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Symmetry breaking and the mK amplitudes in the unphysical region
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%'e apply two diferent methods of analytic continuation (fixed-t and hyperbolic dispersion relations with

discrepancy) to determine the expansion parameters of the mK amplitudes in the unphysical region near the

symmetry point. Part of the available phase-shift data shows inconsistencies with crossing symmetry. The
values we obtain for the parameters and for the so-called cr term are then compared with predictions that
we derive from different models of chiral-symmetry breaking.

I. INTRODUCTION

It has been well known for many years that the
algebra of hadronic currents provides a valuable
tool for predicting low-energy properties of
scattering amplitudes. These predictions are
strictly valid only in regions that are experimen-
tally not accessible by definition. In the last
years, however, the understanding and practicing
of analytic continuation procedures has been enor-
mously improved (cf. the review of Ciulli et al. )

so that it is just a technical problem whether the
point at which one wants to know the amplitude is
physical or not. The condition that a continuation
gives sensible results with reasonable errors is
of course a good experimental knowledge of the
physical- region amplitude.

It has taken some time from putting the theoreti-
cal question (How good are the current-algebra
predictions for amplitudee'?) until experiments im-
proved sufficiently to allow for the phenomenolo-
gical answer. This is especially true for meson-
meson scattering data, which cannot be measured
directly but have to be determined by analytic
continuation. For pion-pion scattering one
has obtained a very precise knowledge and theo-
retical understanding of the low- and medium-
energy region. For pion-nucleon scattering the
large amount of data allows very accurate deter-
mination of low-energy para meters. ' For the
simplest process involving mesons of unequal
masses and strangeness-pion-kaon scattering-
experiments have improved in the last few years
and now allow analytic-continuation procedures
with results of reasonable accuracy. '~ In this
paper we determine the values of the &K scattering
amplitude in the unphysical region by different
methods of analytic continuation from the physical-
region scattering data: fixed-t and hyperbolic
dispersion relations. %e obtain the so-called
mE 0 term, which allows us to decide on the type
of symmetry breaking and the coefficients of the
expansion of the amplitude in the unphysical re-

gion; we find a very good agreement with the
current-algebra predictions.

In Sec. II we introduce our notation and discuss
the current-algebra results for different models
of symmetry breaking. The parametrization of
the amplitudes and the data that we use is pre-
sented in Sec. III. In Sec. IV we discuss briefly
the different methods of analytic continuation

'

applied in our case before we finally compare
results with the different predictions in Sec. IV.

II. NOTATION AND CURRENT-ALGEBRA PREDICTIONS

=Q (2l+1)q,"a'p(s)P, (z,), (2.1)

with the momentum in the c.m. frame

q, =f[s -(M+ p, )2][s -(M —p)2]/4s]."
and the cosine of the scattering angle

z, =1+t/2q,

(2. 2)

(2. 3)

In the t channel the amplitude for mm-KK may,
have isospin values I, =0 and 1 and it is repre-
sented through partial waves as

T", (s, t)/16m= A,"(s t)-
even

&

far even
&odd & for odd

(2t+ 1)(p,q, )'

x a", (t)P, (z, )

(2. 4)

where p, =(t/4 —p2)'~ and q, =(t/4 —M )' 2 are
the pion and kaon momenta in the c.m. system;
the cosine of the scattering angle is

For a more detailed discussion of the notation
and singularity structure of the rK scattering
amplitude we refer to Lang. In the u and s chan-
nel, one has ~E scattering with isospin I= —,

' and
The s-channel amplitude for definite isospin

is projected into partial waves:

T,~(s, t)/16m—=A ~(s, t)
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(2. 6)», =(s u-)/4p, q, .
Throughout the paper we abbreviate m& ——M,
m, —=p, . %here the units ar'e omitted we use
p, =—1 and M —= 12.5. The s- and t-channel iso-
spin amplitudes are dependent through the cros-
sing relations

