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In contrast to the usual S-matrix approach where only asymptotic reaction products are considered, we

study the spatial-temporal development of hadronic reactions following Feinberg. Certain features of the

development are generally applicable to a wide variety of reactions. The crucial aspect is the modification of
the interactions which take place in rapid succession. The time scales involved make the effect practically
unobservable except in nuclear hadronic cascades. After demonstrating the nature of the modifications in

solvable models we apply it to hadronic cascades and obtain a good fit to the data on pion production in

hadron-nucleus collision at incident projectile energies of 50, 100, and 200 GeV. This good fit is obtained

without the use of any free parameters.

I. INTRODUCTION

The reaction rates in particle production and
scattering processes are sufficiently great for us
not to be able to follow their spatial-temporal
development. Most of the time we are interested
only in the asymptotic reaction products and an S-
matrix formalism is more than adequate. On the
other hand, theoretical models do give, in prin-
ciple, detailed pictures of the time evolution. We
have been concerned with time evolution of quan-
tum-mechanical processes and, in particular, the
short time deviations from the exponential time
dependence in the decay of unstable systems. In

general, these deviations all point to the system
being in an "immature" nonequilibrium state for a
characteristic time from the time of creation. In
most cases we have looked at, this "Zeno effect"
is not easily demonstrated by laboratory experi-
ments. The reason is that characteristic times
are such that the particles traverse only inter-
nuclear distances rather than interatomic distance
during their "lapse time. '

The situation is reminiscent of the study of the
wavelengths of x rays. The wavelengths were so
small that traditional ruled gratings could be used
only with great difficulty and that too at almost
grazing incidence. A suitable grating was, how-
ever, provided by the natural crystals. Following
the same lead we are led to look to the nucleus as
a theatre for Zeno to perform: We expect the ef-
fects of the nonequilibrium behavior at short times

to affect the behavior of hadron-nucleus collisions.
In our earlier phenomenological studies of hadron
nucleus reactions we had in fact sought the spatial-
temporal development of the particle production
reaction. We generalize and extend these studies
in this paper relating it to the Zeno effect.

The electromagnetic properties of a particle
undergoing a sharp momentum change have been
studied by Feinberg. ' He has shown the following:
(I) Immediately after such an interaction, the
particle does not emit a photon of wave number k'
for a time

y 1
Pp

0 0k k m

where e is the energy of the particle after col-
lision. (2) Immediately after collision the state of
the particle is "bare, " i.e., P, =a'(p, ) ~0) and it
does not become "dressed" for a time T~. (3) Dur-
ing this time if a second interaction took place
then it does not emit bremsstrahlung photons di-
rected along a cone about the intermediate mo-
mentum P,. He has proved these result within the
special framework of QED.

In this paper we would first investigate whether
the same result holds true for other cases, for
example the Lee model. ' From it we can extract
general features which are model independent.
We also outline some models where the same re-
sult holds. We then make a connection with gen-
eral properties of decay of an unstable particle.

II. LEE-MODEL CALCULATIONS

We restrict ourselves first to the case where the decay V-&8 is energetically allowed. We use the
standard notation of Ref. 3. The Hamiltonian is 0—Hp+ '5++ +i t with
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H + 5H= (m —5m )% g V+(p)V(p)+m„g ¹(p)N(p)+g (d) 8~(k}8(k),

P„=g Q ~
[V*(p)N(p —k)8(k)+H. c.].f(k')

Introduce an external scattering center and also write H, (in the configuration space) including an inter-
action with an external source 8'

d, +d. .+V.(t) dr=f d xdy[y(ytW(, yt)t(y, xo—)f( tx)+H. e(

+g d'xd'y V*- y, t V y, t e' y -x, 0 x, t +H. c. .
At t = -, start with a wave function of the V particle

It)= tt(-"))t= Je(y, )y'(y )dy Io) '

where p(p, ) is a Gaussian centered around q,

p(p, ) = exp[-L'( p, —q, )'] .

