

While charm decays suffer from the calculation-
al difficulties enumerated above, several factors
make it like1.y that the decays of t and Q quarks
will be considerably simpler. Final-state inter-
actions are not very important in deca, ys of kaons,
but become stronger when the center-of-mass en-
ergy is in the resonance region, as in D decay.
However, at much higher energies the finaL-state

interactions become unimportant again, and they
should be negligible in the two-body decays of (-
and 5-flavored mesons. In addition, the large
mass scale of these heavy particles may make
calculationa simpler. The mass scale relevant
for many of the contributions to a given decay,
such as those calculated in the bag model, is that
of typical hadronic size. However, any contribu-
tion that scales up with the particle mass will soon
dominate over these. The factorized or vacuum
intermediate state method of evaluating matrix
elements6 does scale with the mass. In charm
decays it appears that the two types of contribu-
tions are still comparable, "but for higher-mass
states it is possible that the very simple factor-
ization method will provide a reliable calculation
of two-body decays. Another favorable aspect of
t and b decays is that the QCD short-distance en-
hancements become more reliably computed and
also less important at higher energies.

Finally, we note that other recent work has also
focused on these decay modes. Barger and Pak-
vasa" have calculated the two-body charm-decay
rates by inserting the vacuum intermediate state
between the weak currents. Whether such vacuum-
state saturation is reliable is, as always, prob-
lematic. Nevertheless, results are obtained which
are, in general, similar to ours as calculated in
Sec. II. This is apparently because their pro-
cedure respects current-algebra-PCAC con-
straints and takes account of helicity suppression
in a subtle fashion —the ratio P„/E, is sensitive
to this effect." In our approach the mechanism
is somewhat more transparent.

Abbott, Sikivie, and %'ise 5 have calculated the
penguin Hamiltonian relevant for charm decay.
They estimate matrix elements by inserting the
vacuum state, and find that the penguin piece is
too small to lead to appreciable effects in the
matrix elements. The main focus of their esti-
mate is on the (V-A) x(V+A) operators, and we
also find that the effect of this piece is small.
However, they did not consider the color-counting
factors which, in our calculation, can lead to a
sizable contribution if the mixing angles are large
enough.

Work by Sanda, Hagiwara, and Fukujita" has
also looked at the penguin mechanism. However,
they do so in the context of a four-quark model
which we have argued (see also Ref. 23) is un-
likely to make a sizable enough contribution to
have any impact on the D' v'v /D'-&'& ratio.

Suzuki, "Wang and Wilczek, "and Quigg" have
studied the effects of having more than four quarks.
The additional mixing angles allow extra SU(3)
structures, and can accommodate the violation of
the four-quark selection rules. We have given a
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calculation of these effects in Sec. IV. However,
our work, which indicates the possibility of sub-
stantial SU(3) breaking, suggests that detailed
SU(3) parametrizations of the decays may not be
reliable enough to allow extraction from the data
of information on the couplings of heavier quarks.

Deshpande, Gronau, and Sutherland" have
shown how gluon exchange may modify the simple
color-counting predictions given in Ref. 6.

A more exotic mechanism, involving both
charged Higgs mesons and SU(3) breaking in ma-

irix elements, has been proposed by Kane. " While
this is possible, it is not yet required by the data.

ACKNOWI. EDGMENTS

We would like to thank H. Cahn, ¹ Deshpande,
E. Golowich, and M. Wise for discussions. J.F.D.
acknowledges the hospitality of the SLAC theory
group where part of this work was performed.
This work was supported in part through funds
provided by the U. S. Department of Energy under
Contract No. EC-'76-C-02-3069.

~J. F. Donoghue and L. Wolfenstein, Phys. Rev. D 15
3341 (1977); J. F. Donoghue and B.B.Holstein, ibid.
12, 1454 (1975).

S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967); A. Sal-
am, in Elementary Particle Theory: Relativistic
Groups and Analyticity (Nobel Symposium No. 8), edi-
ted by N. Svartholm (Almqvist and Wiksell, Stock-
holm, 1968). p. 367.

G. S. Abrams et al. , Phys. Bev. Lett. 43, 481 (1979).
M. K. Gaillard and B. W. Lee, Phys. Bev. Lett. 33,
108 (1974); G. Altarell. i and L. Maiani, Phys. Lett.
52B, 351 (19V4).

