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A restricted gauge theory is obtained as a self-consistent subset of a non-Abelian gauge theory by
imposing an extra magnetic symmetry to the gauge symmetry. The theory describes the dual dynamics
between the color isocharges (i.e., the electric charges) and the topological charges (i.e., the magnetic
charges) of the non-Abelian symmetry, and contains two potentials, the electric and the magnetic potentials,
in a dual-symmetric way. The topological charge is identified as the dual of the Noether charge of the
magnetic symmetry of the theory. A possible role of the restricted chromodynamics for quark confinement
in quantum chromodynamics is speculated.

I. INTRODUCTION

Since Dirac' introduced his magnetic monopole
within the context of Abelian gauge theory, at-
tempts have been made to construct a local field
theory of the monopole which could exhibit an ex-
plicit duality between the electric and the magnetic
charges. In the meantime it has become clear that
monopoles can better be described in non-Abelian
gauge theories. In non-Abelian gauge theories the
monopoles appear as classical solutions of the
system which have a definite topological meaning.
This observation has led people to speculate that
perhaps there may exist a built-in duality ' in
non-Abelian gauge theories. Furthermore, it has
been emphasized that the monopoles and the sup-
posedly existing dual structure might play an im-
portant role in non-Abelian gauge theories, in
particular in connection with the issue of quark
confinement in quantum chromodynamics (QCD). '

If this point of view has a trace of truth, one should
be able to construct, out of QCD, a local gauge
theory of the non-Abelian monopole which exhibits
a built-in duality and at the same time could give
us a better understanding of the dynamics of quark
confinement. So far, however, there seems to
exist no such self-consistent theory of the non-
Abelian monopole. The purpose of this paper is to
present such a theory.

The theory that we propose here consists of a
well-defined and self-consistent, subset of a non-
Abelian gauge theory of a given symmetry group
G which has an additional symmetry which we
call the magnetic symmetry for a reason that will
become clear soon. The virtue of the additional
magnetic symmetry is that while keeping the full
gauge degrees of freedom intact it restricts and
reduces the dynamical degrees of freedom, pro-
viding us with a self-consistent but nontrivial sub-
set of the original gauge theory. For this reason
we will call the theory the restricted gauge theory

of the group G when compared to the canonical
(i.e., the unrestricted) gauge theory that does not
have any additional symmetry. As we will see in
detail in the following, owing to the magnetic sym-
metry one can choose a particular gauge (the mag-
netic gauge) in which the nonvanishing components
of the restricted gauge field become only those of
a smaller subgroup H that is uniquely determined
by the magnetic symmetry. Thus one can formally
reduce the theory to the gauge theory of the sub-
group H. However, in this gauge the gauge field
of the subgrouP H is now made of two Parts, the
"electric" part which is by definition not restricted
by the magnetic symmetry and the "magnetic" part
zvhich is completely determined by the magnetic
symmetry. Furthermore, the electric part de-
scribes the electric flux of the color isocharges
while the magnetic part describes the magnetic
flux of the topological charges of the symmetry
group G. This observation guarantees us the dual
structure of our theory, which can be made explicit
in the magnetic gauge.

In the magnetic gauge one can describe the gauge
field in terms of two potentials, the electric and
the magnetic potentials, and make the duality ex-
plicit at the level of the potential. Thus, the theory
can be written explicitly in terms of the two po-
tentials, together with whatever source one has in
the theory. Furthermore, the magnetic potential
couples to the source in a well-defined gauge-
invariant way. However, although the two poten-
tials appear in a symmetric way in the Lagrangian,
there still exists a significant disparity between
them. While the electric potential is regular and
plays the role of the ordinary gauge potential the
magnetic one is singular and contains the string
singularity. In addition, the magnetic potential
describes the monopoles with a "spacelike" poten-
tial while the electric one describes the isocharges
with a "timelike" potential. To remove these ap-
parent asymmetries we introduce the concept of
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the dual magnetic Potential. The beauty of the dual
magnetic potential is that it does not contain the
string singularity anymore and describes the mag-
netic charges with a timelike potential. This en-
ables us to make the duality more transparent.
More significantly the existence of the dual mag-
netic potential allows us to view the magnetic sym-
metry as a genuine Noether symmetry of the the-
ory. This means that a topological charge could,
indeed, be viewed as the dual counterpart of a
Noether charge.