(4a)

Evolving this to time t gives us

t

I
tt(t)) exyp -i I=ttt(t )dt

~

ld'(
ttx a ()o

In the expansion of this to second order in the interaction, we restrict our attention to the term containing
&„,and v. %e define

M(t) = (0 JN(p, —k-)8(k) (t)(t)}

t
0 N p -kek dt' dt"T e„,t'Vt"

t t
=-g 0 N p2 —kek dt' dt T dg dy V+y y ey-g g

+¹(y)V(j)8'(y-x)f ( )],.

x dz d(o V* Vz 8'z-(g (g +H. c. ,

t
=-g dt' dt" dxdydzd(d Nep pg -kp k T N*x t, VX g, e* -y t, V* z t. Vz g„V

m d)O w O

X 8'(z —(u}fd'(y)f((o)
~
e,) .

In a diagrammatic interpretation this looks Bke Fig. 1. A simple calculation yieMs

I=g'8'(pg -p, )f (k)f(pg -p, ) (ft, &&,8(&, -f,)+exp[-i(e~ -~~, „-'k)t, -i(e~ -e~ )i,].
~ 00 ~ d)O

Here e~= 9'+m')'~' is the energy. We notice that this agrees exactly with Eq. (1.10) in Ref. 1, with just
a new expression for 8,

a;=¹(p,-k) . V(p).p20-ms+i
Since this is the only difference, we can directly calculate and get

~(i)=-g'8 (p. -p, )f*(k)f(p. -p, ) " ' " "' ]~ ~.(~, —;,.-k),
~p -~p -a-k

(9a)
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FIG. 1. Scattering of a V particle on an external
source with the emission of a 8 particle (bremsstrah. —.

lung).

with

FIG. 2. Generation of a '"meson cloud" around a
"bare" V particle after scattering.

of v particle)

1 1
T ————

k0 (11a)

For later convenience we define the cutoff time

(9c)

p2»m, Ip, —~l»m, and u, «k„~p2 where 0„
and k, are components of k parallel and perpen-
dicular to p„one gets

Hence we get a suppression factor similar to
Feinberg's. Let v, =q, /c, , v=p/e~, p=p, —k;
and 8, and 6I the angles of the vector k with q, and

P. Then one can easily derive the following for-
mulas:

~
—k=

2 2

2~,,k
6p+ Fq0y-

2&~k
(1 —v cos8),

+6p gj.

(1 —v, cos 6)0), (loa)

(10b)

+ 6p

(10c)

We can simplify this further in two cases. If

p, «m„, in the rest frame of p., one gets (K' being
the momentum of the 0 particle in the rest frame

y y
r'+m, '/2a' (u" +m, ') ~

'

Now we look at the case where V-&6 is ener-
getically not allowed. In this case there is no
V- &8 decay except in between two scatterings
(where V is virtual). Therefore, we will calculate
Q(t) for the V particle coming from t = -~ and

compare it to a "bare" V particle starting at t = 0
and evolving (( =0 is the instant of the first scat-
tering). We are interested in calculating (see
Fig. 2)

o oO))= f vO)or o )+ff ooo.o, O) (oM, o~)o (o)[~o) (12a)

with

M(t)= (o o'(o, o)o(o) f e'f ot"o'[sr...(t')eO")[ o,)~ CO ~ 00

k

(12b)

(12c)

and comparing it with

which is the V particle created at t=0 and evolvedto the time t. For convenience we define
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(())(t) is just the part of Fig. 2 after the scattering and can be calculated to be

Ii(())= & ((')Io) —ig I d')ii(p, 'i)&-(i) . &'())~(l)&(p, —l))'"(p)~o)z. (»)
20 y

At this point we can notice the similarity between 4 p(t)) and P(t)) which we can make precise by writ-
ing out the two terms in & (t)(t)) using the expression for R, [Eq. (8)], and noticing that the two bz functions
that arise are almost equal. Hence the first term in & P(t)) becomes

(16a)

I,= -ig~'(p, -p, )f(p, -p, )V(p, )V*(p,).
The second term becomes

(16b)

d'p, -ig~' p, -p, p, -p, V p, V* p, ig d'kE~I, e, -e~ I, -k & p, -k 8 k

x . N*(p, -k)8~(k)V~(p, ) IO) .1

2O m„+ l6
(16c)

And so we get

~~(((i)) f~'(.M=. l((o) ("~-~.) (16d)