Q+= Q g 0 ——(~ s 1/2+ ~ s 3/2)= 1
W6 s

(2. 6)
/1 - —& /L Ig=1 1 ~~Is=1 /2 ~Is "312 i

where we have introduced the usual definition of
the crossing-even and -odd amplitudes. In the
unphysical region an expansion of the amplitudes'
at t= 0, 2/—= (s —u)/4M= 0 has the form

16vA'(s, t) = T'(s, t) = Q c);t'~",
~~9=0

(2. 7)

where q&
——

q2 ——q are the momenta-. of the pions
and p, =p2=p are the momenta of the kaons. The
second term stems from a commutator of the two
axial-vector currents that is known from the
SU(3)/, x SU(3)» current algebra; it is the anti-
symmetric contribution (I, =1) to the off-shell
amplitude T2/ and proportional to (s —u)/f, —the
Adler-Weisberger condition (f, is the pion decay
constant). At the off-shell point q2 =q2 ——0 (s =u
=M. , t=0) we have

T, / (s =u=M, t=0)

=- ~(K'(p) I [E', , [F~, te']] lz'(p)) =-- —,g„

(2. 8)

16»A (s, t) =-T (s, t) =v g c&,t'v".
ted=0

In the framework of current algebra (cf. Ref. 7)
it is passible to predict values of the scattering
amplitudes for one or two of the external particles
in the soft meson limit, i.e. , with vanishing four-
momentum. Following Weinber g's approach,
originally applied to mm and mN scattering, Grif-
fith investigates wK amplitudes with I, = —,

' that can
be easily decomposed into crossing-even I, = 0
and crossing-odd I, = 1 contributions. The ampli-
tude is extended off the mass shell of a pion or a
kaon according to the Lehmann-Symanzik-Zim-
mermann reduction formalism. The interpolating
pion or kaon fields are defined through the diver-
gences of the axial-vector currents with corre-
sponding flavor [partial conservation of axial-
vector current (PCAC)]. One finds that the ampli-
tude vanishes if the momentum of the off-shell
particle vanishes (Adler9 zero, cf. Fig. 1).
Taking two pions off shell one finds

-~&A"(p) I[&-,[&,~If'1) IA"(p)), (2. 8)

FIG. 1. This figure illustrates the kinematical situa-
tion in the case of mK scattering; on-shell scattering is
characterized by z+t+u =2M +2@, the physical s- and
N-channel regions are shaded. The soft particles at
the corresponding off-shell points are given in paren-
theses.

where we have implicitly defined the so-called
cr term; in this notation the index denotes the on-
shell particles. In the above expression F' are
the chiral charge operators with flavor n and
&H' is the symmetry-violating contribution to the
total Hamiltonian. Analogously, one may define
0„for the case of two off-shell kaons by inter-
changing 2/ —K, p, M, p —q, f, f», and
E5 jz in the equations. The &r„ term, however,
is much more unphysical than cr«and therefore
we do not try to obtain its value by extrapolation
from experiments.

one may determine the values of' 0~~ and g„ that
result from different models for the nature of the
symmetry breaking. Performing another low-
energy limit, one finds

&A (p') I[&', , 9', ~')) le'(p))

—(0 I[&'-, [&'.-,[&', s&'l)) lff'(p))

and correspondingly for soft kaons.
Three representations for SU(3)r, && SU(3)» sym-

metry breaking have been under discussion in this
context: (3, 3*)+(3*,3) (cf. Ref. 10), (8, 8) (Ref.
11), and (6, 6s)+ (6~, 6) (Ref. 12). For the trans-
formation properties of the corresponding set of
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&II' = zoto+ea~s y (2. 11)

where to and ts are the general combinations of
operators of the representation that conserve
isospin, hypercharge, and parity. These terms
guarantee the Gell-Mann-Qkubo mass formulas
and are therefore sufficient to describe lowest-
order chiral-symmetry breaking. For the numer-
ical values we use

