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Pion-nucleon phase-shift analyses: 0—350 Mev
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Energy-dependent and energy-independent partial-wave analyses of the low-energy m+p elastic and charge-

exchange scattering data are presented. Unique, unitary, energy-dependent solutions giving a y'/datum of 1

are obtained. The solutions exhibit charge splitting in both the S» and P33 partial waves. The T-matrix pole
positions and residues of the 6++ and 5 resonances are determined to a new precision. D and I' waves are
well determined inclependent of theoretical constraints. New values for the S- and P-wave scattering lengths

and effective ranges are reported.

I. INTRODUCTION

Over the last few years a number. of experi-
ments have been performed which have consider-
ably improved the precision of the pion-nucleon
scattering data (see Table I). These new data
have had the effect of making some of the older,
widely quoted partial-wave analyses obsolete. ' '
For this reason we have undertaken a new partial-
wave analysis of all the high-precision polariza-
tion and total- and differential-cross-section data

between 0 and 350 MeV pion laboratory kinetic
energy (1078 to 1349 MeV barycentric energy) in
order to achieve an energy-dependent represen-
tation of the n'p elastic and charge-exchange scat-
tering data.

Older energy-dependent studies over the same
energy range" have exploited the charge inde-
pendence of the pion-nucleon interaction within
the tolerance of the existing data in order to fit
the scattering observables of the different charge
states simultaneously. However, as a result of

TABLE l. Pion-nucleon scattering data 0 to 350 MeV since 1971.

~Z, (Mev)

70-295

70-295

298-336

142-272

207-370

21- 96

40- 50

88-292

137-260

23- 43

277-334

147-347

114-227

292-308

236

95-194

291-310

243-349

Laboratory

CERN

CERN

CERN

Saclay

LAMP F

CERN

Saclay

PPA

CERN

LBL

1971

1972

1972

1978

1973

1975

1973

1976

1971

1978

1975

1976

1973

Observable

op

o (0')

o-'(8)

o +(8)

o (8)

o 0(8)

o. (180')

o (8)

o 0(8)

~'{160 )

P (8)

P+(8)

P'(8)

P'(8)

P (8)

Statistical
error (%)

0.5

0.4

2.10

10

2.5

7-16
10-30
5-30

10-20

10-15

x2a

1.85

2.1, 3.16"

13.2, 6.6"

2.15

1.04

2.35, 2.32"

0.17

0.03

1.71, 7.38"

3.39

0.01

1.05

0.65

1.08

0.72

2.22, 2.14

Refer ence

Bugg et al. (T4)

Carter et al. (T6)

Davidson et al. {T7)

Bayer et al. (D7)

Berardo et al. {D8)

Bertin et al. (D9)

Blecher (D10)

Bussey et al. (D12)

Comiso et al. (D14)

Duclos et al. (D19)

Gordeev et al. (D32)

Hauser et al. (D34)

Jenefsky et al. (D36)

Alder et al. (P1)

Amsler et al. (P2)

Amsler et al. (P3)

Dubal et al. (P6)

Gorn (P9)

is the X per data point for a given data set and includes the normalization X .
"The first number corresponds to ~'P and the second to 7r p.
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the high precision of recent total- and differential-
cr oss-section measurements (see Refs. T6, T7,
D9, D10, D12, D19, a,nd D32 in Appendix A), re-
cent phase-shift analyses" have permitted overt
violations of is~spin conservation in the pion-nu-
cleon amplitudes. In particular, Car ter, Bugg,
and Carter' allowed for charge splitting in the P33
partial wave, arising mainly from the b,"-6'
mass difference, by determining the P33 phase
shift in z'p scattering independently of its value
in z P scattering. Our results also indicate that
it is not possible to obtain a good fit to all the
pion-nucleon scattering reactions using isospin-
conserving amplitudes. In this analysis, charge
splitting has been taken into account in both the
S3$ and P33 partial waves by allowing the P» phase
shift and the S3, scattering length to adopt differ-
ent values in m'p and n p scattering.

For the n'p system we have obtained a unique,
parametrization-independent set of phase shifts
yielding a y' per data point of 1.43. This solution
is highly stable to data pruning and results in a
reliable determination of the S-, P-, and D-wave
phase shifts. We emphasize that these are not the
phases that would necessarily be obtained from a
p p data analysis.

It is usual, assuming charge independence of the
pion-nucleon interaction, to use the resulting phase
shifts as input in a partial-wave analysis of the
m p scattering data. It is our experience that it
is not possible to achieve a purely charge-inde-
pendent partial-wave representation of the low-
energy data without explicitly incorporating com-
plicated, model-dependent Coulomb corrections.
Charge splitting is best allowed for in both the

S3, and P 33 partia 1 wave s. Apart from thi s as-
sumption it is not possible to obtain a unique n p
scattering solution. The other. I= —,

' waves have
been taken directly from the n'p analysis.

For the n p system our basic fit to all the data
gives a X per data point of 2.08. The elimination
of sufficient data to give a 50% confidence level
exhibited no important change in the values of the
phase shifts. The solution is largely parametriza-
tion independent and leads to precise values for
the S, P, and D waves.

We have also performed energy-independent
analyses at several selected energies as a check
on the uniqueness of the energy-dependent repre-
sentation, as an aid in elucidating inconsistencies,
and as a tool for checking the validity of the er-
rors obtained from the error matrix. No signifi-
cant discrepancies between the energy-dependent
and energy-independent solutions are found.

In Sec. 0 we discuss the data base used in our
analysis. It essentially consists of the most re-
cent and most precise pion-nucleon scattering

data available, supplemented by reliable older
data in energy regions where new data have not
been taken.

In Sec. IQ we outline the coupled-channel K-ma-
trix formalism on which our phenomenological fits
are based. The goal of an analysis of this kind is
to make use of a minimum of theoretical assump-
tions in order to achieve as simple and accurate
a representation of the data as possible. This
should be of considerable use to the modelist since
the complications of fitting and renormalizing
large quantities of scattering data have been
eliminated. To this end no attempt was made to
include all the effects of the Coulomb interaction.
The phase shifts reported in this paper are the
so-called "nuclear" phase shifts which are ob-
tained when a partial-wave analysis is carried
out after corrections for the Coulomb amplitude
and Coulomb-nuclear interference are made.

To simplify the problem, the following assump-
tions were made:

(1) Only partial waves up to l = 3 are assumed to
contribute to the scattering.

(2) Pion and nucleon isospin-multiplet mass
differences are neglected, and thus the small
difference in phase space available for n p and
charge-exchange scattering is neglected.

(3) We assume the inelastic scattering is due

solely to the channel m p pA in the P» state.
(4) We assume that contributions from the ra-

diative-capture process are negligible.

In the context of these assumptions, our formalism
satisfies unitarity, has the proper elastic and in-
elastic threshold behavior, and is continuable into
the complex energy plane.

The pion-nucleon phase shifts obtained from our
analyses are reported in Sec. IV. We regard these
phases as the best representation of the available
data made to date. The S and P waves possess
very smaD errors and are insensitive to the
analytical representation of the amplitude. Both
the magnitude and signs of the D and I waves are
well determined by the energy-dependent fit. We
also include the results of a corresponding ener-
gy-band analysis. Fits are displayed to some of
the most recent differential-cross-section and
polarization data, and the results of this analysis
are compared with the energy-independent analy-
ses of Ayed' and the SIN group (Pl, P2, P3, and
P6). Preliminary results on the n+P system have
been reported earlier. '

In Sec. V an elastic resonance pal ametrizatlon
similar to that employed by Lichtenberg' is used
to obtain new values for the T-matrix pole posi-
tions of the 6 resonances. We find M„=1210.4
+ O. V and I'+, =99.49+ 0.28 MeV independent of ef-
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feets of the Coulomb barrier, the form of the
phase-space factor, and of the background para-
metrization. An analogous determination of the
6' pole was also made, yielding Mp 1210 3+ 0 36
and I', =108.0+ 0.52 MeV. Aprecise determination of
the 2 residues and background is also discussed.

In Sec. VI we present our predictions for the
low-energy spin-rotation parameters, differential
cross sections, and polarization in regions of ex-
perimental interest. This paper will form the
core for future partial-wave analyses at higher
energies in anticipation of new measurements to
be performed using high-intensity pion beams at
SIN, TRIUMF, and LAMPF.

II. PION-NUCI. EON DATA BASE

The data base for the nN scattering reaction
consists of a collection of the most precise mea-
surements of the zN total cross sections a~, dif-
ferential cross sections o(8), and recoil-proton
polarizations P(8), measured in the energy range
0 to 350 MeV. Superscripts +, —,and 0 will be
used to denote g'p, g p elastic, and z p charge. -ex-
change reactions, respectively. Throughout the
following, all energies will be quoted as labora-
tory-frame pion kinetic energies unless other-
wise indicated. The energy cutoff in this analysis,
350 MeV, wa. s chosen so as to include only those
effects arising in the first, or P33 resonance re-
gion,

As a further constraint on the values of the
phase shifts calculated from our partial-wave
analyses we have included as theoretical input
selected values of the real part of the forward
elastic scattering amplitude, Ref'(0), as com-
puted by Carter and Carter. ' This quantity is de-
pendent on theory-laden values for the pion-nu-
cleon coupling constant, the S-wave scattering
lengths (which the authors obtained from their
own low-energy data analyses), and on experimen-
tal values for the total cross sections. The val-
ues for Ref'(0) we have included in our data base
occur in steps of 10 MeV/c and possess errors of
about 5% at low energies and 1% at high energies.
%'e have checked the sensitivity of our values for
the pha, se shifts on different theoretical calcula-
tions of Ref'(0), including the recent work of En-
glemann and Hendrick. " Only irrelevant changes
occur.

Since the last analysis of the pion-nucleon scat-
tering data by our group in 1965,4' the data have
improved substantially in both quality and quantity.
Appendix A contains a complete listing of our data,
ba.se. The starting point for this study was the
CERN 1973 compilation. " We excluded a fair
amount of pre-196V data pre-empted by recent

higher-precision measurements and included a,

number of recent experiments not covered by
CERN 1973 (see Table I).

Our pion-nucleon data base consists of 1572
data points (835 for ~"p and 737 for n p). The
data breakdown is illustrated in Figs. 1(a)-1(c),
where the division into data types at specific en-
ergies and over specific angular ranges is given.
In Table I we list the most recent additions.