This looks as if the particle was 'created bare"
at t= 0 and evolved into

~
P(t)). In fact, here we

can state the result in the following manner:
Irrespective of whether the V particle is stable

or unstable, the natural V-+8 transition is de-
pressed by a factor of

[1 —exp(it/T, )]

at time t small compared to the characteristic
time &~ and with the characteristic inverse tran-
sition rate g2T~. The time t is measured from the
instant of the East reaction in which the V particle
took part. It is as if the particle is "fatigued" by
its last interaction and needs a time of the order
of T, to "recover. "

So far we have found the suppression in produc-
tion of particles between two inelastic collisions.
Now we can take the particle defined by

~
(P(t)) in

Eq. (13) and let is scatter from a new scattering
center located at a distance l, from the point of
creation of the particle. The result can be ob-
tained by calculating

t
&f&'(t)) = T exp iV(t-')dt'

~
(p(t,)),

1

where the size of the wave packet L is much less
than the distance between the two scattering cen-
ters lo and

0cL«t cE.
Then we can calculate the matrix element

and simplify it in the same way to

1T= —forp «mk ko 2 fP

and

P2 1
mv (k"'+ m, ')~~2 (19c)

At this point, we can see that our result is quite
general. Consider a particle created at time t
=-~, and evolved to time t by Eqs. (4a), (4b),
and (5).

I'(t)=(0~ V(p, -k')e(k') ~y'(t)),

which is the amplitude for an inelastic collision
with the second scattering center. The calculations
are similar to the previous ones. There are two
processes, one where the 8 is, emitted after the
second scattering. This is suppressed at time
I;by

1-exp[-i(e~ -~~ „—k')t-d].
The other is where 8 is emitted between t = 0 and
t=to=fo/v~ =time at which the second collision

2
takes place. This is suppressed by

1-exp[-i(e~ -e~ „, —k')to-do].

This can be interpreted by saying that, in two
rapid successive scatterings, the probability of
'the second scattering is reduced because the par-
ticle does not get enough time to become "dressed"
and so does not interact fully with the second scat-
tering center.

We can again define, similar to Eq. (9c)
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If we use this state as the initial state in a scat-
tering process happening at time t, we get

where 8 is the scattering matrix and f) is any
final state. But instead of this if we create the
particle at t = 0 and evolve it to t & 0, i.e., if we
use

l
P(t)) in Eq. (13) as our initial state, then we

get

~« =&flail j(f».
From the results we have got within the ap-

proximation that t is much larger than the length
of the wave packet I-, it is clear that the only dif-
ference between (20) and (21) is a factor of

k

(p -k -k )~&N 8(
k~

8p

p~&iV

FIG. 3. Bremsstrahhg of bvo species of 8 particles.

tc{t)=- 1 —exp

where T„ is giver by Eq. (19a) for a fixed value of
k. Hence the probabibty for the second reaction
is suppressed by a factor la(t) l

. If a range of
values of 0 is allowed, one ha, s to avera, ge over it
to give the actual suppression factor. (This we
do when we apply it to hadron-nucleus collisions. )
The suppressing fa,ctor can therefore be seen to
be independent of the specific nature of the col-
lision, and is just a kinematical factor.

Essentially the same kind of suppression factor
a,rises in the a,mplitude for a. process initiated by a
particle created at time t, intera, cting at time t,.
We have employed these kinematic fa,ctors in the
explicit calculation (see below).

In order to apply the same considerations to the
decays of the kind n -pev, we can look at a proto-
type Lee model with two species of particles 8,
and 8, coupled to the V particle with V-N8, 0, al-
lowed energetically, and with me &m6, .

1 2
In this ca,se the Hamiltonian will be Ho+8,

with

II, = — -- dp V* p N p -k 8, k, 8, k,
0 2(dp

+~*(p -~)e,*(~,) e,*(~,) I (p)]

(23a)
{where k= 0, + k, ) or in configuration space

III ——A, dxdydg x-y x-z V*x Nx

III. OTHER INTERESTING MODELS x a, (y)a, (z ) + H. c.] . (23b)

Voile we have used the Lee model to fix our
ideals and to be in a, position to solve the model
exactly, to the extent that the number of channels
is finite, a,ny model of interactions will lead to the.
same kind of Keno effect. (We can trace this re-
sult ba,ck to Dirac's "variation of constants'
method of doing time-dependent perturbation the-
ory. ) it must also be clear from the method of
derivation that there is no reason for the two suc-
cessive interactions to be the same or different;
in either ca.se we find the reduced tendency to in-
teract immediately after an interaction.