18, 64, or 72 operators we refer to Reya' or the
original papers (Refs. 10-12). The first of the
three models corresponds to the standard quark
model and it is the one compatible with quantum
chromodynamics. . 3 The other two representations
have isospin-2 and hypercharge-2 components.
This will show up only in the transformation
properties in our case because we discuss only
singlet and octet contributions, namely,

soft KK:

T', ~(s =u = P', t = 0) =-
~ o„

(6, 6*)+(6*,6):

VM' 1+ —,', (2/5)"'(e. /~. )
3f.f» 1 —(1/v'10) (e,/e, )

=-21.62, (2. 15c)

(2. 16a)

T (s=u=M, t=0) =-—o»»

13/L 1 —I (es/60)
5f.f 1 —g'(e, /e, )

25 M~fz- g~f
es/~0 =

7 2~f + &&f'
——1.58,

soft mm':

f,=f» =f= 131 Mev -=0. 936p. (2. 12) =-11.97, (2. 16b)

m 2

, =-,. «IP.', «'jI ), (2. 13)

which leads to a value for es/eo for each type of
symmetry breaking. e find the following:

(3 3*)+(3*3).

soft mm:

2M' » + p', (2. 14a)

T~l (s=u=M t=O)=-—
q o»»2 2 2

fg»»
p2 =-1.14,f, »

soft, KK:

(2. 14b)

3/2 2T, (s=u=pa, t=O)= -- zo„

=-14.2V, (2. 14c)

(6, 6):

soft rr:
2M'f»+ p.', (2. 15a)

By PCAC we have a relation between mass and
decay constant of a meson e and a chiral commu-
tator

soft KK.

T' "(s=u = p' t = 0) =- o
2

S
1C

13M' 1 —k (e,/e, )
5f.f» 1+k(~~«0)

=-25. 10. (2. 16c)

TABLE I. The nonvanishing scattering lengths +& due
to the linear soft-meson model (in units p, ).

All multiple commutators have been checked with

help of the REDUCE 4 systemfor algebraic manipu-
lations.

There are two possibilities to compare these
predictions with scattering data. One is to adopt
a linear ansatz for the scattering amplitude and
to use the current-algebra values to determine
the parameters. This gives values for the s- and
p-wave scattering lengths in Table E; in Fig. 2

we compare these values with an average over the
experimental values (cf. Ref. 6). Linearity,
however, is too stringent a restriction because
the physical amplitude deviates substantially from
a linear approximation due to unitarity and reso-
nance structure. This is true even in the unphysi-
cal region, as can be demonstrated by dispersion
relations. Therefore it is difficult to decide from
Fig. 2 on the type of symmetry breaking and on the
quality of other soft-meson predictions.

Tsi~(s =u =M, t = 0) =-
~ o»»3/2 2 2

g 0 f Q

(3 3Q) + (3Q 3) (6 6Q) +(6Q 6) (8, 8)

7 p~ 1+ (v'10/7)(e, /go)
3f,f» 1+ (2/5)'i'(e, /e, )

=-8.50, (2. 15b)

ij2

~3/2
A()

e'i'
1

0.142

-0.071

0.010

0.237

0.0~4

0.010

0.206

-0.006

0.010
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3/

{X

0.00-

ments.
In the energy range below 1.4 GeV the partial

waves are practically elastic:

a', ~ (s)q, "= —.[exp(2ie", ) —lj

-0.10-

CI S

EXPERIMENTS

REF. 20

and we may solve a k-matrix equation to obtain

[a', (s)j '=(kt(s) + Z n~'da(s)

—d,r, , (s) .

0.1 02 0.3 1,

Ro

The increase in the amount and quality of mK

data in the last few years now allows us to select
a more promising method, namely, to continue
analytically from the physically accessible to the
unphysical region near s =u, t =O. There we
expand the amplitude into a polynomial in & and
t [compare Eq. (2. 7)] and compare it with the
predictions. Linear extrapolation from the soft-
meson points —where the predictions ought to be
exact —to the neighbored points in the Mandel-
stam plane (Fig. 1) is certainly much better
justified. This linearity over a distance of 2p,

gives in the Cheng-Dashen" prescription the
connection between the off-shell and the on- shell
0 term

7'(s =u=M, t =2t/, ) =-7'(s =u=M, t =0)

FIG. 2. The predictions of the soft-meson theory for
o.'() and nj~are compared with the experimental aver-
age values. The values corresponding to our parametri-
zation (CIS) are also shown, as well as the results of
Ref. 20.