A. n'+p elastic data

Complete references to the pion-nucleon data
used in this a,nalysis are contained in Appendix A.
To avoid redundancy only va1ues of 0~ that are
not integrations of o(8) at the same energy are
used. Especially notable are the precise mea-
surements of or by Carter ef al. (T6). Further
precision measurements of 0 ~ are presently un-
derway at SIN

The o'(8) data are spread fairly uniformly over
the entire energy range, though they stop abruptly
below 20 MeV due to unresolvable background
problems. Overa. ll, these data possess errors on
the order of 4% or less. The quality of the data
below 100 MeV has been generally improved by
the measurements of Bertin et al. (D9) giving
precise o'(8) values at seven energies below 100
MeV. (The measurements at 67.4 MeV, however,
were not consistent with our solution or with near-
by data and were excluded prior to the analysis. )
The v'(8) data cover the angular range 30'-160'
quite completely; there are few measurements
below 30' due to Coulomb interference. The low-
energy data have recently been supplemented by
precision measurements of v+(8) at 39.8 and 49.9
MeV by Blecher et al. (D10). In addition, higher-
energy data have been reported by Gordeev et al.
(D32). The total cross sections calculated from
this experiment are in better agreement with the
data of Davidson et al. (T7) than Carter et al. (T3).

Considered as a whole, the m'p polarization
data are in fair shape. These data are very im-
portant as the unpolarized differential-cross-sec-
tion mea, surements at high energies a,re insensi-
tive to D waves, which may be determined by pre-
cise measurements of P(8). Furthermore, mea-
surements of P(8) depend on interference between
different partial waves and thus yield information
on the nonresonant phases. The recent develop-
ment of intense pion beams has permitted the
P'(8) data to be measured at much lower energies
than were formerly available. Amsler et al.
(P2 and P3) have recently reported measurements
of P'(8) at six energies between 94 and 237 MeV.
Generally speaking, the polarization data are con-
centrated in the backward direction and often pos-
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sess very large errors, especially where their
absolute value is small.

B. m p clastic data

Discrepancies between measurements of o ~
performed at different laboratories still persist.
The high-energy Carter et at. or data (T6) are
not consistent with older measurements or with
the more recent precise measurements by David-
son et al. (T't). As a result we were obliged to
eliminate the Davidson et gE. measurements at

298 and 336.1 MeV in our preliminary analysis.
The m p differential-cross-section data base

does not possess the quality characteristic of the
v'(8) data. base. It lacks both a comprehensive
energy distribution and uniform angular coverage.
The only new measurements are those of Bussey
et at. (D12) and Gordeev et at. (D32). We found it
necessary to discard the m p elastic differential-
cross-section measurements of Bussey et al. at
88.5 MeV due to its large contribution to y'. The
total cross sections calculated from the Gordeev
et al. data are known to be in systematic IO% dis-
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agreement with previous o~ data [.Measurements
of o'(8) for pion energies of 300-580 MeV are
planned at LAMPF. "]

The situation with the n p polarization data is
less satisfactory than in the m'p case. There exist
only a few measurements over a. limited energy
range, the most recent being those of Alder et al.
(P1) at 291.5 and 308 MeV. These measurements
yield an improved determination of the S» partial
wave.

C. Chargewxchange data

For this reaction, with the exception of one po-
larization datum P' (E~ =310, 8=180'), only the
angular distributions and total cross sections have
been measured. Charge-exchange scattering is
difficult to measure, but is very important in de-
termining the smaQ I=—,

' component and in resolv-
ing the apparent violation of the tria, ngle inequali-
ties due to I-spin breaking. Many new measure-
ments have been performed in response to these
needs (see Table I) and new high precision mea-
surements of o'(8) and J"(8)between 147 and 500
MeV are underway at LAMPF. '4 Because the low-
energy Bugg ef al. oor data (T4) are not consistent
with earlier measurements, but are of high pre-
cision, we use it as our sole source of knowledge
on 0~. These data are not only important in aid-
ing in a. determination of the 4"-6' mass splitting
but tend to pin down Py3 by interference with P33.
As can be seen from an examination of Fig. 1(b),

there is a paucity of good charge-exchange data,
especially at low energies and small angles.

Both the n p elastic and charge-exchange dif-
ferential-cross-section data are concentrated at
somewhat larger angles than the o'(8) data. This
may be significant since the nN data are uncor-
rected for errors due to external soft-photon
emission accompanying the hadronic scattering.
Calculations by Sogard" and Boric" indicate that
the fractional change in the measured cross sec-
tion due to external bremmstrahlung is a t-de-
pendent correction and: may be as large as 4% at
350 MeV in the backward scattering region (about
1% in charge-exchange scattering). All calcula-
tions of soft-photon emission are, of course, de-
pendent on the, energy resolution of the experi-
ment. The percentage increases rapidly as the
energy resolution decreases. In n'p scattering,
on the other hand, the fractional change in the
measured cross section due to bremmstrahlung
is at most only 1% for a typical energy resolution
of 10%. Radiative corrections are not significant
for the polarization data.

Measurements of internal bremmstrahlung in
nN scattering, i.e. , photon emission from the
strongly int'eracting intermediate state, have been
conducted by Sober et a/. "in the hope of investi-
gating the electromagnetic properties of the 6
resonance and off-mass-shell mN amplitudes. This
process contributes less than 0.1 mb at 294 MeV
and may be safely neglected.

Finally, the radiative-capture reaction z p yn
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is entirely negligible at the energies at which our
data exist, contributing only about 1 mb to the to-
tal cross section at the b, resonance. Only at low
energies, near the elastic threshold, is or(n p

yn) comparable to var.

III. PHASE-SHIFT PARAMETRIZATIONS

The pion and the nucleon scatter through both
the strong and electromagnetic interactions. In
this paper we are interested only in the "nuclear"
phase shifts which result when one eliminates
only the effects of the electromagnetic interac-
tions due to single-photon exchange between a
point pion and a point nucleon. Thus the so-called
inner Coulomb corrections arising from extended
pion and proton charge distribution are not in-
cluded, nor are the effects of vacuum polarization
or bremmstrahlung. I ikewise, the indirect elec-
tromagnetic effects which arise, for example,
from the nucleon mass difference, radiative cor-
rection to the pion-nucleon vertices, etc. , are not
included. Furthermore, once electromagnetic
corrections to first order in a are considered, it
is necessary to take account of the competing
photon-nucleon channel. All these effects are
either negligible or contribute to the total phase
shift an amount which cannot be calculated without
presuming a specific model for the strong inter-
action —a model, moreover, which must be con-
sistent with the results of a partial-wave analysis
itself. However, it is precisely the absence of an
acceptable model for the strong interactions that
makes a phase-shift analysis necessary in the
first place. There is no consensus as to the cor-
rect way to make these corrections, and, in our
judgment, a model-independent analysis of the
scattering data mandates the necessity of report-
ing the nuclear rather than the hadronic (or
"strictly nuclear" ) phase shifts.

In order to incorporate unitarity for the electro-
magnetic and strong interactions separately we
assume that the product S matrix

S-Sc&~

describes the composite interaction correctly.
Here S is the observed S-matrix element, Sc is
the S-matrix element describing mR scattering
purely through the electromagnetic (or Coulomb)
interaction, and S~ is the nuclear S-matrix ele-
ment. From Eq. (l) it follows that the 7-matrix
element can be written as

(2)

A convenient way to parametrize the amplitudes
and to describe threshold effects is to write the
nuclear T matrix in terms of the K matrix as

follows:

The K matrix is real and symmetric as required
by unitarity and time-reversal invariance. We
may explicitly remove the threshold phase-space
factor from K by introducing the reduced Kmatrix
K by

K= p~~~K p~~~,

where p is the diagonal phase-space matrix in-
volving the barycentric momenta of the various
channels.

The great utility of the K-matrix formalism is
that it provides a neat phenomenological means
of describing a multichannel scattering process
in which partial-wave unitarity and S-matrix
analyticity may easily be incorporated. Further-
more, the scattering amplitudes may be pa-
rametrized by simple analytic expressions which
may be conveniently constructed to satisfy the
correct threshold behavior for the elastic and in-
elastic channels and which can be analytically
continued into the multisheeted complex energy
plane in order to locate the relevant S-matrix
singularities.

The K-matrix method is most useful, however,
only in the case of two-body final states. For-
tunately, the mmÃ mass spectra" suggest that
above the pion production threshold W, =1217.4
MeV the mN-mmN reaction is dominated by isobar
production. Thus the K matrix formalism is
applicable, "and we are led to consider the fol-
lowing two-body and pseudo-two-body channels
(W,. denotes the threshold barycentric energy of
the ith channel):

channel 1: m p —mN, W, = 1078 MeV,

channel 2: m p -m&, W, =1350+120 MeV,

channel 3: m-p-~n, 8', =1638~600 MeV.

Here & represents the very broad I = 0 S-wave
pion-pion resonance. The photoproduction channel
m p -yn is not included because it is negligible
at these energies, contributing at most only 0.1
mb (Ref. 20).

Thus, the whole mN scattering process may be
described by the 2 && 2 K matrix

f 11. 12

z2 K2a

K» =mN - mN amplitude,

K„=mN- w& (or mN- &N) amplitude,

I7»=wh- m4 (or eN- eN) amplitude,
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and where the total and orbital angular momenta
as well as the isospin indices havebeensuppressed.
The elastic element of the T matrix may now be
written as

Z „=I&'(I—aC')-',

where

I~' = pi[I7»+»Pi2'(I - &p&.a) 'l.
The amplitudes are normalized so that

o,, =4m~'/V', , [',
where &=I/q, and q =barycentric momentum.

Guided by the mmN analyses, "which indicate
that inelastic contributions to m'p scattering are
negligible and that inelasticity in all partial waves
other than the P» may be ignored, we are led to
some significant simplifications. For all the
elastic waves, the K matrix is related to thephase
shift by

(10)

and for the P» a two-channel (vN, w&) or (mN, &N)

representation is sufficient. for a complete de-
scription of the scattering data in the energy range
of interest.

The elements of the reduced K matrix may be
parametrized as analytic functions of the pion lab
kinetic energy" E~ in any way that preserves the
reality and symmetry of the K matrix and that
incorporates the q"" .threshold behavior for a
channel with orbital angular momentum l. A
variety of such parametrizations have been used
in our analysis, including

elastic resonance (form 1) (see Sec. V),

effective range (form 2)
5 -1

z„= P p„(E,/iooo)"-'

polynomial (form 3)
5

g„=g p„(z,/Iooo)"-'.