&, = Zf(x)V*(x)&(x)a,(x)a, (x) .
Now we introduce an external scatterer

II, =X k V* p-k V p a'k .

(23c)

(2M)

Going through the same procedure as before,
one finds (see Fig. 3):

For seeing the essential result (and also with a
view to possible application to weak interactions),
one might choose a point interaction. It can be
easily generalized. So we choose

~=g'~ (p. p, )f"(~)f(p. p,)--
(24)

Note that again we get an expression similar to
(9), but with k= 4, + k2.

The fina, l answer after doing the integrations is

1 —exp(-i~t

(25a)
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with

and
2 2™12

(25b)

the —o.'~ t
~

' behavior of the decay amplitude.
Hence, to the extent we demonstrate the "imma-
turity" and "fatigue" of interacting particles we
are indirectly verifying the Zeno effect also.

-&(P -a -a )
—~1 —&2 ~

This gives

(25c)
V. APPLICATIONS TO HIGH-ENERGY HADRON-NUCLEUS

COLLISION S5,6

~
—k'1 -k2

&2

(26a)

P2

6g +6@ 6~ +Kg M„
(26b)

IV. RELATION TO XENO'S PARADOX IN
QUANTUM MECHANICS

Start with a state
~
M) at t = 0 and let is evolve.

The "nondecay amplitude" at t is given by

a(t)=&M ~e-'"'~M) .
Let Q(t) =

~
a(t)

~

' and R(z) = (H zI) ' = res—olvent
of H, the Hamiltonian. Thus we can write

(27)

Intuitively we realize that this will give suppres-
sion at both ends of the P-decay energy spectrum.
Again in the same limit as Sec. II we get

We have developed elsewhere' a new phenomeno-
logical space-time model for hadron-nucleus col-
lisions. We shall refer to it a.s the BCT model.
We note that the phenomenon of "maturity" pro-
posed there follows naturally from our calcula-
tions here. We calculate dn/dq and R and show
that they agree closely with the data at three en-
ergies (50, 100, and 200 GeV). This gives a sim-
ple theoretical basis for the BCT model.

We start with Eq. (9), but recognize that we can
now consider the production of an arbitra, ry number
of pions. The value of T~ will, of course, depend
upon the specific reaction channel.

We have, from (9), the suppression factor for
a given total k (compare Sec. IH):

a(t) = 1 —exp(-it/&, ),

a(t)=2 . e '"P(z)dz
2 Kg

e-fat
dz ~

2mi c y(z)
(26)

But for the Lee model we know from Ref. 2 [for-
mula (7.6)] that

~(z) =z —M„+— dh,lf(z) I'
m o ~ —z

{29)

where Mal= mass of "bare" V.
We immediately notice that this is identical to

Eq. (25) of Ref. 4. But for this case it has been
proven in Ref. 4 that

j(t) --
~

t I'" as t —o. (so)

In the case of the I ee model, the quantity de-
noted by -Q(t) is the decay rate to all the various
energies possible. As such it is an integral of the
quantity g'f*(k)f(p, -p, )M which had the character-
istic [1 —exp(-it/T~)] suppression at short times.

The Zeno effect is thus the composite of two ef-
fects. First, we have the kinematic suppression
effect due to the integral of exp(it/T„) expressing
the intera, ction-picture pha, se of the daughter state
with respect to time. This is the quantity we are
primarily interested in and which we apply to
hadron-nucleus collisions in the next section.
Folded onto this effect is a, sum over all configura, -
tions of the daughter states —this in turn leads to

a(t) = 1 —exp(-i(sot) exp(-&'t/y), (32a)

where v, =E,/y= energy of the pion in the rest
frame of the cluster divided by the dilation factor
y in going from this frame to the lab frame.
Hence

mQ g

cosh(y) ' (22b)

We have to average this suppression over the
range of energies of the pions produced. The ef-
fect of this avera. ging is similar to that of a "fuzzy"
edge in an interference pattern from a. slit. It
damps out the oscillations in the factor a(t) beyond
the first one. Only the central maximum and the
first dip survive.