One of the striking aspects of the restricted the-
ory is the fact that within the framework of the re-
stricted chromodynamics (RCD) one obtains the
confinement of the color by breaking the magnetic
symmetry dynamically. Logically, Rt D can have
two phases, the normal phase and the confined
phase. In the normal phase the magnetic symme-
try is left unbroken so that not only the quarks but
also the monopoles should appear as physical par-
ticles. In the confined phase, however, both the
quarks and the monopoles should disappear from
the physical spectrum.

The paper is organized as follows: In Sec. II we
start from the classical gauge theory and give the
exact mathematical definition of what we mean by
the magnetic symmetry in its most general form.
The corresponding restricted gauge theory is then
outlined. Although the theory can be formulated
with an arbitrary gauge group G, ' in this paper we
will mainly concentrate on the simplest group, i.e.,
the SU(2} group, to avoid unnecessary complica-
tions. The more realistic color SU(2) gauge group
will be treated in a subsequent paper. In Sec. III
we introduce the concept of the magnetic potential
as a local field. As we will see, both the electric
and the magnetic potential enjoy independently the
explicit gauge degrees of freedom of the subgroup
JJ as a part of the full gauge degrees of freedom of
the group G. In Sec. IV we introduce the quarks to
the system and show how the two potentials couple
to the source in a gauge-invariant way. Again the
gauge invariance determines the dynamics of the
theory uniquely. In Sec. V we present all the pos-
sible homotopically inequivalent classes of the
magnetic symmetry and the corresponding classi-
cal monopole configurations, which can describe
arbitrary integral magnetic charges of the group
G. Also we show that by choosing a proper mag-
netic symmetry one can describe any classical
dynamical system of the monopoles. In Sec. VI we
present a quantu~-field-theoretical description of
the restricted theory. This is done by introducing
the dual magnetic potential and at the same time a
charged scalar field to represent the monopole.
The dual magnetic pot|.ntial removes the string
singularity and enables us to treat the monopole

as a local field. Finally, in the last section we
briefly outline a possible way that the restricted
chromodynamics could explain quark confinement
in @CD.

II. MAGNETIC SYMMETRY

In this section we will start from the classical
gauge theory and give a precise mathematical def-
inition of what we mean by magnetic symmetry.
To do this, however, a better understanding of the
geometrical structure of the gauge theory is nece-
ssary. For this reason we will start from a brief
review of the relevant geometrical aspects of the
gauge theory.

The gauge theory can be viewed as Einstein's
theory of gravitation in a higher-dimensional
unified space ' which consists of the four-dimen-
sional external space-time and the n-dimensional
internal group space. If the metric g~ (A, B
=1,2, . . . , 4+n) in this (4+n)-dimensional unified
space has an n-dimensional isometry group G

whose Killing vector fields span the internal space,
the corresponding Einstein theory becomes essen-
tially the gauge theory of the group G in curved
space-time. e' To be precise let us choose the n
Killing vector fields g, (i =1,2, . . . , n) to satisfy
the canonical commutation relations of the iso-
metry group G,

j jj 0 ~

By definition these Killing vector fields must also
satisfy

Rq ggs=0 (i =1.2... . , n),
where « is the Lie derivative along the direction
of (,. Now if one further assumes that n Killing
vector fields $, are orthonormal to each other with
respect to the metric g» so that the internal me-
tric Q, „(i,k =1,2, .. . ,n) of the n-dimensional in-
ternal space