Here P„represents a free phenomenological pa-
rameter (labeled by I, 4, and I) which must be
determined by the least-squares fit. The poly-
nomial parametrization cannot accommodate a
resonant phase because tan6 cannot have a pole.
This limitation is circumvented by either an
elastic resonance formula or by use of the ef-
fective-range parametrization, which is also very
useful for the determination of scattering lengths
and effective ranges. Its disadvantage is that it
does not permit a phase that changes sign. In all
these parametrizations we neglect contributions
to K from the closed channel described by K»

and approximate the mixing channel by a positive
constant (to satisfy unitarity) for the P» state

2.
K~2 =P6 .

Equations (3)-(12) completely determine the
unitary, nuclear T-matrix amplitude T~. In
practice, a single-channel parametrization is
sufficient for all but the P» partial wave. All
other S and P waves may be described by three
or four variable parameters and the D and F
waves by one or two parameters.

This formalism does not explicitly assume the
validity of any specific model. It does not involve
complicated integral or differential equations and
thus is especially useful in energy-dependent
partial-wave analyses by computer. It does con-
stitute a model in the weak sense that an a priori
analytic structure is imposed on the amplitudes;
a structure in which all singularities other than
the elastic threshold and P» pole (and v&threshold
for P») are ignored. The other relevant sin-
gularities (left-hand cut, inelastic thresholds
except for P», higher resonances, etc. ) are un-
important in the limited energy range considered
here.

Form dependence also enteis into a consideration
of the phase-space matrix p. For the elastic
channel we take

(p, ), = [q(W, p, , M)]"",
where p, is the pion rest mass, I is the nucleon
rest mass, and q(+", m„m, ) is the relativistic
barycentric momentum for two particles with
masses m, and m, and total barycentric energy
W;

q'(W, m„m, )

, [W2- (m, +m, )'][W'- (m, -m, )']. (i4)

For the inelastic channel, the threshold behavior
has been modified to include the effects of in-
stability in the final state. We have assumed that
the unstable particle mass is smeared out in ac-
cordance with a Gaussian distribution and have
adopted the integral form

x exp[ —(m' —m„)'/I'„'],

where / is here the lowest orbital angular mo-
mentum of the final-state coupling to a given
partial wave (the P» couples to the w& P wave
and the cN S wave). In this expression m„ is the
mass and I"„ the width of the unstable state. The
normalization is chosen so that in the stable-
particle limit
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(p,), [q(W, m„m„)]"",
r„-o

(18)

Se = exp(2f 0'i),

where

(r, = argf'(l +1+i') .

(18)

Equation (19) involves the model-dependent Cou-
lomb parameter g. For nonrelativistic scattering
it has the form

(20)

where M„ is the reduced mass of the pion-nucleon
system, and p~ is the laboratory momentum of the
incident pion. A variety of two-particle rela-
tivistic wave equations employing a Coulomb po-
tential interaction can be shown to yield values
for 7l between its nonrelativistic value in Eq. (20)
and its relativistic value

p, +EI
[E (E +2)]' ' '

which results from solving the Klein-Gordon

(21)

as required. The lower limit of integration was
chosen to ensure the absolute closing of the in-
elastic channel at and below the pion-production
threshold (M, = p, +M for v& and M, =2 p, for EN).
Proper threshold behavior is obtained through the
first term in brackets in Eq. (14). The other
factors in the expression for q' were replaced by
nonrelativistic approximations in order to do
away with uninterpretable singularity structure
and to facilitate the integration in Eq. (15). These
modifications preserve the proper threshold be-
havior, which is the only important aspect of
phase space for these calculations. The form of
q' actually used in the representations is given
by

1 [~2 (~ M)2]1/2}21+1

Ideally we would prefer to use an exact rel-
ativistic form for the Coulomb T-matrix element
T~ in order to guarantee unitarity, but in the
absence of this we use an approximate amplitude
which is relativistically correct to first order
in n =e'/Kc and correct to all orders of n non-
relativistically. This is accomplished by adding
the full nonrelativistic Coulomb amplitude to the
single-photon-exchange amplitude, suitably cor-
rected for double counting. Considerable work has
recently been done on the construction of full rel-
ativistic amplitudes for mN electromagnetic scat-
tering, "though in our energy range the refine-
ments prove to be of little consequence (see
Appendix B).

The Coulomb 8 matrix S~ may be written in
terms of the Coulomb phase shifts a, as

equation with a Coulomb potential in the static
nucleon limit.
. For technical consistency, the energy-dependent
representations given in Eq. (8) must be altered
to include low-energy charge effects due to the
penetration of the proton Coulomb barrier by the
pion. For the coupled-channel case, nonrelativistic
scattering theory gives"

ReZ' =p, K,A1 [2gh(rP)/Co]p, Z,$ ',
ImK' =C, ~ p, &~2 C,2

(22)

(23)

where C, ' are the Coulomb-barrier-penetration
factors,

and

C,' = 2vq/[exp(2vq) —1],
C, '(q) =C, ,'(q)[1+(g'/f')], for l e0

(24)

(25)

&LU +& )
(28)

(27)

applied to the nuclear amplitude in order to an-
alyze m+p and m p scattering data simultaneously.
What made this permissible were the large errors
on the cross-section measurements, whichpre-
cluded the possibility of distinguishing the cor-
rections due to different charge states. Random
and systematic errors on recent cross-section
measurements are now so small that errors
resulting from the neglect of full Coulomb cor-
rections are ponderable and as a result it is not

where y =o.5VV16 is Euler's constant. It turns
out that the removal of the Coulomb-barrier fac-
tors leads to virtually no change in the phase
shifts obtained from our analyses. There is also
no significant dependence on the form of the Cou-
lomb parameter g. Thus the modifications re-
quired by Eqs. (22) and (23) are actually not es-
sential, given the present precision of the mN

scattering data.
The nuclear amplitudes defined by Eq. (3) must

be distinguished from the pure hadronic, isospin-
invariant amplitude T~, which would presumably
result if the pion and nucleon interacted only
through the strong interaction. In this case, the
amplitudes for m'p elastic and n p charge-exchange
scattering, TH and T'„, respectively, could be
written as linear combinations of the pure isospin
amplitudes T, and T„describing scattering in the
I=—,

' and I= & states.
Former partial-wave analyses were able to

utilize the relations
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possible to fit m+p and m p data simultaneously
using Eq. (27). Strictly speaking, the Coulomb
potential is off-diagonal in an I-spin represen-
tation because it acts only between m p states. As
a result, Eq. (27) may be modified to include an
isospin-mixing amplitude between I= 2 and I = 2

states. This complication is not explicitly in-
cluded in our analysis.

Since the I= 2 partial waves are best deter-
mined by the w'p data, in our analyses charge
splitting is included phenomenologically by fitting
the 7t'p data separately from the n p data. The
resulting I= & phases are then used in the an-
alysis of the w p scattering data to model the
I= 2 component, after permitting charge splitting
ln the P33 phase shift and the S» scattering length.
This choice deserves some further explanation.

First, if no charge splitting at all is permitted
it is not possible to find an acceptable set of I
= & phases to describe the m p data no matter how

many parameters are used. The reverse pro-
cedure of first allowing the m p data, to determine
values for the I= 2 phases shifts is equally in-
effective. Conversely, if charge splitting is per-
mitted in all I= 2 partial waves we obtain a multi-
plicity of solutions for the I =2 component, all
of equal statistical quality, all differing in the
signs and magnitudes of the peripheral waves and
in the structure of the S„. This ambiguity in the
m p solution arises from the small magnitude of
the I=2 component compared to theI = —,

' component,
a difficulty accentuated by the large errors on the
charge-exchange data.

A unique solution can be obtained, however,
if the parametrization is sufficiently constrained
by allowing charge splitting in only some of the
partial waves. A priori, we do not anticipate
significant charge splitting in the D or E waves.
The mass difference between different charge
states of the ~ is expected to give rise to sig-
nificant charge splitting in the P». Whether the
S wave also participates is basically a matter
for the data analysis to reveal.

A three-step procedure was used to choose the
best phase-shift solution. First, the 7t'p data
were fitted and the parametrization optimized to
obtain the best fit using a minimum number of
parameters. Second, these I= & parameters were
fixed at the values found and used in the analysis
of the m p data. The 1=& parameters were varied
to optimize the solution. Finally, charge splitting
was introduced in different partial waves until
a new optimum solution was established. P33
splitting alone gave XD'=2.31. When the S»
scattering length parameter was allowed to vary
as well, we obtained y~'=2. 08. Permitting
charge splitting in all I=2 partial waves gave

only a, slightly smaller XD' of 2. Because of the
large effect of the S3] scattering length, we feel
charge splitting in both the P33 and the S» is
justified.

Further support for this conclusion comes from
the results of an energy-indepndent phase-shift
analysis of the data in the second resonance region
(300 to 600 MeV). I aurikainen and Tornqvist'
found "anomalously large" isospin breaking in
S», and a more repulsive force in the neutral
charge state than in m'p. A comparison of the
scattering lengths obtained from our fits (see
the discussion in Sec. VII) is consistent with their
conclusion.

It is important to note at this point the purely
experimental sources of apparent I-spin breaking.
These include, first of all, systematic errors
in cross-section measurements. This was the
explanation of the apparent I-spin-nonconserving
amplitude in m p backward scattering reported a
few yea, rs ago." Secondly, as pointed out by
Sogard, " the neglect of external bremmstrahlung
corrections may strongly affect the I-spin re-
lations.

IV. zN SOLUTIONS

'The results of our phase-shift analyses are a
set of phenomenological parameters P„occurring
in Eqs. (11) and (12), which minimize the total

The y' and the full error matrix derived from
it have been defined and discussed elsewhere. ".
Normalization parameters X are included in o(8)
and P(8) measurements at fixed energies and

variable angles as multiplicative factors of the
predicted values of the observable. The equations
relating the phase shifts to the observables are
given in Appendix B.