Here d,&,&
is the Chew-Mandelstam function for

two particles of unequal mass; it has only a right-
hand cut with the imaginary part 2p, '//Ws. The
functions

ds = 16msj{2l+ 1)ss(ss —s)

are the propagators for the bare resonance R
coupled to the partial wave. For a discussion of
the special type of k-matrix equation and the ex-
plicj.t form of the d's cf. Lang. The parameter
o.z gives the strength of the coupling to the rK
system. Then k, has no right-hand cut from mK

elastic unitarity and no poles due to resonances
B. It does have left-hand singularities such as
a, and cuts starting at higher-lying inelastic
thresholds. In the elastic-unitarity region it is
therefore singularity free and can be approximated
by smooth functions; this was supported by the
results of model calculations. '6 We find from the
data that it is sufficient to. approximate k for the
s waves by straight lines (kp= f0+ Pos) and for
the p and d waves by a constant (k,
pl /2 1/ 2)

2 2

As our central input set of data we use for the
wave the data by Matison et al iv below 1 Geg

A corresponding relation for the soft-kaon o term
involves linearity over the much larger distance
2M2 and is therefore hardly reliable.

TABLE II. The input parameters for our unitary para-
metrization of the 7IK phase-shift data; in the upper half
we give the values due to the data in Refs. 17-19 as dis-
cussed in the text; the lower half contains the values due
to the data of Ref. 20.

III. PARAMETRIZATION OF THE DATA

For the analytic continuation we need values of
the total crossing-even or -odd amplitudes in the
physical region. The data is given for the partial
waves and show local instabilities. This may be
due to systematic errors in the process of analy-
tic continuation from KN-KmN data to Km on-
mass-shell scattering data. We therefore para-
metrize the partial waves s' 2, s, p', and
d in an unitary and analytic way. The P3 and
d /2 as well as higher partial waves are found to
be negligible in this energy region in the experi-

83.7

0 2 1.082

2
~ ~ ~

0.227

0.048

93.0

42.0

102.9

0 2 1 042

0 2L
2

4 ~ ~ ~ 4 I

1 +2 0.225 41.8
2 2 0.048 102.8

0.016 +0.003

0.0033 0.365 +0.047

-0.0007 -0.465 +0.022

0.032 +0.004

0.0089 —0.035 +0.069

-0.0039 -0.128 +0.051
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and of Firestone et al. '~ above; this corresponds
to a t& resonance with mass 1.31 GeV and width
0. 91 GeV. The s3' data come from Ref. 18,
and for the p

' wave we determine nz and sz
from the data of Mercer eI; al." Finally, for
the d' ' wave a„and s„are determined from
the K*, , parameters m~* = 1.421 GeV, I'z*
=0.108 GeV, and since there are no adequate
data, y2 ——0. We check that our results are
only weakly dependent on this last assumption by
also running our programs with a different value
for y2

' which corresponds to a different d-wave
scattering length and a zero of the d wave at
infinity. We give the values of the parameters
in Table II. The standard deviations of the para-,
meters y are obtained from the fits to the experi-
mental data and define the error bands as can be
seen in Fig. 3.