A B
~f ~kgAB

becomes of the Cartan-Killing form (here we are
assuming that the group G is semisimple), then
the corresponding Einstein theory in this (4+n}-
dimensional space becomes the canonical Yang-
Mills gauge theory (coupled with gravitation if the
external space-time is assumed to be curved). In
general, however, if the Killing vector fields are
not kept to be orthonormal so that the internal me-
tric (3} is left arbitrary, then one has, in addition
to the gauge fields (and the external gravitons},
the internal gravitons Q, » as nontrivial dynamical
fields in the theory. These scalar fields couple to
the other fields in a gauge and generally invariant
way. ' ' We will call this theory the generalized'
gauge theory when it is necessary to distinguish it
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from the canonical one.
Now we are ready to discuss the gauge theory of

the monopoles, or rather the restricted gauge the-
ory. The theory is defined as the generalized
gauge theory which has an extra internal symme-
try made of some additional Killing vector fields
which are internal and which commute with the
already existing fields $, We will call the addi-
tional symmetry magnetic. To be precise, let us
assume that there exists only one such vector
field which we denote by m. Then, by assumption,
one has

and

1„
B~ =A„m --m x 8~m (10)

where A, is the (Abelian) component of B„which
is not restricted by the condition (8}. Notice that
the potential (10) is made of two parts, the unre-
stricted part A, and the other part which is com-
pletely determined by the magnetic symmetry.
This decomposition property will have a far-reach-
ing consequence in the following. For an obvious
reason we will call the unrestricted part A, elec-
tric and the other restricted part magnetic.

The field strength G„„corresponding to the po-
tential (10) can easily be figured out. One finds

G,„=a„I3„-a„B„+gB„xB„

mEAB Q ~ (5) =(E,„+H„„)m,
Since m is assumed to be internal one can write

where

Then the condition (4) tells us that the multiplet m,
made of the components m', 1-

K» ———m (B„m x B„m) .
(12)

m1
There are two important general aspects in the
above results. First notice that 6,„ is parallel to
m. This is not an accident. In fact, from the
simple identity

[D„,D„]m =gG, „xm,

must form an adjoint representation of the group.
Now the second condition (5) will undoubtedly re-
strict the internal metric (3) as well as the gauge
potential. Indeed it is not difficult to show that the
condition (5) can be written as

m'(f„'Q„, +f„'Q„)=0
and

D,m = ~„m +gB„~m =Q, (8)

where B„ is the gauge potential of the group G.
Now let us assume for simplicity that the internal
metric Q„ is of the Cartan-Killing form. The
general case in which the internal metric is left
arbitrary will be discussed separately. With this
simplification the condition (7) is automatically
satisfied. Now the condition (8} implies, among
others, that the multiplet m must have a constant
length,

which holds for an arbitrary group G, ,one can im-
mediately see that the only nonvanishing compon-
ents of 6,„ that satisfy the magnetic symmetry
(8) must necessarily be those of the little group H
of m. Thus for SU(2), for example, G„„has to be
parallel to m. The other general aspect of the
above results is that G„„is made of two parts, I' „„
which comes from the unrestricted potential A„
and H~„which comes from the part restricted by
the magnetic symmetry m. This dual structure
which has already appeared at the level of the po-
tential (10) is again a general aspect independent
of what symmetry G one considers. Actually,
from (8) and (13) it becomes intuitively clear that
with an arbitrary gauge group G the same dual
structure will persist in B, and 6,„, so that, in
general, one can always set

(14)

m =const,

which one can choose to be the unit without loss of
the generality, and we will do so in the following.
To see how the condition (8) restricts the gauge
potential B, let us consider the case when the iso-
metry group is SU(2). In this case the condition
can be solved exactly for B„,

where both F,„and H,„should have the components
of the little group H which can in general be non-
Abelian. Naturally we will call F„„electric and

H, „magnetic. This intriguing dual structure of
the theory can be made more dramatic when one
realizes that one can actually go further and in-
troduce the magnetic potential for 8,„. This is
our next subject.
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III. MAGNETIC POTENTIAL

To introduce the magnetic potential correspond-
ing to the magnetic field H„„ let us first remember
that our theory still has the full gauge degrees of
freedom of the group G. So for SU(2) one can ro-
tate the magnetic vector ns to a prefixed space-
time independent direction, say, the third direc-
tion of the group space, by a gauge transfox'ma-
tion U,

m- ),=Um= 0
V

l

To be specific, let us parametrize m by

'sinn cosp '
m = sinn sinP

(15)

(16)

cosQ

C*"=--mxB m--tr(--,'t U'B U).