Various phenomenological analyses" indicate
that the pions produced in the collision are bunched
in clusters which eventually break up into three
pions on the average. Let the rapidity of the inci-
dent particle be F, and the avera, ge rapidity of the
pion in a given cluster be y. We will assume'
that the cluster has a typical range of -1 unit of
rapidity or the energies of pions in the c.m. of the
cluster are spread over a, range of &'-0.2 GeV.
We have varied the value of &' over a, wide ra, nge
(0. 1 to 0.6 GeV) and found that the final result is
very insensitive to it. In our final calculations we
have used the value ~'=0.2 GeV. Vfe average
a(t) over this range to get
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FIG. 6. The multiplicity ratio y(q) = (d~/dq)„-/gn/dg)-
&

as a function of g at 100 GeV. The data points are from
Ref. 13.

0
-I 0

I

2 4'
I

5 6 7

m„r = (m„'+Pr')'~'.

%e define

0.2 GeV/c'
cosh(y)

These give the suppression factor

Q(t) = 2 cos(v, t) exp(-4t) —exp(-2&) .

(32c)

(32d)

(33)

FIG. 4. Variation of dn/dg as function of q and 'P& for
collision at 200 GeV. The 'P&=1 curve is the input. His-
tograms are the data of Ref. 12.

The time t between the successive collisions
depends on the mean free path of the nucleon. %e
make the simple assumption that probability that
the incident particle does not have a collision up to
a distance x and then has one between x and x+ 5x
is given by

3,0

2.5—

RA

PL = 200 Gev/c

pA
where do is the mean free path of the incident
particle given approximately by 1.3/m„. Hence,
we average the suppression factor over the above
distribution to get

2.0-

l,5- RA

PL = I 00 GeV/c

l,o
2

Pp

FIG. 5. Variation of the integrated multiplicity R&
with 'P& for p-A, collision at 200 GeV. Data points are
from Ref. 12.

FIG. 7. R& at v at 100 GeV. Data points are from Ref.
13 (see Ref. 14).
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--I

~] I:'() ~
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produced is given by

FIG, 9. Variation of 0.~&~& and 0 &~,& as functions of A.
Data points from Ref. 15. Solid lines are our curves.

0
-I 0 I 2 3 4 5 6

V~(y, Y) = c,(1 —e ')' for y ~ Y/2

=c,(1 —e ~ "')' for y) Y/2,

(35a)

(35b)

FIG. 8. Variation of dn/dq as a function of q at three
energies 50, 100, and 200 GeV. The data points are
from Ref. 12.

x'
dx exp ——[2 cos(&uQt) exp(-~t)

do p dp

co = 1.87.
This gives the average suppression factor

F Y

Q= f 'Y„(Y, Y)Q(y, Y)dy f Y„(Y,Y)dz .
0 0

—exp(-2 &t)] . (34a)

Since the time t to travel a distance x at rapidity
Y is given by x/tanh( Y), we write &ot =Iix, and
&t= Gx with

cosh(y)tanh( Y) '

0.2

cosh(y) tanh( Y) '

Equations (34a), (34b), and (34c) give

Q= —
( 2(—+ —

))I (
—+ —

) +F

(35)

At any fixed value of y, there is a whole range
of values of the transverse momentum possible.
Thus we have to further average Q over the al-
lowed values of m„~. The transverse-momentum
distributions are used from the experimental data.
of Ref. 10, which fit well to a distribution .
5' exp(-bp r) with 5= 5.9 giving the average value
of (pr) '=0. 35 GeV/c. We calculate the average
over this distribution numerically.

Fina, lly, we have to avera, ge this over the spec-
trum of pions produced. Following our previous
work' we assume that the distribution of pions

This is the "immaturity" factor we mill use in
the calculation. The calculation proceeds similar
to the previous one (Ref. 7) with the new immatur-
ity factor Q given above. The inelastic collision
probabilities used are I'~g

&

= 0. 60 and &„=0.49
based on newer data of Ref. 11. (These are slight-
ly different from those used in the previous cal-
culation. ) We calculate the multiplicity distribu-
tion dn/dq as a function of pseudorapidity Ql and
the variable v defined as v=Ac"„"„/a"„„. We also
calculate the integrated multiplicity 8& as a func-
tion of v. Our results are presented in Figs. 4
through 9. The predictions of our model agree
well mith the experimental data, .

Our model gives basically a zero-parameter fit
to the experimental data since we have not used
the concept of "induced maturity" at a,ll, and so do
not have the single pa, ra,meter A, used in Ref. 7.
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