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Gauge invariance and fermion mass dimensions
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Renormalization-group-equation fermion mass dimensions are shown to be gauge dependent in gauge

theories possessing nonvector couplings of gauge bosons to fermions. However, the ratios of running fermion

masses are explicitly shown to be gauge invariant in the SU(5) and SU(2) X U(1) exampies of such theories.

One of the outstanding successes of the SU(5)
modeV has been its ability to relate differing fer-
mion masses to a hierarchy of symmetry break-
ing."' Specifically, d, s, and b quarks have been
shown to be heavier than their corresponding lep-
tons (e, p, , 7) because leptons do not communicate
with the quantum-chromodynamic (QCD) subgroup
of the unified theory. However, inconsistencies
between the formulas for fermion mass dimensions
(y„"')appearing in Refs. 2 and 3 have led me to
reexamine the calculation of these quantities in
an arbitrary covariant gauge. These inconsis-
tencies are shown below to be a consequence of
gauge dependence of y'" in theories where nonvec-
tor couplings occur between fermions and gauge
bosons.

To gain an understanding of this loss of gauge
invariance, consider first the renormalized fer-
mion propagator in QED. The photon-electron
coupling is, of course, vector and is given by

a+En = —egy~gA". The renormalized electron
propagator G(p) is found from the electron self-
energy Z(p):

+ [xy "y(V„'—i V„)/2+H.c, ]

+ [zy b(V~ —i V„)/2+H. c.]}, (4)

so that self-energy bubbles from V' ' and V' must
be added to find Z(p). This sum can be obtained
from the QED expressions for r and s (corre-
sponding to the exchange of a single vector-cou-
pled gauge boson) by replacing e' [Eq. (3)]with

g,'[-'+ —', +4(-')]=4g,'/3,

where the V', V, a,nd the four equal V', V', V, V'
contributions are respectively indicated. In gen-
eral, if fermions transform under a fundamental
representation of SU(N) that is vector-coupled
to the gauge bosons of the group, then Z(p) is
given by

gator

D~„=[g„,—(1 —d')k„k„/k']/k'.

Correspondence to a gauge theory of vector fer-
mion currents is obtained by adding fermion self-
energy contributions from each gauge boson of
the theory. For example, the currents coupling
to a red quark in QCD are

bZ =g,f [ry "r(V„'/2+ V'/~12)]

In the limit of large spacelike momenta ( ~p' I» m'), G(p) and Z(p) can be expressed as follows:

Z(p) =rP+ sm,

, C,(N) ln

g'(3+a')
( )

Ip' I

(5)

a(p') = I+ ~,

b(P )=1+2r+s,
where'

e'
0 tP'I

r
tp2 (s= —,(3+d') ln16

(2) where

X qXS„/4= C~(N)5 „=[(N' —I)/2N]b „.
The fermion mass dimension y ~ is found by

taking the renormalized fermion inverse propa-
gator

p is an (arbitrarily) chosen renormalization point,
and d', the gauge parameter, is the coefficient of
the longitudinal component of the photon propa-

"'(p) = [1 —2 (p')][ (P')P'- b(p'W+ o( '/0')]

through the renormalization-group equation'
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0 = p,—I'")(p)

.y, "5(g, d) ,„

I—"'(p). (6)

We substitute rand s [Eq. (5)] into the inverse-
propagator coefficients a(p') and b(p') [Eq (2)1
to obtain mass (y~'} and wave-function (yP)) fer-
mion dimensions to order g' [p(8/8g) and 6(8/8d)
are 0(g')]:

3g'C, (X)/sv',
y) = g g ( f)i)d /6((

y~' is independent of d' and is therefore gauge
invariant. '

Now consider the self-energy contribution AZ'(p)
from the interaction of fermions to a single non-
vector-coupled gauge boson B:

bf =gf y "[a,(1+y, )/2+a (1 —y,)/2]fB„.
This contribution is given by

~1= (g(B"/~60 i~y„[(l+y, )/2+ 4(1 y )/2]„
+ dy, [(1+y, )/2 2(1 y, )/2]d
+ ey„[-3(1+y, )/2 —6(1 —y, )/2] e

+Py„[-3(1+y, )/2] v], (10)

provided one chooses the I andau gauge (d' = 0).'
In any case, Eq. (9) shows that gauge invariance
of y is lost unless a, =a, in which case the cou-
pling is vectorial.