From (16}and (17}one finds

t.+"=C+m,

where

(19)

1C„*=-cosnB„p. (20)

Then it is straightforward to show that under the
gauge transformation (15}one has

Then clearly one can choose

U et2 -Bta

to fulfill the condition (15), where t, (i =1,2, 3) is
the adjoint representation of the generators. Now
consider the following C,*™defined by

If„„=--m (B,m x B„m)

1=-- sinn(B„n B„p —B„nB~p)

= a,c„*—~„c*„. (23)

Cg(m)

+( sf)
P 4L

where

(25)

Thus in this gauge, which we will call the magnetic
gauge, the potential B„has a remarkably simple
form. It consists of two Abelian ones A, and C„*
in a dual-symmetric way. Furthermore, we have
identified C,* as the potential for the magnetic
field H„„. Naturally, we will call C~~ the magnetic
potential. So in our theory we have, in addition
to the electric potential, the magnetic one which
is completely fixed by the magnetic symmetry.

The fact that one can introduce the magnetic po-
tential for SU(2) is not accidental. In general,
even when the little group II becomes non-Abelian
as may be the case for a larger symmetry G, one

. can introduce a similar non-Abelian magnetic po-
tential C„* for H„„, as we will see in the accom-
panying paper. Furthermore, one can show that
the potential C,* even enjoys the gauge degrees of
freedom of the subgroup H. To see this let us go
back to the SU(2) case and notice that the gauge
transformation U that fulfills the condition (15) is
not uniquely determined. Consequently our defini-
tions (18) and (19) have the corresponding degrees
of freedom. To see exactly what degrees of free-
dom they have, notice that U has the following
(and no other) degrees of freedom

U~U'=Ue "' ' =8 '3U, (24)

which comes from. the little group degrees of free-
dom of the magnetic symmetry ~. Under the re-
placement (24) one can easily show that C„*' '

transforms as

=A~m + Cf '+—tr(-~t U B„U)

=(A„+C~~)m +- tr(-2t U B„U)

B„' =(A„+C f)$3

G„„=(F„„+a„„)m
-6„'„=(E„„+II„)(3,

where now H„„ is expressed in terms of C„*,

(21)

(22)

I

g'

There are two points to be noticed here. First,
no matter what U one chooses to define C„*™,it
always has the same form (19). This is what is
expected. Indeed, from the general considerations
discussed in the last section, the magnetic poten-
tial (if it exists at all) must behave like that of the
little group H. The other point is that the little
group degrees of freedom (24) indeed guarantees
the magnetic potential the corresponding gauge de-
grees of freedom (26). This is again a general
aspect independent of what group G one considers.
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Here we have the Abelian degrees of freedom (26)
simply because for SU(2) the little group H has to
be Abelian.

In the magnetic gauge the potential C„* is com-
pletely fixed by whichever U one has chosen. How-
ever, notice that even after one has fixed U(and
accordingly the magnetic gauge degrees of free-
dom) one still has the electric degrees of freedom

(27)

that leaves g~ invariant, under which A„enjoys the
corresponding gauge degrees of freedom

t

Q~ / sin2&e
-' ~ /2

-sin-,'ne"" cos'~e "~' . |i, J

(29)

Now suppose one starts from the following SU(2)
chromodynamics Lag rangian

4 = ——,'6,„+4iy'D„4 -md% .
Then one can easily write down the corresponding
Lagrangian 2' ' of the restricted theory. From
(21) and (29) one finds

A~ A'„=A~ +-8„8 .1

g
(28) {R) 1 2 1 1 2

c+~v -2I".A—uv 4Huv-

Clearly the two gauge degrees of freedom (26) and
(28) have one and the same origin. The stability
subgroup of m which led us to the magnetic gauge
degrees of freedom (26) now provides us with the
electric gauge degrees of freedom (28) in the mag-
netic gauge. In other words, the two gauge invari-
ances come from the same little group degrees of
freedom except that they are extracted from two
different points of view.