M. Kobayashi and K. Maskawa, Prog. Theor. Phys. 49,
652 (19V3).

GN. Cabibbo and L. Maiani, Phys. Lett. 73B, 418 (1978).
VJ. F. Donoghue, E. Golowich, W. Ponce, and B.B.

Holstein, Phys. Rev. D 21, 186 (1980); J. F. Donoghue,
E. Golowich, W. Ponce, and B. B.Holstein, MIT Re-
port No. MIT-CTP-799, 1979 (unpublished) .

8T. DeGrand, B. Jaffe, K. Johnson, and J.Kiskis, Phys.
Hev. D 12, 2060 (1975); J. F. Donoghue and E. Golo-
wich, ibid. 14, 1386 (1976).

9W. Ponce, Phys. Bev. D 19, 2197 (1979); also K. John-
son (private communication).
See, e.g. , M. Suzuki, Phys. Bev. 144, 1154 (1966).

~~J. F. Donoghue and B.R. Holstein, Bef. 1.
M. Gell-Mann, Phys. Rev. Lett. 12, 155 (1965); S. P.
Bosen, S. Pakvasa, and E. C. G. Sudarshan, Phys.
Bev. 146, 1118 (1966); D. G. Boulware and L. S.
Brown, Phys. Bev. Lett. 17, 772 (1966).
J. F. Donoghue and E. Golowich, Phys. Bev. D 14,
1326 (1976); also Bef. 6.

~4The helicity suppression is also present if one calcu-
lates by inserting only the vacuum state.

~5J. F. Donoghue and B.B. Holstein, Bef. 1; N. Cabibbo,
G. Altarelli, and L. Maiani, Nucl. Phys. 88S, 285
(19V5).

~6Various authors have estimated for the renormaliza-
tion-group factor 4 & 1+ (g /16wt) 6 ln (Mz /p2) & 10. We

choose the conservative lower value.
~~Particle Data Group, Bev. Mod. Phys. 48, Sl(1976).
~8B. Omnes, Nuovo Cimento S, 316 {1958);N. Muskhil-

ishvili, Singular Integral Function (Noordhoff, Gronin-
gen, 1953); V. Alessandrini and B.Omnes, Phys. Rev.
139B, 167 (1965).

t~S. Kaptanoglu, Phys. Hev. D 18, 1554 (1978).
20B. Richter, lecture at SLAC Summer School, 1979

(unpublished) .
2~V. Luth, lecture at 1979 Lepton-Photon Conference,

Fermilab {unpublished); J. Kirkby, lecture at 1979
Lepton-Photon Conference, Fermilab {unpublished).

2 S. P. Rosen, Los Alamos Reports Nos. LA-UR-79-
2619 and LA-UB-79-2702 (unpublished).
M. A. Shifman, A. I. Vainshtein, and V. J. Zakharov,
Nucl. Phys. B120, 315 (1977); Zh. Eksp. Teor. Fiz.
Pis'ma Bed 22, 123 (1975) [JETP Lett. 22, 55 (1975)].

24M. K. Gaillard, in Weak Interactions —Present and
I"uture, proceedings of the Sixth SLAC Summer Insti-
tute, 1978, edited by M. C. Zipf, (SLAC, Stanford,
1978), p. 397.

~L. F. Abbott, P. Sikivie, and M. B.Wise, Phys. Rev.
D 21, 768 (1980).

26For an alternate point of view see the discussion in
M. Fukugita, T. Hagiwara, and A. I. Sanda, Rutherford
I,aboratory report, 1979 {unpublished).

27V. Barger and S. Pakwasa, Phys. Bev. Lett. 43, 812
(19V9).

~8J. F. Donoghue and K. Johnson, Phys. Bev. D (to be
published).

9M. Suzuki, Phys. Lett. 85B, 91 (1979).
L. L. Wang and F. Wilczek, Phys. Bev. Lett. 43, 816
(1979).

3~C. Quigg, Fermilab Report No. Fermilab-Pub-79/62-
Thy, 1979 (unpublished).
N. Deshpande, M. Qronau, and D. Sutherland, Fermi-
lab report {unpublished).
G. Kane, SLAC report, 1979 (unpublished).