What is the meaning of this failure of gauge in-
variance? The u, d, and e mass dimensions in
the SU(2) x U(1) (Weinberg-Salam5) and the SU(5)
(Georgi-Glashow') theories are easily calculated
by using the recipe of Eg. (9) to obtain the contri-
bution of each gauge boson in SU(2), U(1), and
SU(5) to y+). Adding each contribution to y"',
y"', and y"', one obtains

2 2
(2) g2

(
3 do) (1) gl

( 9+ 3 do)
16 ' ' 16

2 2
(5) g

( 54+ 1 dO) (5) g5
( 72+ 12 dO)

, (3+d')a,a ln16''

(6)

2

~y„=,6g, d'(a, '+ a '},
~ 16~'

2

4y = 6, [-(6+M')a,a +do(a, '+a '}].
(9)

The above expression hy for the mass dimen-
sion from a single gauge boson is the same as
that given in Ref. 3 [Eq. (2.22)], provided one
chooses the Feynman gauge (d' = 1). Similarly,
Eq. (9) yields the same values as Ref. 2 for U(1)
fermion-mass dimensions from the Weinberg-
Salam U(1) current, '

[for vector-coupled theories a, = a = 1, and Eq. (6)
becomes the same as Eq. (3}]. These values for
hy and As can be used to determine the correc-
tions to the inverse propagator I""'=(1 —r)P
—(1+s)m. Subsequent substitution of this new

inverse propagator into the renormalization-
group equation leads to the following contribu-
tions to fermion dimensions:

Note that the difference between y"'s obtained
for different fermion identities is always indepen-
dent of d'. The ratios of fermion masses depend
only on these differences. . For example, if two
fermions f and g have mass dimensions y&',
y"' under the subgroup G„then

m„((1) m~(M)
m, (i1) m, (M )

+ g f h"'(v')-&'"(u')lrru'/u'.

(12)

Thus the calculations of fermion mass ratios given
in Refs. 2 and 3 remain gauge invariant, even
though the individual fermion-mass dimensions
are not gauge invariant. ""
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SThe authors of Bef. 2 erred by assigning a nonzero
value to y& . Their value corresponds to what y '

would be if SU(2) were coupled vectorially rather than
left-handedly. However, erroneous but equal factors
for y y ' y ~ canceled in their mass-ratio cal-

culations, which are unaffected.
Note also that

~ V„~& [ y& j . The SU(5) model currents
(Bef. 1) are entirely contained within 80(10). (I am
grateful to S. Rajpoot for demonstrating this explicitly. )
Thus if u and d fermions have the same mass in an
SO{10)theory until breakdown into an SU(5) intermed-
iate step occurs, m„,~, &

will become greater than
mz ~ &, respectively, until SU(5) symmetry is broken
further to SU(3) XSU(2) XU(1). Therefore, an SO(10)

SU(5) SU(3) &&SU(2) xU(l) hierarchy admits the pos-
sibility of u, d, and e (or c, s, and p, ; t, b, and r)
evolving from a single mass. However, my estimate
of the ultimate unifying mass scale for such a theory
is much greater than the Planck mass and, therefore,
unrealistic.

~'This behavior is to be contrasted with that of the
running coupling constants g(Q2), which are mani-
festly independent of the choice of gauge (D. J. Gross
and F. Wilczek, Bef. 7). Indeed, one of the reasons
for believing in @CD is the calculable decrease of
g3(Q ) with increasing Q, as manifested in the scaling
of leptoproduction cross sections. Note, however, that
running coupling constants and "running mass ratios"
are intrinsically dimensionless, whereas the running
mass is not.