Initial sets of phase parameters were deter-
mined by performing numerous random starts.
The minimization procedure consists of both grid
and matrix search algorithms. The details have
been presented elsewhere. " The statistical
quality of a solution is mea, sured by XD', the X'

per data point. What we term the basic fit con-
stitutes the best fit to all the data contained in our
data base. For the w'p system, the basic fit gives
a XD'=1.43, and for the m p system we obtain yo'
=2.08. 'These X' values are obtained by simul-
taneously renormalizing all the angular data (vari-
able X for each experiment) during the minimi-
zation, a procedure that contributes a normali-
zation y' of 64 to the total sum of approximately
1172 for n'p and 75 to the total of 1536 for m P.
For purposes of comparison, we obtain a measure
of the internal inconsistency of the data by fixing
A. =1. The unrenormalized XD' are 2.0 and 5.0 for
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m p and w p, respectively.
The pN solutions we obtain are unique and para-

metrization independent, i.e. , we find the resulting
phase shifts are virtually identical when represen-
ted by a.ny of the equations in (ll). In view of the
stability of these phases to the elimination of high
y' data and their form independence, we prefer to
focus our attention mainly on the reduced data
base and the pruned solutions.

We label our solutions as follows: AO and 80
refer to the basic fits (to all the data) for v'p and
m p scattering, respectively. A1 denotes the
pruned solution which results when the P33 is de-
scribed by a Lichtenberg T-matrix pole formula
(see Sec. V) and all other pha, ses are parametrized
by a polynomial or inverse polynomial in E~. A2
denotes the pruned solution resulting from an ef-
fective range (or form 2) parametrization of all
the phases, and A3 denotes the pruned solution
we obtain when all. the partial waves except P33
are represented by a, polynomial in Ez (form 3).
Solutions 81, 82, and 83 are the 7t p pruned so-
lutions defined in a similar way. From time to
time we shall refer to the solution collectively as
solutions A (or B). All pruned solutions give
gD' =1.0. Other relevant statistical information
is presented in Tables II and III.

There are often sources of systematic error
not taken into account or underestimated by the
experimentalists. We have checked the sensitivity
of the fit to the normalization errors (typically
on the order of 5%) by floating them, that is, we
set AX= 100%. Then gD' drops to 1.36 for w'p with

no significant change in the values of the phases.
For the p p system, on the other hand, yD' drops
to 1.85, and the phase shifts adopt the same
structure with significantly different magnitudes.
There are only small changes in the S and P waves
but 20-30 % or more changes in the D and E
waves.

In order to explore the stability of the solution,
we have pruned the data base at various levels.
It is important to eliminate inconsistent data for
two reasons: Not only do they increase p' greatly,
but they can also produce large changes in the er-
ror matrix even if the bad data do not affect the
solution parameters. Qur procedure is to elim-
inate all data points contributing a g' greater than
some minimum (six for w'p, five for Yj p) to a, giv-
en data set. The data are then renormalized and
the parameters are re-searched to locate a new X'
minimum. We find that the removal of only 4/q of
the p'p data points reduces gD' to 1 without alter-
ing the S and P waves more than 2/0 at 350 MeV.
The majority of the data, removed are v'(8): only
three o'~ data are dropped. The m p data are gen-
erally of lower reliability, and a correspondingly
larger number of data points must be removed
(12/o of the data points) to obtain a solution with
50% reliability. Again, in spite of the large
amount of data removed, the phase shifts are vir-
tually unaffected by the data pruning. The data re-
moved" from our data base are listed in Tables
IV and V.

The fit to the o~ data is largely determined by
the Carter et at. measurements (T5 and T6); the

TABLE G. Compilation of 7(N energy-dependent solutions.

Solution X-matrix par ametr ization Notes

~'p analyses
AO

A1

A2

A3

~ p analyses
BO

B1

B2

1.03

1.00

1.04

2.08

1.00

0.98

1.01

Besonance pole + background

Resonance pole + background

Inverse polynomial (form 2)

Polynomial (form 3)

Resonance pole + background

Resonance pole + background

Inverse polynomial (form 2)

Polynomial (form 3)

Basic fit to full data base

Pruned solution, exclude X,2~ 6

Pruned solution, exclude X~ ~ 6

Pruned solution, exclude X, & 6

Basic fit to full data base,

S3& (SI ) + P33 splitting

Pruned solution, Ssf (SL) + P33 splitting

(exclude g~2 ~ 5)

Pruned solution, Ssg(SL) + P33

splitting, exclude X~ ~ 5

Pruned solution, S3&(SL) + P33

splitting exclude X~ ~ 5

denotes the critical value of XD2 above vihich data were excluded in the pruned fits . .
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TABLE III. Quality of energy-dependent fits to the pion-nucleon data.

Solution

No. of free
parameters in

the fit X2 XD

gb
Xg)

P+(6) Ref'(0)

7t'p analyses
AO

No. of data
points

A1
No. of data

points

14

1171.6

758.6

1.47

1.03

2.6

0.92

28

1.43

577

1.07

554

1.57

158

0.99

149

0.62

0.56

No. of free
parameters in

the fit X Xg)
2 Oj Oz

0 0 (B)
XD

cr'(B) P (B) P (B) Ref (0)

7t p analyses
BO

No. of data
points

Bl
No. of data

points

22

22

1536.2 2.08

643.8 1,00

2.41

0.88

26

1.85

1.97

10

2.37

372

1.12

320

1.98

101

0.76

87

1.82 0.43

190

0.98 0.35

170

0.43

31

0.28

31

For definitions of solutions, see Table II.
here represents the X per data point for a given data type.

TABLE p7. Data removed in pruning: solution AO. DXS= differential cross section; TXS=total cross section; POL
= polarization.

Z (MeV)

59.5
83.5
94.5

100.0
113.0
114.1
142.0
142.9
170.0
189.0
194.3
200.0
236,3
242.8

247.0
247.5
277.4
282.8
290.2
300.2
306.0
310.0
317.0
345.0

Data type

DXS
DXS
DXS
DXS
DXS
DXS
DXS
DXS
DXS
DXS
DXS
DXS
DXS
POL

POL
DXS
DXS
TXS
DXS
POL
POL
DXS
TXS
TXS

No. of data
points

17
11

11
10

5
17
14
10

6
15

7
14
17

25
13

9
1

12
16
25
23

1
1

2a
XD

2.95
3.55
3.01
1.48
1.76
5.37
2.12
1.91
2.97
3.05
0.91
2.51
1.28
3.66

1.45
2.38
3.05
7.81
2.59
2.43
1.68
2.23

34.90
7.19

0.92
0.88
0.99
0.99
0.93
0.98
1.30
1.01
0.96
0.83
1.00
0.97
1.00
0.93

0.86
1.05
0.95

0.98
1.10
1.02
1.04

0.03
0.09
0.07
0.09
0.09
0.07
0.09
0.007
0.04
0.09
0.007
0.04
0.007
1.00

0.15
1.00
0.05

0.05
1.00
0.15
0.06

147, 155.4
22.5
90.5
22.5
16.7
90.5, 112.4

126.7
35.4
32.1, 135.3
45.0
73.4
26.3

138.3
117.4, 151.7, 161.7,
171.9
98.7
90.1
71.1, 153.9

167.9, 175
180
67, 115.7, 123.7

108, 165

Reference

D15
D23
D12
D27
D47
D12
D40
D12
D4
D35
D12
D43
D12
P9

P8
D53
D32
T6
D32
P9
P8
D55
T7
T5

here represents the X per data point for a given data type.
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TABLE V. Data rexnoved in pruning: solution BO . DXS= differential cross section; TXS= total cross sections; POL
= polarization; CX= charge excharge .

(MeV) Data type
No .of data

points 2 a
XD Reference

35.0
39.0
59.5

76 .7
98 .0
98 .0

114.4
119.3
152.0
164.7
165.9
170.0
191.9
200 .0
206 .8
217.0
219.6
220 .0
225.0
229 .0
242 .8
247 .0

270 .0
288 .0

291.5
306 .0

310.0

317.0
318.0

333.5
334.0

337.0
337 .0
348 .8

DXS
DXS
DXS

TX8
TXS
DXS
TX8
DXS
DXS
TXS
TXS
DXS
DX8
DXS-CX
DXS
DXS
DXS
DXS
DXS
PO L
PO L
POL

DXS

DXS
DX8

DXS
POL

DXS

TXS
POL

DXS
DXS

POL
DXS
POL

10
10
18

1
1

13
1
5

19
1
1
8

10

5

10
8

12
10

10

6
10

30
7

]4

1.56
1.27
5.04

12.3
5.25
2.52
7 .34
6.13
1.30

18.7
7 .48
1.78
2.25
5.19
2 .54
1.42
1.35
1.93
4.25
2.11
1.44
2.03

4.39

3.25
6.37

2 .23
2.71

6 .72

6
1.98

8 .94
8 .38

1.65
8 .99
1.81

1.01
1.00
0 .90

0.99
. 1.02

1.11
0 .99
0.99
0 .97
1.03
1.00
1.07
0 .94
0 .95
0 .97
1.19

1.00

1.08
0 .95

1.00
0.75

0 .98

0 .98

0 .92
0 .82

0.82
1.07
0.90

0 .03
0 .03
0 .03

0 .02

0.007
0 .04

0.15
0 .007
0 ~ 10
0.05
0 ~ 05
0.007
0 .05
0.10
0 ~ 10
1.00
0 ~ 15

0.007

0.10
0 .05

0 .007
0.15

0.03

0.10

0 .04
0 .05

0.10
0.10
1.00

53.1, 157.7
75.5
47.2, 69.8, 101.1,
110.9, 120.3, 146.9

82, 130.6

53.7, 136.2
38, 90.5, 118

38 .3
89.3, 138
60, 87.7, 147.1
58 .7
65 .7
54.4, 79 .1

110, 149.3
168.5
166, 176.3
156.9

88 .6, 88 .2, 90.6,
162
55.1, 68 .3, 80.6,
138.9
87.7, 129.3
69.4, 153.9, 167 .9,
175
69.3, 81.8, 145.5
99.6, 101.9, 103 .5,
111.1
54.4, 66 .8, 78 .5,
84.1, 89 .6, 94.9,
109.8 ~ 147, 151.6,
155.2, 158 .9, 164.2,
166

66.8, 92 .6, 99.3,
111.8, 120.5

108.1, 149.3
71.4, 101.4, 154.6,
168.2, 175.5

128.1, 178.9
60, 109 .9, 129.1

109.3, 136.1

D16
D18
D15

T6
T8
D20
T6
D12
D39
T6
T4
D4
D12
D34
D8
D29
D12
D5
D34
P4
P9
P8

D12

D43
082

D12
P8

D49

D8
D32

P4
D34
P9

XD here repres ents the X2 per data point for a given data type.

other values have little impact except to increase
The poor fit to these data in AO is due so lely

to two Carter et al . data points and the datum of
Davidson et al. (T'I) at 317 MeV (the other David-
son et al . data we re eliminated prior to the anal-
ysis). The bulk of the poorly fitted or data lies on
the high- energy side of the resonance peak. More
than 20%%up of these data contributed a g~' greater

than five and w ere eliminated in the pruning. The
Bugg et al. a'„data (T4), on the other hand, are
quite well fitted (see Tables I and III). All of the
Davidson et al . Od~ data were eventually eliminated
in the pruning.