The beauty of the magnetic gauge is that here
all the nonessential gauge degrees of freedom of
the original symmetry G have been removed. Fur-
thermore, only those components of the potential
which have explicitly the structure of the little
group IJ appear in a dual-symmetric way, so that
the structure of the theory becomes more trans-
parent. Thus, the magnetic gauge becomes the
natural one to consider when one wants to figure
out the gauge-invariant coupling of the two poten-
tials to the source and to discuss the dynamics of
the theory. This is our next subject.

IV. DUAL DYNAMICS

Now that the magnetic potential (as well as the
electric one} is introduced one can include an ar-
bitrary source in the theory and discuss the dy-
namics of the theory. Clearly the magnetic sym-
metry (8) does not restrict the symmetry struc-
ture of the source of the theory so that it must re-
main a multiplet of the full group G. Now to figure
out its gauge-invariant coupling to the restricted
potential (10) the magnetic gauge is the best one to
choose, and w'e will do so in the following.

Let us first consider an SU(2) isodoublet spinor
source 4'

which one can write down in the magnetic gauge
fixed by (17) as 4'

+g,iy"[ „3+2g(A„+C")]g~

+ $ i y ( 8 ~
—2g(A, + C ~)]g-

—m(g, |iI, + (~gi ) . (30)

Notice that the source couples not only to the elec-
tric potential but also to the magnetic potential
explicitly in a symmetric way. Kith the Lagran-
gian, one formally obtains the following equations
of motion

(iy" 8 „—m)g~ = + pgy B„(~~,

Guv =2v = (S,ypS„—8-y„8-),
(31)

where

B, =A, +C,*,

G „=8 B„—B„B„=I'„„+0„.

Thus it looks as if the theory were Abelian, with
one gauge potential B„. However, notice that the
dual field strength G,*„

POG"=-:~..peG
'

must now sa,tisfy

8~ G*„„=~"II*„=k„w0 (32)

when the magnetic symmetry k contains topologi-
cal singularities, where k„ is the monopole cur-
rent. This assures us that indeed the theory has
a nontrivial dual structure. In this respect, notice
that although the Lagrangian (30) appears to be
simple and Abelian in terms of the potential B„
it becomes highly nonlinear if one uses the coset
variables z and p of rn. In the absence of the
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source, e.g. , one obtains
(R) r 2

cCQ 4 CvltP

~F,„' -F—,„m (a„mxa„m)

(a,m x a„m)'

With this preliminary remark we will now pre-
sent one magnetic potential per each homotopically
different mapping. In other words, we will pre-
sent all the potentials which can represent any in-
equivalent class of the mapping. To do this first
notice that the homotopy class II2(S ) defined by

sin8 cosy

,'F,„—--sinaF, „3„a8.„P
m = sin8 siny

cos8

(35)

(33)

Although the gauge -invariant coupling appears
simple in terms of the magnetic potential C~ in the
Lagrangian (30), one may encounter a difficulty in
treating C,* as an ordinary potential since it must
contain the well-known string singularity when m
has a topological singularity. Later, in Sec. VI,
we will remove this difficulty by introducing the
dual magnetic potential which is regular.

V. MONOPOLES —A CLASSICAL DESCRIPTION

The dual dynamics obtained in the above can best
describe a classical system. This is so since the
monopoles appear as classical pointlike objects in
the theory as topological singularities of m. In
this section we briefly review the classical mono-
pole configurations of the theory and show that by
assigning a set of properly chosen isolated singu-
larities to m one can describe any classical dy-
namical system of pointlike monopoles in terms
of a single multiplet m.