The estimation of the errors of the analytic
continuation, due to the parametrization of the
input data, is done in the following way. Each
extrapolation is repeated for different sets of the
input parameters. The central values define the
central input set (CIS); sets A and A are equal to
CIS except for y', ', which differs by plus or
minus 1 standard deviation. The same holds for
B and I3 with regard to y', ' and for C and C with
regard to the p-wave parameter y', '. The
systematic errors of the numerical analytic
continuation of the discrepancy function (Sec. IV)
and of the integrals involved are comparably
small, and therefore the error of the result can
be expressed through the uncertainty of the input
values in the form

120

90-

60-
CR
CD

. D
CD

le
Cf

a 30-

-30

120

90-

{a)

I I I

0.7 0.8 0.9
I I I

1.0 1.1 1.2 1.3
Energy (GeV}

f(CIS) + ~I [f(A) —f(A)]t+ [f(B)—f(B)]

+[f (C}-f(C)]']'" (3.3)

This is an approximation derived from the law
for propagation of errors under the assumption
that the input parameters are uncorrelated.

Recently, there has been a new high-statistics
experiment for the determination of mK scattering
partial waves. Especially the low-energy data
deviate from the other determinations (cf. Figs.
2 and 3); we therefore parametrize this data set
separately in the same way as discussed above.
The values obtained for the parameters are also
given in Table D, and the error bands are shown
in Fig. 3. Owing to the very small errors
claimed in Ref. 20, the error band for s is
smaller than for the other set of data. In both
cases, however, the oscillations of the phase
shift below 1 GeV indicate an underestimation of
the systematic errors of the analytic method of
mE data extraction.

-30 I

1.0
I I I

0.7 0.8 0.9
I I I

1.1 1.2 1.3
Energy (GeV)

FIG. 3. (a) The 5(}~ tupper part) and 53p~ (lower part)
data from Refs. 17 and 18 [+Matison et al. (Ref. 17), $
Firestone et al . (Ref. 17), g Bakker et al . (Ref. 18), $
Cho et al. (Ref. 18), g Linglin et al. (Ref. 18), and ih

Jongejans et nl. (Ref. 18)j compared to our parametriza-
tions CIS, A, X, B, B as discussed in the text. (b) The

(upper part) and 6p gower part) data from Ref. 20
compared to our parametrizations as discussed in the
text.
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IV-. DISPERSION TECHNIQUES APPLIED

For the determination of the expansion param-
eters in Eq. (2. 7) we have to determine the ampli-
tudes in the unphysical region near s =u, t=-Q.
%e do this with the help of finite-contour disper-
sion relations at different values of fixed t=
-1.0, —Q. 5, Q. 0, 0. 5, 1.0, 1.5, 2. 0p . The o. term
(s =u, f =20 ) is also determined with a dispersion
relation (DR) on a hyperbola.

The fixed-t DR for crossing-even or -odd ampli-
tudes can be written

0.4-

0,2-

0

-0.2 .
h, (s, t=0)

I

I

I

t
I

I

I

l

Re W-(s,

p Smjp'.
T'(s, t fixed) = —I' ImT'(s', t)

7r Sphd'

-0.4

Re A'(s, t=0)
I

%e know Ima, to good accuracy between threshold
and 100&; between 100 and 150@ our parametri-
zation holds approximately-we therefore choose
s =150&'. We expect that the sum of partial
waves converges quickly to Im2'" even at t =2 p .
Then the discrepancy function &'(s) has singulari-
ties for s & 100p, '. and u & 100p,

'
(s & 2M'+ 2 p,

' —t
—100@ ); presumably the cut discontinuitv is
small for 100p & s & s ~ and 100P & u & s,„, re-
spectively. &'(s) is real and free of singularities
in the region 2M +2g —t —100&'&s &100&'.

The points s,„,& s & 100p, -1 ~ t ~ 2@ are inside2 2

the smaller Lehmann ellipse of convergence for
the partial wave sum for the real part of T; we
take, however, values of Rer' only in the region
28@.'& s & 60 p' where we have reliable experimental.
data and parametrization. One, therefore, can
compute the real values of &'(s) at these points;
since the discrepancy function has no nearby
singularity, it can be easily extrapolated to s =u
=M + p —f/2 by a low-order polynomial.