The pre cise low -energy m'p dif ferential cro ss-
section data of Bertin et al (D9) are wel.l fitted in
AO, whereas the data of Bussey et al. (D12) and
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Gordeev et al. (D32) are not well represented in
either AO or BO. Our fit faithfully reconstructs
the o'(6) measurements of Comiso et al. (D14),
Duclos et al. (D19), and Jenefsky et al. (D36) but
is not in full agreement with the data of Bayer
et al. (D7), Berardo et al. (D8), or Hauser et al.
(D34).

The new measurements of P'(6} by Amsler et al.
(P2 and P3), Alder et al. (Pl), and Dubal et al.
(P6) are also well fitted in our analysis, whereas
the older data of Gorn et al. (P8 and P9) are found
to be inconsistent with the other data and, in fact,
have little impact on the values of the phase shifts.

In Fig. 2 we exhibit our fits to some of the total-
and differential-cross-section and polarization
data outlined in Table I. In view of the large
amount of data used in the analysis it is not feas-
ible to show a comparison between the calculated
and experimental observables for all data points.
Plotter outputs of data not exhibited are available
on request.

The phase parameters used in the resonance fits,
A1 and Bl are given in Table VI. We have exam-
ined with care the variety in the structure of the
partial waves and in the statistical quality of the
fit when different numbers of free parameters are
used to fit the data. This is required because, in
general, the experimental data fluctuate around
the true value of the observable. If more terms
are included in the polynomial series than is op-
timally required, we effectively fit the noise in
addition to the physical observable. In our usage,
an optimum parametrization is obtained when the
addition of an extra parameter in any partial wave
leads only to a small improvement in the p',
whereas the deletion of any given parameter leads
to a significant deterioration in the fit. We regard
the parameters given in Table VI as yielding the
most economical description of the ~N scattering
data in the first resonance region that has been
made to date.

The root-mean-square errors on the parameters
in Table VI are obtained by taking the square roots
of the diagonal elements of the error matrix. This
error matrix is modified to include the presence
of normalization parameters. The relevant form-
ulas are given by Amdt and Roper." The errors
are to be interpreted as the change ~„in a given
parameter which leads to a g' increase of one
when the given parameter is fixed at the value
P„~~„, and all the other parameters are
searched for a new minimum. A word of caution
regarding the interpretation of these errors is
required, however. They depend on the validity
of the quadratic approximation for the analytic
behavior of g' at its minimum, on the specific
parametrization, and on the completeness of the

data base. The Z' space is generally pock marked
by many local minima, making the range of validity
of the quadratic approximation quite small, and
thus an uncritical interpretation of the errors is
unacceptable. When an accurate estimate of the
error on a given parameter has been important
(e.g. , the error on the n, pole position}, we have
made it a point to check and verify the quoted er-
ror by making the appropriate &'-parameter plot.

The phase shifts for solutions Al and B1 are ex-
hibited graphically in Figs. 3(a)-3(n). The errors
on these phases, obtained from the full error ma-
trix, are presented as error bands, giving the
maximum variation in a particular phase which
is consistent with a g' change of one. The maxi-
mum errors on the S waves average about 1/o and
roughly 3% for the nonresonant P waves. Note
that the error on our representation for the P33,
at most only 0.1/q, does not show up on the scale
of Fig. 3(h). In Fig. 3(b) we present the S» phase
determined by the best fit to the m'p data, denoted
S3$ and the S» phase det ermin ed by the z p data,
denoted S». A similar notation is followed for the
P33.

We truncated the partial-wave expansion at E
waves, though only S, P, and D waves are actually
required to obtain a good fit to the full data base.
G waves are typically 0.2' or less. Unfortunately,
the higher partial waves modify the results slightly
because of significant interference terms with the
lower partial waves. Most strongly affected are
P3] and P», which increase by a few standard de-
viations when Q and 8 waves are included in the
fit. Peripheral-wave errors are usually quite
large, especially near the end of the energy range.

We retained only as many parameters in solu-
tions A and B to describe the D and F waves as
were required to optimize the solution; additional
parameters may present a more complicated en-
ergy behavior but do nothing to improve the overall
fit. The signs and magnitudes of the D and E
waves are uniquely correlated to the signs and
magnitudes of the S and P waves, as long as all
the parameters are allowed to vary freely.

In Figs. 3(a)-3(n) we present our S-, P-, D-,
and E-wave phase shifts from solutions A1 and
B1 together with those obtained from the recent
energy-dependent- analyses of Rowe, Salomon,
and Landau" (hereafter, RSL) (and other refer-
ences as indicated). These authors report had-
ronic phases obtained by fitting the single-energy
phases of previous analyses, supplemented by re-
cent data. Breit-Wigner formulas incorporating
a polynomial background were used in their para-
merizations, no charge splitting was included,
and no E waves were determined. To facilitate
comparison, we have made the electromagnetic
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corrections to our phase shifts proposed by Trom-
berg et al." It is worth pointing out that these
corrections are the same size or larger than the
errors on our phases in most cases. The nuclear
and hadronic phases differ roughly by a correction
of order n.

Also shown in Fig. 3 are the results of the en-

ergy-independent partial-wave analyses of the
SIN group (Pl, P2, P3, and P6) covering the en-
ergy range 166-308 MeV and the most recent re-
sults from Saclay. ' The SIN phases were obtained
using the Carter, Bugg, and Carter data' (CBC)
supplemented by the new SIN polarization data.
Again, in order to facilitate comparison we re-
moved the appropriate Coulomb corrections to ob-
tain the corresponding nuclear phases. We note
that the SIN results render the CBC phases obso-
lete.

It is well known that the peripheral waves may
ponderably affect the values of the lower partial
waves by virtue of interference terms in the am-
plitude. Parious theories yield values for these
waves which may be used as input into our pro-
grams. In particular, CBC use the theoretical
predictions of Donnachie and Hamilton (DH)" as
fixed input. These phases are shown in Figs.
3(d)-3(n). Note that the signs of these waves agree
with the signs of the D and I' waves given by so-
lution A1. We also have access to the low-energy
results of Alcock and Cottingham (AC)." These
predictions have been incorporated into our anal-
yses by fixing first the I' waves and next both the
D and I' waves, at their theoretical values, and
minimizing g' with respect to the 8- and P-wave
parameters. We find that there is sufficient flex-

TABLE Vl. 7tN phase parameters for solutions A1 and B1.

Phase shift

~'p analyses

Form" Phase shift

7I. p analysis

Pn Form"

Ss&

Q

ss

Dss

Dss
Fss
Fs~

-4.1812
13.4960

-21.2810

-0.5339
0.6773
0.1913

—0.1331
0.1420

—. 0.3288
-0.0729
-0.0105

0.0487

m„= 1210.7 + 0.08 MeV
I'„= 99.21 ~ 0.23 MeV
mo—- 1210.3 + 0.36 MeV
I'0-— 108.0 + 0.52 MeV

+0.0570
+0.5511
+1.3389

+0.0178
+0,0890
+0.0028
+0.0097
+0.0385
+0.1278
+0.159
~0.0130
+0.0167

Ss&

P11

P~s

Fi7

-3.9814
14.253

-22.842
0.2317

-0.1642
0.4765

-1.6156
2.9856

-2.0847
23.9440

-92.069
142.48

1.8736
-0.4019

1.6015
-2.7480

0.1346
0.3851
0.2650

-0.4077
0.0912
0.0364

+0.0217

+0.0118
+0.0395
+0.0077
+0.1047
+0.2840
+0.0346
~0.2806
+1.3588
*2.8800
+0.0461
+0.0197
~0.1580
+0.3742
+0.0554
+0.1833
+0.0604
+0.1931
+0.0096
+0.0173

LP„ is the change in P„ that increases X by one vrhen all other parameters are searched.
"Refers to the type of phase-shift parametrization; see Eq. (11) in the text. No corrections of the form, Eqs. (22)

and (23), are retained.' For the Pss @re utilize the resonance form given in Eqs. (32)-(35) with a form 3 background.
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ibility in the parameterization to permit the E
waves of either theory to be incorporated into the
fit without significantly altering the S or P waves.
However, the attempt to incorporate both the D
and X waves predicted by these theories leads to
a degeneration in the quality of the fit. It is worth
pointing out that E» and E» are both about one or-
der of magnitude larger than E35 and EQV and that
these latter phases are both consistent with zero.

ln any energy-dependent partial-wave analysis
there are always doubts concerning the theoreticaI.
bias due to an overly-restrictive parametrization.
One way to check this is by comparing the energy-
dependent solution with a single-energy analysis
performed over the same energy range and the
same data base. This allows for a, check on the
validity of the errors obtained from the error ma-
trix.

To this end energy-dependent analyses were per-
formed on the mA~ data. over small energy bands
centered at the energies given. in Tables VII and
VIII. These enex'gy bands wex'e selected to optim-
ize the variety and quality of the data in as small
an energy range as possible. At each energy, the
initial phases, as well as their local energy de-
pendence, were acquired from solutions A1 or 81.
Then the P, parameters we. re varied to readjust
the relevant phase up or down as required to mini-
mize g', It was usually sufficient to vary only the
S- and P-wave P, parameters to obtain a good fit,
but in some cases D and E waves as well had to be
included,

The results are plotted in Figs. 3(a)-3(n). The
agreement with the energy-dependent solutions is
seen to be very good. No systematic differences
occur.

TABLE VG. Results of 7r'p energy-band analyses.