Let us start by defining the topological charges
in our theory. As is well known, the non-Abelian
magnetic charge is topological in its origin. 4 For
example, for SU(2) it is described by the homotopy
class of the mapping II2(S ) of the two-dimensional
spatial sphere S'„ to the coset space S' =SU(2)/U(1)
of the internal space. Now to define the mapping
one needs a scalar triplet in one's theory, at least
on S~. For this reason it has often been claimed
that a proper definition (and thus a proper theory)
of the non-Abelian magnetic charge is possible
only when one has a scalar triplet exPli ci tly in
one's theory as in the Higgs-type theory. '4 How-
ever, notice that in our theory one does not need
to introduce a scalar triplet explicitly since the
magnetic symmetry m can be used to define the
mapping II2(S ). Indeed, we will define the mag-
netic charge of the restricted theory by the homo-
topy class of the mapping II2(S ) given by m:

m; S„-S =SU(2)/U(1) .
It is precisely because of this role of m that we
call the additional symmetry m magnetic.

H.„=——sin&(a„ct a„p 3„&—a.p)

sin8, p, =8, v=y

0, otherwise (36)

is nothing more than the Wu-Yang unit monopole.
Now it is easy to find out all the homotopically in-
equivalent classes of the mapping (34) and the cor-
responding monopole configurations. To do this
notice that m described by (16) with

@=8,

P =nq,
ol

'sin8 cosny '

m = sin8 sinny

cos8

(n integer) (37)

will describe all the homotopically inequivalent
mapping of (34) with the homotopy class Z

Z=n. (36)

On the other hand, the corresponding magnetic
potentials

n—cos8,
C„*=

0, otherwise,

and their magnetic fields

(3S)

n-- sin8, p, =8, v=y
B~„=

0, otherwise,
(40)

clearly describe the magnetic flux of the pointlike
charges g

. (41)

where 8 and y are the angular spherical coordin-
ates of S~, must describe tbe unit magnetic charge.
Indeed, one can easily show that the magnetic
field H„„obt ai ned from (35),
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Obviously the fact that there are no other homo-
topically inequivaient classes of the mapping (34)
other than those described by (37) guarantees that
the above magnetic potentials describe all the pos-
sible homotopically ineguivalent mapping of 112(S )
with integral magnetic charges n (in the unit 4p/g).
In particular, as far as a static magnetic system
is concerned, any magnetic field (not only the total
flux but also the flux itself) must be described by
one of those given above in the asymptotic region
where the magnetic flux must be spherically sym-
metric.

The above solutions have, in fact, been known. '"
However, their topological meaning, in'particular
the existence of the magnetic direction m and its
geometrical role, has so far not been fully under-
stood. More importantly, we find the physical
significance of m deep and far reaching. In fact,
with a proper choice of rn one could describe any
classical dynamical system of the monopoles. To
see this, suppose m is time dependentand has sev-
eral isolated singularities at z„"'(i = 1,2, . .. , 0),
each of which carry a definite homotopy class n&.
Each singularity could be regarded as representing
a monopole with the magnetic charge +n, /g
These will interact according to the dual dynamics
of Sec. V with the magnetic current k, given by

(42)

where l, is the world line of the ith monopole. The
conservation of the total magnetic charge (fixed
by the homotopy of m at the infinity) is then guar-
anteed by the topological reason. It is amusing to
notice that a single multiplet nz can actually de-
scribe any classical magnetic system in such a
simple manner.

VI. FIELD-THEORETIC DESCRIPTION

So far our description of the monopole has been
classical; it appears as a pointlike singular ob-
ject. Thus the theory obtained above can best be
suited for a classical description of the dual dy-
namics. For a field-theoretic formulation of the
theory, however, the Lagrangian (30) does contain
a few undesirable features. First, in the magnetic
gauge the potential C,* becomes singular and car-
ries the well-known string singularity when the
monopole is present. Second, the monopole is
described by a spacelike C~ whereas the electric .

charge is described by a timelike A„. This second
point (which clearly is related to the first one)
implies that in the static limit the quarks should
decouple to C,* although the magnetic coupling can-
not be neglected in the relativistic limit. Finally,
and perhaps most importantly, in the Lagrangian

(30) the monopole is simply not represented by a
field as the source of the magnetic potential; it
appears only as a classical pointlike object. . In
this section we will remove these undesirable fea-
tures and present a field-theoretic description of
the theory.