This introduces the inevitable model dependence
of the analytic continuation. In a more sophisti-
cated approach one allows for more (in principle,
infinitely many) coefficients and suppresses the
higher coefficients, e. g. , through the introduc-
tion of a smoothness norm (Pietarinen'). In our
ease this is practically equivalent with our choice
of a low-order polynomial, as we have checked.
A polynomial of degree 2 in v' for b.' and A /v
fits the numerical values better than two decimals
(cf. I"ig. 4). The only exception is the antisym-
metric amplitude constructed from the input data
of Estabrooks et al. One clearly sees that the
discrepancy is hardly consistent with crossing
antisymmetry; remember that the discrepancy
function has no singularities in the energy region
around the symmetry point and should show no

- 0.2

h,'(s, t= 0)+0.8

-0/

-0.6

15 19 23 27 31 35 39 4 3 47 51 55

s ( Lj.
~ )

strong structure there. If one forces a good fit
of 6 /v one needs a fourth-order polynomial in

as shown in Fig. 4. We discuss this problem
in Sec. V. Having determined the discrepancy,
the integral can be easily computed near s =u
and so we find the values for the amplitude at
t=2 p,'.

The expansion coefficients c'„and c'„are de-
termined by fitting the values of the amplitudes
T' at different values of & for t=Q by a low-order
polynomial in v. The coefficients c&0 and c» are
found by repeating the determination of c',0(t) and
coq(t) for different values of f and fitting these
values by a straight line in t-its derivatives then
give cgo and cgg. Owing to systematic and experi-
mental uncertainties, it is not possible to give
reliable values for higher coefficients. A simi-
lar procedure is applied to obtain the c;q.

We also use a DR on a hyperbola to continue the

FIG. 4. Here we compare the values we obtain. at
t=0 fear the discrepancy functions 6 and 6' (full circles)
and the polynomial fit Oines through the circles) for the
two sets of data due to Refs. 17-19 on one hand (full
lines) and Ref. 20 on the other (dashed lines). We also
give the values for Be A- and Re A' to allow a compari-
son of the order of magnitude. The crossing-odd or
-even functions are antisymmetrie or symmetric in
8-13.5p' (for 1=0).
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- amplitude to t= 2 p, ', s =u. The advantage of such
curves ' is that they lie asymptotically inside
the physical regions of different channels. The
hyperbola of the type

(s —n)(u —o.) =P

approaches asymptotically fixed-s or -u lines.
For a specific choice of P, namely,

P = o.' —o.(2M'+ 2 g') +(M' —p.')', (4. 3)

the hyperbola is always inside the physical re-
gion above threshold. The curves are related
to the kinematic Kibble function ' $ = 4tP, q, sin'8„
i.e. , they correspond to Q/t'= +with-n(0. With
n= —12'.' the hyperbola run. s through s =u, f, = 2p, '.

In the DR the analytic continuation is now per-
formed in t, which means that there is a cut start-
j.ng at t= 4p, due to 7pp ~g. The phase of the
s-wave amplitude is that of elastic xi~ scattering
because of extended unitarity. We introduce the
Omnes function

(4. 4)

V. RESULTS AND MSCUSSION

In Table III we give the results for the 0 term
for our standard input as determined from fixed-

which is calculated from the Roy-equation solu-
tion of the experimental mm phase shift 50 with
scattering length no(mm) =0. 3p, '. We then apply a
DR for T '/fl which does not have the strong s-
wave ~m cut above 4p:

r '/O, = — lm(r '/n) —, +~(f) . (4. 5)
4, Cft

,
t' —t

min

The discrepancy function has cuts for f, & t „
100'.'andfor t & 4p; the discontinuity of the

latter is small because it comes only from d waves
and higher partial waves as well as from devia-
tions of the exact 6„from our ansatz. " Again. ,
the real values of 4for -30','&t& —1p,

' can be ex-
trapolated to I;=2p . Evaluation of the integral
gives then a further value of the amplitude 7'(s
=u, t=24 ).

t=2p and hyperbolic dispersion relations. We
compare these values with the current-algebra
results due to the three different models for sym-
metry breaking in Sec. II. We find that only the
(3, 3*)+ (3*,3) model is within l standard deYia-
tion compatible with our results, the other two
types of symmetry breaking are excluded with
more than 4 standard deviations. The results of
both types of analytic continuation agree within
the errors. We think that the errors we obtain
are realistic with regard to the variation of the
exper imental input.