~Z, (MeV)
No. of data

points x'(A1) ' x' ~(I'3i) ~(&)3)

30-40
50-60
78-84
94-110

118-125
135-143
140-162
165-176
184-200
200-230
235-255
260-301
300-310
315-350

39
66
58
65
48
86
96
83
65
48

181
159
165
86

16
58
54
64
32
65
73
80
64
48

179
141
159

68

+ 0.09
+ 0.13
+ 0.61
+ 0.13
+ 0.40
~ 0.44
+ 0.53
+ 0.72
+ 0.50
+ 0.29
~ 0.19
~ 0.14
~ 0.26

0.17

-3.79
-4.99
-7.26
-8.27
-8.89

-10.31
-11.25
-13.50
-14.48
-16.27
-17.88
-18.95
-20.40
-21.41

-0.80
-0.98
-1.50
-2.20
-2.75
-3.37
-3.77
-4.50
-4.78
-5.18
-7.13
-7.50

7 e71
-8.98

+ 0.06 3.33 + 0.06
~ 0.05 6.63 + 0.09
~ 0.16 13.94 ~ 0.38
~ 0.10 22.82 *0.05
+ 0.32 32.92 ~ 0.09
~ 0.34 47.71 *0.10
+ 0.36 57.39 + 0.16
+ 0.44 73.92 + 0.40
+ 0.48 92.53 + 0.43

0.41 107.16 + 0.16
0.31 120.62 + 0.15

+ 0.17 130.67 ~ 0.08
~ 0.18 135.56 ~ 0.43
+ 0.26 139.80 + 0.10

X2(A1) denotes the X2 for solution. A1 in the indicated energy
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TABLE VIH. Besults of ~-p energy-band analyses.

EI, {MeV)

35-60

76-98

98-11S

127-141

150-160

184-194

220-230

240-256

2S5-300

300-310

330-350

No. of data
pOlnts

20

25

50

109

138

54 21

20

78

38

105

127

296 160

218 104

7.07
+0.94
8.26

+0.58
7.34

+0.72
8.85

+0.98
8.81

+0.34
10.73
+1.36
10.80
+1.04
11.28
+0.56
1.1.57
+0.29
10.36
+0.33
12.67
+1.67

-6.28
~4.37
-8.30
+2.33
-8.25
+4.50

-10.49
+4.58

-16.65
+3.03

-14.91
+1.34

-19.33
*0.87

-20.20
+0.88

-24.06
+1.46

-23.56
+0.46

-21.80
+2.34

-O.S6
+0.99
-0.85
+0.34
-1.02
+0.49
-2.35
+0.94
-1.21
+0.65
-0.65
+0.99
-3.22
+0.28
-3.82
+0.78
-3.89
+0.18
-4.47
+0.24
-4.60
+0.43

7.0,5
+1.75
17.52
+ 0.64
27.21
+0.77
44.01
+1.24
59.32
+0.65
92.90
+2.40

111.47
+1.34

120.08
+0.78

132.74
+0.67

134.52
+0.68

142.11
+1.36

-1.73
+0.28
-2.40
+0.24
-1.90
+0.29
-0.53
~0.58
-1.45
+0.63

0.20
+1.56

5.73
~0.72

7.84
~1.11
13.93
+0.46
18.07
+0.33
26.29
+1.13

X {B13 y & {S(g) & (Sag) & {J'gs) ~ {&33} ~ {&gg)

V. RESONANCE PARAMETRIZATION

In the absence of a widely accepted unstable par-
ticle field theory, phenomenological resonance
formulas are used to describe the phase shift of a
resonant state, taking into account the analytic
properties expected from, S-matrix theory. Based
on analogy with the Breit-Wigner formula, the
resonance mass m~ is typically defined as the en-
ergy at which the phase shift passes through 90',
l.e.]

(28)

where &„ denotes the resonant phase shift. The
resonance width I'~ is then defined by the corres-
ponding energy derivative:

It is conventional to extract the resonance para-
meters by fitting Breit-Wigner formulas to phase
shifts or to total or elastic partial-wave cross-
section data. An alternative method is to find the
energy at which the "speed" of the amplitude in an
Argand diagram is maximum. In any case, these
are clearly model-dependent definitions, and it is
well known that the resonance mass and width
found by applying Eqs. (28) and (29) are very sen-
sitive to the exact phase-shift parametrization
when I'„/m„ is large, and substantial background
is present. This feature has recently been em-

phasized by Cheng and Lichtenberg, "who have
shown. by comparing equally good fits to the data
that different parametrization of the Lh, resonance
occurring in the P» state in gN scattering yield
a spread in the resonance mass exceeding 10 MeV
and a spread in the width of more than 20 MeV.

It is significant that the position of the reson-
ance pole in the complex energy plane, however,
is relatively insensitive to the parametrization.
This is especially notable in that the pole position
and its residue are the fundamental quantities oc-
curring in 8-matrix theory. Usually the position
of the resonance pole is determined by a three-
step process. First a single-energy analysis is
made of the scattering data. Next the single-en-
ergy resonant phase is fitted with one of many
continuous- energy relativistic Breit-Wigner for-
mulas. Finally, an analytic continuation into the
unphysical sheet is performed in order to locate
the pole. This three-step procedure may be re-
duced to one step by exploiting a resonance form-
ula proposed by Lichtenberg' and by conducting an
energy-dependent partial-wave analyses of the
data.

In his parametrization of an elastic resonance
with background, the mass and width parameters
appearing in the scattering amplitude locate the
pole position directly so that analytic continuation
is not necessary. In an energy-dependent analysis
another advantage is that reliable errors based on
the error matrix can be easily assigned to the pole
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parameters.
In what follows we present a brief outline of the

Lichtenberg resonance formula; for more details
we refer the reader to the references. It is as-
sumed that both the resonant and background parts
of the 8 matrix describing the resonance are unit-
ary and enter as the product

R B&

where S and Ss denote the resonance (R) and
background (8) S matrices, respectively. For an
elastic resonance the E-matrix element is then

ritten

K~+K~K (31)

r/2
R m

(32)

where KR and K~ are the resonance and background
K matrices defined in the usual manner in terms
of TR and T~.

In the parametrization proposed by Lichtenberg,
the resonance K matrix is written

m„= 1210.70 +0.16 MeV,

I „=99.21+0.23 MeV,

for the 6", and

m0 = 1210.3 +0.36 MeV,
(38)

I'0 = 108.0+0.52 MeV,

for the Ao

The masses and widths of the A resonances de-
termined by our analysis possess errors about —,

'
as large as previous determinations, ""represen-
ted in Figs. 4(a) and 4(b). These errors were
carefully checked from a detailed study of the &'

contours and are defined as usual by g' = g „'+1
for a one-standard-deviation change in any para-
meter. The small errors on the pole positions,
as compared to other studies, may be attributed
to our large data base and the relatively small
number of free parameters. These other deter-
minations of the ~ pole position do not result from
a direct analysis of the scattering data but by fits
to the P33 phase shifts of Carter, Bugg, and Cart-

where W is the barycentric energy of the pion and
nucleon in MeV and the complex pole position of
the resonance is

l212.5

I 2I2.0

6++ MASS

ho MASS

m*=m —x(r/2) . (33)

The threshold behavior is assumed to arise solely
froID the background contribution

I 2I I.4

X

th
12I0.9

o
t) - 34

K~ =K„(p,*-1)+p,*KB, (34)
I 2 I0.4

where p,* is the normalized phase-space factor

p,*=
p( l)I/p( m), (33)

and Z~ is a phenomenological energy-dependent
background term. Note that in this formulation the
T matrix has a pole at 5 =m*, independent of the
form of Z~. We have chosen to parametrizeZ~as
a polynomial or inverse polynomial, as in Eq. (11).

For incident pion laboratory kinetic energies less
than 350 MeV, only a single resonance occurs in
vN scattering, the n, (1232) or Fermi resonance,
occurring in the P33 state. We denote the pole pos-
itions of the relevant charge states of this reson-
ance by

1209.8

I 209.3

I I I.O

108.7—

I06.3

X

x
I04.0—

CI

b4 WIDTH

iV+ WIDTH

35

SSc

35b

35 c)

34

36

36

m,*,=m„-z(r„/2),

m,*=m, —i(r,/2),
(36) 99.3

97.0

36' 35b 54

5e

for the d" and 6', respectively.
We find that the best fit to the scattering data is

obtained for a P» phase described by two back-
ground parameters (see Table VI). Solutions, Al
and. 81 possess T-matrix poles at

FIG. 4. Comparison of our P33 resonance parameters
with previous determinations. The numbers near the data
points are reference numbers. (a) 6 mass. (b) 2 width.
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er.' Neither the mass nor the width exhibits any
significant dependence on the inclusion of Coulomb
threshold effects, or form dependence of the
phase- space factor or background phase. For
these reasons we advance Eqs. (37) and (38) as the
most precise determination of the g pole positions
made to date, and in harmony with other authors,
it is our contention that the quantity of fundamental
theoretical interest is the resonant pole position,
not the resonance parameters obtained from Eqs.
(28) and (29).

Using our parametrization for the P» phase
shift it is a simple matter to find the resonance
parameters defined in Eqs. (28) and (29) corre-
sponding to our values for the T-matrix poles:

and

m" =1230.6+ 0.2 Mev,

r,"=113.2~ 0.3 Mev,

m'„= 1232.5+ 0.3 MeV,

I'„=121.3+ 0.4 MeV.

(39)

(40)

m, -m++ =- 0.40~ 0.39 MeV,

I', —I'„=8.79+ 0.5V MeV.
(41)

These results may be used to emphasize the need
for care in uncritically accepting the reported
values for the mass and width of a resonance as
the "real" mass and width. The 20-MeV differ-
ence between m„and Re(m*) shows there is clearly
a danger inherent in testing, for example, any
broken-symmetry mass relation by uncritically
adopting the reported values for the 6 mass, as
they usually refer to the parameters of a modi-
fied Breit-Wigner expression rather than the pole
position.

The previous results may be used to calculate
the ~0-~'+ mass difference. From Eqs. (3V) and

(38),

%e expect I', & I'+, due to Coulomb-barrier repul-
sion between the charged pion and the proton.
Though m )mo is qualitatively consistent with

simple self-energy calculations, it contradicts
the general rule that the baryon with the lower
charge is always the heavier one (witness the ,-'-'
octet, for example). Theoretical predictions of
the mass difference based on quark-model as-
sumptions do not favor the results obtained here.
In Table IX we present a compilation of theoretical
predictions for the mass and width differences.

Calculations of the decay rates for particular
charge states of the 6 resonance are clearly in
short supply. Several attempts have been made
to calculate 6-n. +N in the context of the non-

lt' t'
q k d l ' dth MITb g d-

el." Both methods give F(h-v+N) ='I0-80 MeV.
Due to inconsistencies in the data, a critical test
of these theories is not yet possible.