Let us start by removing the string singularity
first. To do this it is crucial to observe that H„„
can be described by a regular potential with no
string singularity. This is so since H„„describes
the electromagnetic field (H, -E„)created by the
monopole. So we define the dual magnetic potential
C, by

a„*„=(a„c„-a„c,) . (43)

s*„„=(a,~p-a~,*}. (45)

Clearly A„* describes the electric charge by a
spacelike potential, and will contain a string sin-

The beauty of C„ is that now it can describe the
monopole by a timelike potential, and does not con-
tain the string singularity anymore. Now one can
replace C,* in favor of C „ in the Lagrangian (30}.
Then, in terms of A, and C „, the dual equations
of motion (31}and (32) can be written as

a "G„„=a"z„„=a"(a,w„- a~„)=&„,
a'c„*„=a "lf,*„=a'(a.c„-a„c„)=k„.

Furthermore, in terms of the dual potential the
magnetic symmetry (26) could naturally be re-
garded as an ordinary Abelian gauge symmetry of
C, . This means that we have really succeeded in
making the magnetic symmetry a genuine Noether
symmetry of the Lagrangian. In short, we have
demonstrated that a topological charge can, in-
deed, be viewed as the doal object of a Noether
charge. This allows us to treat the monopole as
an ordinary source of the theory.

Now, for a field-theoretic description of the
monopole there seems to be no other way than to
introduce a new field for the monopole. Since the
monopole as a pointlike object does not have any
obvious spin structure one may describe it by a
complex scalar field Q, and we will do so in the
following. A similar field operator has been pro-
posed by Mandelstam in (3+1)-dimensional QCD,
and earlier by 't Hooft in (2+ 1)-dimensional QCD,
to describe the topological objects of the corre-
sponding theories. Naturally one would expect that
Q should couple to C, minimally. However, to
preserve the duality of the theory it would be better
for us to include the electric coupling to the mono-
pole. This can be done by formally introducing the
dual electric potential A*, by
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gularity. Now P can couple minimally to B„*,

I3*„=A„*+C„ (46)

with the strength 4v/g. This leads us to the fol-
lowing Lagrangian for the restricted chromody-
namics (RCD} of the color SU(2} gauge group

gical level, just as one could view the Ginsburg-
Landau Lagrangian as an effective Lagrangian for
the theory of superconductivity, and may pursue
its consequences. An immediate consequence is
that indeed the Lagrangian (47) can explain color
confinement in QCD, which we discuss in the fol-
lowing section.

+ &iy "(8„+~B„)P.+ P iy "(8„-~gB„)r/)

+m(0, &, + $A' ) +
I 3.+ i—B.* [4'

.4&

C

(4V)

There are two points to be clarified in the above
Lagrangian. First, notice that the term B„„'has
been replaced by &„*„'with no change of the signa-
ture. At first glance this replacement appears to
be wrong, but in fact it is correct. The correct
signature is obtained by requiring that the Hamil-
tonian of the theory should remain the same while
one changes the potential C„* to the regular one
C~. One must be careful not to change the physics
of the theory by changing the variables. The other
point is that although the singular potentials &~
and „* do appear in the Lagrangian, only the
regular ones A„and C„must be regarded as dy-
namically independent variables. Now, of course,
we must point out that one should not take the
singular potentials and the couplings involving
them too literally. In field-theoretic formulation
the singular potentials are indeed ill-defined
quantities. At best, &~ and C„* in (43) and (45) are
to be interpreted as some functionals of the regu-
lar potentials. Consequently the couplings involv-
ing&~ and C„* in the above Lagrangian appear to
be ill-defined. Nonetheless, from the physical
point of view the interaction between the quarks
(the monopoles) and the magnetic (the electric)
field created by the monopoles (the quarks, re-
spectively) surely exists and should not be excluded
from the Lagrangian. These interactions are
represented symbolically in terms of the singular
potentials in the above Lagrangian as a mnemonic
means, and the Lagrangian must be interpreted
ac cordingly.