In Table IV we compare the expansion param-
eters with the results of other authors and from
current algebra (linear model). The first coeffi-
cient is the only one that depends on the type of
symmetry breaking, and again only (3, 3*)+(3*,3)
is compatible with our result for the central input
set in the last line of the table. The coefficient
cpo is in the linear model given through the Adler-
Weisberger condition and our result is in good
agreement with it. This number is, in Fig. 2,
responsible for the linear relation between the
s-wave scattering lengths; there (on-shel. l and in
the physical region) the comparison with the ex-
periments exhibits no agreement. The other co-
efficient that does not vanish in the linear soft-
meson theory (SMT) model is c;0; this coefficient
is also independent of the type of symmetry break-
ing. This follows from the mass relations due to
&CAC [Eq. (2. 13)j. Our result is in excellent
agreement with this value too.

The other coefficients correspond to nonlinear
terms in v and t and are therefore vanishing in
the linear SMT model by assumption, whereas
our results show that they certainly do not vanish
in the true amplitudes. This offers an explanation
for the failure of the SMT predictions at threshold
(cf. Fig. 2). Our results agree within l standard
deviation with the values for c&0, coo, and c~o
obtained by Nielsen and ides' and Hedegaard-
Jensen', we also agree with the values for c,, and
c,„given by Blatnik et al. ,'who use the same input
data but a different method of continuation on dif-
ferent hyperbolas. We donotagree with the values

TABLE III. %e compare the theoretical predictions for different models of symmetry
breaking (Sec. II) with the results of the analyti. c continuation of our central input set of data
for t.=2@2 and on a hyperbola; we also give the aritlunetic mean between the two results. Lin-
earity in t over the distance 2p implies T+(s=g=~, t=2p, }=—. T+{ =g=M2, t=-0) (Hef. 15).

Fixed-t Hyperbola Mean

(3, 3*)+(3*3):
(6, 6*)+(6~,6): 11.98
(8, 8): 8.50

0.54 + 2.03 -1.15 + 2.06 —0.31 +2.05
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for cpp cp] and cpp obtained by Fox and Gri. ss."
We also determine the expansion parameters in

the unphysical region by continuing analytically "

the parametrization of the data by Estabrooks
et al. " (Table IV). As one may already expect
from the larger scattering lengths, the coefficients
c00 and c&0 deviate clearly from our main results;
they are compatible with the linear model values
within 2 standard deviations. For the antisym-
metric combinations we find a discrepancy func-
tion that is hardly consistent with analyticity and
crossing (cf. the discussion in Sec. IV). We think
that the reason for this is that the s-wave scatter-
ing lengths are too large in absolute magnitude.
This. effect is canceled in the symmetric combina-
tion but is amplified in the antisymmetric com-
bination [Eg. (2. 6)]. We conclude that the low;
energy s-wave phase shifts due to the work in
Ref. 20 are hardly consistent with s-u crossing. "
If we force the antisymmetry by allowing more
structure in the discrepancy, we find an Adler-

Weisberger coefficient coo too large by a factor
of 2 (6 standard deviations). These problems may
be due to an underestimation of the errors of the
data in the low-energy region.

As a conclusion we want to say that the different
techniques for analytic continuation seem to be
well suited to enlarge the region where the ampli-
tudes can be determined, i. e. , the region of
"observability. " It is preferable to continue the
data by these methods to those unphysical points,
where theoretical predictions can be tested easily,
than to continue the theoretical model rather
crudely to the physical region. For mE scattering
we find a very good agreement with the assumption
of (3, 3*)+(3*,3) symmetry breaking of SU(3)~
x SU(3)„.
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