Though the mass and width differences we ob-
tain are not sensitive to the parametrization of the
amplitude, they are sensitive to the way charge
splitting is incorporated in the nonresonant par-
tial waves. In a previous publication we allowed
for charge splitting in all partial waves and found

~,-~„=0.9~ 0.54 MeV,

r, —1.„=5.4+ 0.49 MeV.

Though this fit violates I-spin conservation in all
partial waves, it does lead to an appreciably better
fit to the total-cross-section data (XD'=1.5).

One built-in limitation of our method of deter-
mining the 6"-6'.mass difference is that with

such a large data base we include data far from
the s].ngularity as well Rs data near the singulari-
ty. In the least-squares fit this faraway informa-
tion may distort the resonance shape causing a
shift in the pole position. To get some estimate
of the size of thi. s shift it is useful to fit the total-

TABLE IX, Compilation of theoretical values for the 6"-6 mass and width differences.

M() -M,+ (MeV) Assumptions

2.4
-3.38
-3.67 ~ 0.73

0.96
0.3
0.61
0,8

-1.0

Tadpole and baryon-octet self-energy diagrams
Born term
Broken-SU(3) pr ediction
Quark model: harmonic-oscillator potential
Quark model: perturbed harmonic oscillator
MIT bag model
Charmed-quark model
Dispersion relations

r, r„(MeV)
5.2
3.5

Assumptions

Dispersion relations
Penetration-factor model

Reference
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cross-section data alone (keeping all nonresonant
phases fixed at their best values). The results,
including the y'/datum, are

m,*,= (1210.6+ 0.23) ——,'i(100.03+ 0.40), ya' = 0.84

its position in the complex energy plane and two
to describe the complex residue of that pole. In
the vicinity of the pole, the T matrix may be writ-
ten as

mo = (1209.0+ 0.28) —~i(104.97+ 0.55), XD =1.5.

(43)

T(w) =

where

(47)

m,*,= (1210.81) ——,'i(99.17) MeV,

m+ = (1210.95) ——,'i(108.29) MeV.
(44)

The pole is obtained as a zero in the determinant
of the matrix 1 —ip'l'IYp'l' on the unphysical sheet.
These values a,re consistent, within errors, with
the results presented in Eqs. (37) and (38). How-

ever, it is difficult using the procedure of analytic
continuation to assign meaningful errors, a clear
advantage in favor of the Lichtenberg formula.

Finally, we have performed the Coulomb cor-
rections of Tromberg et al.."to the P» phase shift
and refitted the phase in order to determine the
purely hadronic masses and widths of the 6 reso-
nances. The results

m„*, = (12O9.O~ O.17) ——,'i(99.32+ 0.31) Mev,

mf = (1211.0+ 0.40) ——,'i(106.9+ 0.74) MeV,
(45)

show that some unaccounted for correction still
remains to be analyzed and points up the uncer-
tainties associated with such calculations. The
errors on the values given in Eq. (45) were ob-
tained by folding in quadrature the errors quoted
in Eqs. (37) and (38) and the errors from the de-
termination of the phase-shift parameters for the
hadronic phases.

Celmaster ha. s predicted the existence of a
J =-,.' elastic resonance in the S» partial wa. ve at

m(S») =1335+ 60 MeV= 330 MeV for Ez,
I'(S„)~ 50 MeV. (46)

%e have parametrized the S» partial wave using
the Lichtenberg form in order to search for evi-
dence of such a resonance, with no success. Such
a resonance, if it exists, must be too narrow to
show up in the present data. .

In S-matrix theory a resona. nce pole is defined
by four fundamental parameters: two to describe

Fitting the Carter oz data alone gave mo 1209 4,
and fitting all the non-Carter data alone gave m,
=1211 MeV + 0.48. The difference between Eqs.
(37) and (43) emphasizes the role of the angular
data in shifting the pole position.

As an independent check on Egs. (37) and (38),
we have ana. lytically continued the P„partial wa, ve
described by a form 2 polynomial in order to lo-
cate the poles:

g= I'IS, (m) I,

y =argISa(m)],

(49)

(50)

where S~ is the background S matrix. %e observe
that the imaginary part of the residue arises from
the existence of the background amplitude. Our
work permits us to determine the residues for
both the 6' and 6" poles. For fits A1 and B1,

g„=101.12~ 0.30 MeV,

p„, = -46.67+ 0.50',

g, = 111.60+ 0.30 MeV,

P, = —48.83+ 0.50'.

(51)

(52)

A compilation of phenomenological values for the
residue of the 4 resonances pole is given in Table
X. It is clear from this table that the residue,
like the pole position, is essentially a model-in-
dependent quantity. This does not amount to a
model-independent determination of the back-
ground because in another parametrization of the
resonance the residue would be related to the
background in a different way.

In general we may write

+AN7r &P m g (53)

where I"„(W) is a "reduced" energy-dependent
width from which the 4¹coupling constant g~~,
and the phase-space factor q' have been removed.
In order to evaluate Eq. (53) and determine a value
for the hNp coupling constant we must assume
some model for the 6- pN transition. The most
general gradient coupling of the 6 to the pion
field gives

1„(W)= (54)

where E is the barycentric energy of the nucleon.
Using these results we obtain

(48)

is the residue. The residue is related to the back-
ground phase in a manner that depends on the way
the resonance phase is parametrized. For a reso-
nance represented by the Lichtenberg form, Eqs.
(32)-(35), we have
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TABLE X. Phenomenological determinations of the residue of the 6 pole.

g (MeV) @ (MeV) Be(R) Im(B) State Reference

101.12 + 0.30 -46.67 + 0.50 -34.70 + 0.40 36.8 + 0.40
111.60 + 0.30 -48.84+ 0.50 -36.'70+ 0.40 42.0 + 0.40
104.2 to 104.9 -47.2 to -45.4 -35.4 38.2 to 38.7
110.1 to 111.0 -48.7 to -48.9 -36.2 to -36.6 41.5 to 41.7
106 -48 -35.5 39.4
104.4 to 107.2 -46.2 to -45.6 -36.1 to -37.5 37.7 to 38.3
104.7 -47.3 -35.5 38.5

'Three different parametrizations were used to give the ranges shown.
"6means no distinction was made between different charge states.' Five different parametrizations were made that give the ranges shown.

p++

gD

g++

gD

gb

A1
81
35
35

51 c

36

g~++ ~,.'/4v = (0.41 —i0.08)p, ',
g~o„,'/4v = (0.41 —i0.09)p, ',

which may be compared to the value obtained by
Ols son, "

g~„,'/4n = (0.28+ 0.015)p. '. (56)

Henyey and Kane' have argued that the & residue
can be simply understood as a background effect
due to nucleon exchange and the opening of inela, s-
tic channels at 1600 MeV.

VI. PREMCTIGNS

Qne distinct advantage of an energy-dependent
representation of the scattering data as opposed
to an energy-independent analysis is that it allows
for reliable predictions of observables not exper-
imentally measured within the energy range of the
representation, even when the data, set is incom-
plete. Gutside this energy range, on the other
hand, the continuous-phase representation will
generally fail to extrapolate properly.

It is well known" that the nonrelativistic n.N
scattering amplitudes may be directly recon-
structed from the experimental data if the differ-
ential cross section, final-proton polarization,
and the two spi. n-rotation parameters R and A are
precisely measured at the same energy and angle.
The situation is even more complicated at rela-
tivistic energies; it is necessary to mea, sure at
least twice as many observables to determine the
pion-nucleon isospin amplitudes. " The absence
of such complete data sets leads to multiple solu-
tions, a problem often referred to as "phase-shift
ambiguities. " Energy-independent analyses are
especially susceptible to such ambiguities due to
their lack of energy continuity and the nonlinearity
of the relation between the phase shifts and ob-
servables. Unitary energy-dependent representa-
tions remove most of these ambiguities, especially
when supplemented with theoretical input, for ex-
ample, values for Ref'(0)„which remove the sign-

change ambiguity. "
To date no measurements of the spin-rotation

parameters have been made in the first resonance
region although such data could resolve continuous-
phase ambiguities" in the pN amplitudes and lead
to an important improvement in the quality and
reliability of partial-wave analyses. Such ambig-
uities, which leave the fit to the data unchanged,
have even been shown" to be present for any finite
number of partial waves when only v(8) and P(8)
data exist. The measurement of spin-rotation pa-
rameters at energies in the first and second reso-
na.nce regions will soon be made at I ASL." Such
measurements are quite difficult because they re-
quire a double scattering experiment with a polar-
ized target.

Many different definitions of spin-rotation pa-
rameters are in use; so it appears judicious to
report values for the quantities

B(8) = 2 Re I f*(8)g(8)]/o (8),

S(8) = tIf(8) I'- Iz(8) I']/o(8), (58)

where f(8) and g(8) are the spin-nonf lip and spin-
flip amplitudes, respectively. All other spin-ro-
tation parameters in common use may be con-
structed by taking linear combinations of J3 and
S. In particular, the A and R parameters are de-
fined by the equations

A(8) = S(8) sin8+ B(8)cos8,

B(8)=-S(8) cos8+ B(8) sin8. (60)

ln Figs. 5(a)-5(o) we present predictions of cr(8),
P(8), B(8), and S(8) for each of the three charge
states at several energies of experimental inter-
est. Other predictions of observables are avail-
able on request.

vier. cowcLUsrows

Based on our study it is clear that the m'p scat-
tering data in the first resonance region are of
sufficient accuracy and consistency to permit a
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unique determination of the I= —,
' 8, I', and D waves.

The I waves are less well determined but at least
exhibit a preferred sign: I'37& 0, +35 ~ 0. There is
no need for theoretical input to determine the
peripheral waves; the data alone are adequate
and may be used as a constraint on theory.

The relatively small I= —,
' component is not well

determined by the partial-wave analysis in spite,
of many recent measurements. There are signifi-
cant differences for the S„and P„partial waves
between the results of this analysis and that of
other authors. The high partial waves are es-
pecially ill determined in this case.