Admittedly our derivation of the regular Lagran-
gian (4V) for RCD from the singular one (30) is not
so rigorous in that we have not established the
existence of the regular monopole field P from the
Lagrangian (30), but introduced the field by hand
from physical grounds. So it remains to be seen
whether the Lagrangian (47) can really be derived
from the singular one (30) in a mathematically
rigorous way. Nonetheless, one may take the
Lagrangian (47) as an effective Lagrangian which
can govern the dual dynamics at the phenomenolo-

Vu. niSCUSSIONS

In this paper we have proposed a gauge theory of
non-Abelian monopoles which has a built-in dual
structure. A crucial feature of the theory is the
fact that it consists of a self-consistent subset of
a' full non-Abelian gauge theory. The theory is ob-
tained by imposing an extra magnetic symmetry
to the original theory. The virtue of the magnetic
symmetry is that it preserves essential features
of the original gauge theory. It keeps the full
gauge degrees of freedom intact, and a priori is
not worse than the symmetry that has already been
imposed, namely the gauge symmetry itself. Be-
sides, it preserves the natural topological struc-
ture of the full gauge symmetry, and thereby de-
scribes the dual dynamics of the non-Abelian
monopole s,

Certainly the restricted theory is interesting in
its own right. Furthermore, it could well be that
for a certain kind of problem the restricted theory
could give us results which would not be qualita-
tively different from what one would expect in the
unrestricted theory, and could actually simplify
the problems. Thus one may hope that by under-
standing the restricted theory one could obtain a
better insight of the complicated non-Abelian
structure of the fully unrestricted theory.

Now we will briefly outline how the restricted
chromodynamics (RCD) could actually explain the
confinement of the color in QCD. It has recently
been emphasized by Mandelstam and by 't Hooft
that the monopoles and a possible dual structure
of QCD might play an important role for quark
confinement. This kind of speculation can be made
more precise within the framework of RCD. So'
let us for the time being take the attitude that the
requirement of the magnetic symmetry somehow
does riot make a real difference for the discussion
of quark confinement in QCD, and look for the pos-
sible confinement mechanism in RCD. Now the
confinement in RCD could be obtained by the fol-
lowing observations. First, in the absence of the
quarks the effective potential of the Lagrangian
(47) (which could be estimated using the loop ex-
pansion approximation) will either break the mag-
netic symmetry or else will preserve it. So, logi-
cally, the theory has two phases, the normal phase
where the magnetic symmetry is preserved and
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the abnormal phase where the symmetry is dynam-
ically broken. In the strong-coupling limit the
dynamical symmetry breaking indeed could occur,
as has been argued by Coleman and%einberg. '
In this case the physical vacuum is made of the
Bose condensation of the monopoles. The dual dy-
namics will then ensure us the perfect color di-
electric effect (i.e., the dual Meissner effect) that
wil. l confine any colored flux in a finite region of
space. Consequently both the quarks and the
monopoles will disappear from the physical spec-
trum of the theory. In short, the dynamical break-
ing of the magnetic symmetry mill guarantee quark
confinement in RCD. In the weak-coupling limit,
however, the magnetic symmetry is not likely to
be broken since in this limit the magnetic coupling
may become too strong to allow us the monopole
condensation for the physical vacuum. In this case
not only the quarks but also the monopoles become
unavoidable as physical states. Now in view of the
fact that the monopoles have not been observed one
may say that in reality the magnetic symmetry is
indeed broken, and the confinement is enforced.
But one has to bear in mind that this argument
holds only within the framework of HCD. A more
detailed discussion on this issue is available in a
separate paper. '

Although the group SU(2) is examined in detail
in this paper as an example, we should like to em-
phasize that the theory can be defined for an ar-
bitrary group G. Furthermore, the general struc-
ture of the theory, i.e., the existence of the dual
structure and the magnetic potential with the cor-
responding magnetic gauge degrees of freedom,
the existence of two phases and the magnetic con-
finement of the colored flux all remain unchanged;
as we will see in a later paper. The only
complication is that for a group of rank higher than
one, there are different types, indeed as many as
the number of the possible little groups, of the
magnetic symmetry which one properly has to take
into account. A more detailed treatment of the
theory with an arbitrary group G, especially the
color SU(3), will be presented in a later paper.
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