Overall, however, the phase shifts we have ob-
tained are of sufficient quality to warrant their
use, extrapolated off mass shell, as input for pion-
nucleus calculations, for critical tests of pion-
nucleon dynamical models and in a dispersion the-
ory analysis imposing crossing symmetry and
full analyticity in the style of Nielsen and Oades. '

The fundamentally new feature of our analysis

is the S3] charge splitting which we find necessary
to include in order to describe the observables
most faithfully in the context of our simple pa-
rametrization. This effect certainly needs clari-
fication and must be considered before a detailed
comparison with dynamical models can be made,

The usual way to fix the energy dependence of
the 8 waves below 100 MeV is by using fixed-t
dispersion relations. However, in spite of the
sparcity of data below 100 MeV the pion-nucleon
phase shifts determined by this data agree to an
excellent approximation with those determined by
the 0-350 fit. This suggests that by making use
of the form 2 parametrization of the amplitude it
is possible to extract values for the pion-nucleon
scattering lengths. These are defined by the equa-
tion
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where a2I 2J i.s the scattering length and ~2/ 2J is
the effective range for scattering from a state of
total angular momentum 8 and isospin I. The
parameters for fit A2 then give the following values
for the g'p scattering lengths:

a,' = (-0.0990+ 0.0013)I/pc,

a» = (-0.0433+ 0.0021)(h/pc)',

a» = (0.2096+ 0.0018)(h/gc)'.

For 82 we have

a, = (0.2141+ 0.0058)h/pc,

a, = (-0.1040+ 0.0006)h/pc,

a„=(-0.1316+0.0027)(h/pc)',

a» = (-0.0564 ~ 0.0154)(h/gc) ',
a,—,= (0.2216+ 0.0015)(5/gc) '.

(62)

(63)

I-spin breaking thus leads to a difference in scat-
tering lengths of magnitude:

a,' —a3 = (0.0050+ 0.0014)h/pc,

a» —a,,= (-0.0120+ 0.0023)(h'/gc)'. (64)

These values for the scattering lengths suggest
that the forces causing scattering in the S3$ state
of m p are more repulsive than in the case of
m'p. Equation (63) also constitutes a useful way
of expressing the magnitude of the I-spin-breaking
effect, and it should be a challenge to theorists to
account for these numbers.

The T-matrix pole position of the 6 resonance
may be determined by analytic continuation of the
P» partial-wave amplitude onto the second sheet
of the complex energy plane. An alternate, and
simpler, method is to parametrize the P33 phase
shift using the Lichtenberg resonance formula.
Using this parametrization, we have obtained pre-
cise values for the 6+' and 6' pole positions and
residues. This representation also allows us to
assign meaningful errors, making a comparison
with theoretical calculations possible.

Typically, when new data are added to a data
set, no noticeable reduction in the number of
existing solutions results. Either the solutions
are insensitive to the new data or experimental
errors are prohibitively large. Such experiments
waste time and resources and can be avoided by
careful preexperiment planning. It is most useful
to know which experimental observables provide
the greatest sensitivity to the differences between
existing solutions. Such a sensitivity analysis
was first performed by Amdt and Roper" on the
+ scattering problem. A similar analysis may
be conducted for the nN problem at energies of
experimental interest. Specific results are aviil-
able on request.

We wish to emphasize that filling gaps in g'p
differential-cross-section data, except perhaps at
energies below 100 MeV, will probably not lead
to any new insights into mN scattering. Precise
charge-exchange differential-cross-section data,
especially around the 6' resonance with uniform
angular converage, are required to further define
the P33 mass splitting as well as to clarify S3$ I-
spin breaking. Precise elastic polarization data,
especially charge exchange, are required at low
energies and in the region of the 6' resonance.
Notable for their absence are measurements of
the spin-rotation parameters in the first reso-
nance region. This is unfortunate because, sup-
plemented by measurements of P(8) and o(8) at
the same energy and angle, they would constitute
a complete data set. This would allow the resolu-
tion of ambiguities in single-energy analyses.
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APPENDIX 8: mN SCATTERING FORMALISM

For convenience and completeness we include
in this appendix the conventions we follow for the
gN amplitudes and observables. Partial-wave
amplitudes are denoted as usual by L», ~, where
I is the orbital angular momentum state, I is the
isospin, and J=/+ —,

' is the total angular momen-
turn. The spin decomposition of the scattering
amplitude in the c.m. system goes as follows:

spin-nonf lip amplitudes

f(s, 8) = —g [(l+ 1)T,.(s)+ lT, (s)]P,(cos8),
r=o

(81)

spin-flip amplitude

g(s, 8) = —Q [r„(s)—7', (s)]P'((cose), (82)

where 0 is the center-of-mass scattering angle, s
is the square. of the total center-of-mass energy,
and I'r and P'r are the ordinary and associated
Legendre polynomials. The partial-wave ampli-
tude is written in terms of the nuclear phase
shift 5„(s) and inelasticity g,„(s) as

7'„(s)= —.(q„(s) exp [2i5„(s)]-lj.1
(83)

The relevant observables may be expressed in
terms of the amplitudes as follows:

Differential cross section for unpolarized target

da/dn , =
I
f(8, 8) I'+

I
g (,8)

I

' (84)

+fRer, (s)].
Total cross section

(86)

a r(s) = 4 —Imf(s, 0) .
q

Total inelastic cross section

(87)

a„(s}=-,— Q ((l+1)[1—q, ,'(s)]
r=o

+ ~[1 —n( '(s)]]
Spin-rotation parameters

[( I'f I' —Igl ) sin8+ 2 Re(f*g) cos8]
da/dn

(89)

[- (If I' —Igl') cose+ 2 Re(f*g}sin8]
da/d&

(810)

The spin-rotation parameters are constrained by
the equation A'+B'+I" = 1.

Electromagnetic corrections. Ordinarily the
scattering data are not corrected for photon ex-

Recoil-proton polarization for unpolarized tar-
get

P(s, 8) =-2 fm[f*(s, tI)g(s, 0)]n(da/dQ), (85)

where'=�(f|x c[ )/IQ x q'I and q, (j') is the bary-
centric momentum of the incident (final) pion.

Real part of the forward amplitude

Ref(s, 0) = —g [(f+1)ReT,„(s)
q r=o
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change. This correction is important near the for-
ward direction and/or at small q. A straightfor-
ward calculation of the one photon exchange am-
plitude for pN scattering gives

f„'"(s,e)=+ — .,
( / } [P,(s, e) —P,(s, e)],

(811)

Z(~(s, 8) =+ . ,
( / )

[G,(s, 8)+ G,(s, 8)],

(812)

which gives approximately unitary amplitudes cor-
rect to all orde'rs of n nonrelativistically and to
first order in a relativistically. The above form
for the Coulomb amplitudes is quite adequate for
the purposes of phase-shift analysis given the
present precision and angular range of the data.
Some authors, for example, include a modifica-
tion of Eqs. (811) and (812) due to the electro-
magnetic structure of the pion and proton. It is
then necessary to modify the amplitudes by mak-
ing the substitutions

where

E,(s, 8) = + cose,
—m S'+m

E-m 8+m

E, ,(s, 8)=F, ,(s, e) f", (K )f'(K'),

G, ,(s, e) = G, ,(s, e) f", ,(K')f (K'),

(82o),

(821)

&,(s, e}=(p,—1) si '—2(W-E) . 28
m 2

G,(s, e) =

E —m
+ sin'6}

(812)

&,(,&)=(e,-O( + &)

f( „(s,e) 2qR' '

g(;&.,(s, e) =o,

where

(814)

(815)

where E is the proton barycentric energy,
W=s'~', and p. ~=2.792 is the total magnetic mo-
ment of the proton. For charge-exchange scatter-
ing the electromagnetic amplitudes vanish exactly.
In the nonrelativistic limit, Eqs. (811) and (812)
reduce to

where f~i(K2) and f",(K') are the Dirac and Pauli
form factors of the proton, f'(K') is the pion form
factor, and K' is the invariant four-momentum
transfer K' = 4q2 sin'(8/2).

Ordinarily the proton form factors are approxi-
mated. by the dipole and scaling formulas. How-
ever, as has been pointed out by Hammer et al. ,

"
the dipole and scaling formulas do not give a good
statistical fit to the second-generation form-fac-
tor data and must be relegated to the history of
physics as only crude, first-order parametriza-
tions. Furthermore, the Coulomb amplitudes are
largest for small values of K' where the form
factors differ only negligibly from their point-
particle limits. Therefore, we do not expect,
and in fact do not find important consequences
to result from refinements of Eqs. (811) and
(812) of the type proposed, for example, by Trom-
berg et al. ' Only when full Coulomb corrections
to obtain the hadronic phases are required are
such refinements necessary.

A product S-matrix description of strong and
electromagnetic interactions then gives the follow-
ing equations for the nuclear amplitudes:

E(W- E)+q'
'g~ = 0! (816)

f'"(s 8) = f'"(s 8)+ — e""i[(l+1)T"' (s)

f (e) + ~ eein ln sin (2/2)
2q TV

(817}

For the total Coulomb amplitudes we utilize the
Roper pres cr iption4

is the relativistic generalization of the Coulomb
parameter. Equations (814) and (815) are the
first-order approximations to the full nonrela-
tivistic Coulomb amplitudes. This amplitude re-
sults from an exact solution to the nonrelativistic
Schrodinger equation for Coulomb scattering,

+ Tg i (s)]P((cos8),

(822)

g„"'(s,e) = —g e"' [T„",',(s) —T„",' (s)]P',(cose) .
r=o

(822)

For charge exchange there is no final-state elec-
tromagnetic interaction, so

(+) 4 ) (+) (+)fC =f» +fCoul fnrel ~

g(+) g(d

(818)

(819)

f„'"(s,8) = —p e "([(l+1)T'",(s)
i=o

+ lT„'", ]P,(cose), (824)
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g(0)(s g) Q e-(6([T(0) (s)
g=o

—T„'", (s)jr,(cose) .
(B25)

Here o, is the Coulomb phase shift, defined by

o(= argI'(l + l+ i&i) . (828)

Since the Coulomb parameter is very small over
the energies at which data are available (ii = 0.2 at
20 MeV and 0.008 at 350 MeV), the Coulomb
phase shifts are small except at very low ener-
gies (for T~& 20 MeV, o, &l ). These phases may
be calculated by making use of the recurrence re-
lation

(a2&)

(+) (3)
~N, ly ~fy 7

((T(s&+ 2T(»)

—(
&(2 (T(3& T(1&)

(B28)

where to an excellent approximation cr, = -gy,
y= 0.5772.

As discussed in the text, even though we for-
mally permit I-spin violation, we still retain the
language of charge independence and write the
nuclear amplitudes in terms of (pseudo) isospin-
conserving I= —,

' and -', amplitudes:
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