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SO(2N) grand unification in an SU(N) basis
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We discuss the algebra and the representations of SO(2N) groups used in the construction of grand
unified theories in a basis in which its connections with the SU(N) grand unification is most transparent.
Specializing to the case of N = S, we discuss the problem of fermion masses for various Higgs
representations. Applying our considerations to SO(12) grand unification, we comment on the nature of
weak interactions of the extra generation of fermions present in the 32-dimensional spinor representation of
this group.

I. INTRODUCTION

In recent days, a great deal of attention has
been focused on the construction of grand unified
theories' (GUT} of weak, electromagnetic, and
strong interactions using SU(N) (Ref. 2) as well
as SO(M) (Ref. 3) groups as the local symmetry
groups of the GUT Lagrangian. Prior to spon-
taneous breakdown, all interactions are described
by one coupling constant. The local invariance is
then broken down by the Higgs mechanism to the
residual local invariance group SU(3) xU(l), of
strong and electromagnetic interactions; This
is usually done in stages, each stage being char-
acterized by a mass parameter and a residual
local symmetry group. The simplest of these
theories is the SU(5) model of Georgi and Gla-
show, ' in which the fundamental fermions (the
quarks and the leptons} of each generation (e.g.,
u, d, v, e) are assigned to the (5}-and (10}-dimen-
sional representations. Another attractive pos-
sibility is to consider the gauge group SO(10) (Ref.
3) and assign all fermions of one generation of
both chiralities to the (16}-dimensional spinor rep-
resentation of this group. The SU(5) decomposi-
tion of this (16}-dimensional representation is (10}
+(5*}+(1}.Thus it unifies all fermions into a single
representation, apparently a more appealing fea-
ture than that of SU(5). Furthermore, in order
to accommodate more generations within a single
representation, higher SU(N) as well as the cor-
responding SO(2N} gauge groups have been con-
sidered. In view of- the intimate connection be-
tween the SU(N} and SO(2N) grand unified theories,
it is worthwhile to present a discussion of SO(2N)
algebra and representations in terms of an SU(N)
basis. Apart from providing a very simple way
to handle SO(2N}, this formalism becomes most
useful if the SO(2N) group is first broken down to
the SU(N) group, which subsequently breaks down
to the SU(3), x U(1), x G „,where G „is the gauge
group of flavor dynamics.

The purpose of this article is to discuss first

the SO(2N) algebra and relevant Higgs represen-
tations and couplings in terms of an SU(N) basis.
We then apply this to discuss the fermion masses
in the context of the SO(10) gauge group, using
the Higgs fields belonging to (10}-,(120}-,and
(126}-dimensional representations. We also apply
our method to discuss the (32}-dimensional spinor
representation of SO(12). This representation
contains two (16}-dimensional representations
under SO(10). We show that the extra generation
of fermions present have V+A structure for their
weak interactions.

II. SO(2N) IN AN SU(N) BASIS

1., =(x, +x,'), i=1, . . . , N.

It is easy to verify using Eq. (1) that

(I"„,I',}=25,„.
Thus, the I „'s form a Clifford algebra of rank
2N (of course, I'„=I't). Using the I'„'s we can
construct the generators of the SO(2N) group as
follows:

(5)

Cbnsider a set of N operators X. (i =1, . . . , N)
and their Hermitian conjugate p',. satisfying the
foll.owing anticommutation relations:

(x, , x,'}=6... (la)

(x, , x,}=0. (lb)

We use the symbol (, }to denote anticommutation
and [, j to denote commutation operations. It is
well known that operators T,'. defined as

T,'= X, X, (2)

satisfy the algebra of the U(N) group, i.e.,

[z i T&] = Q&pi giT&

Now let us define the 2N operators I',
(p, =1, . . . , 2N):

I'», = -i(x, —x,')
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=1z,„=—.[r„r,].
2

The Z„„can be written down in terms of X, and
g&~ as follows:

Z». .~ »»-, =2.[X,, X»] —2.[X», X~]+4(X,X„+X, X»),

Z„.„,=-,'[X„X„']+-,'[X„X,']- (X.X„- X,'X,'),
.J.» [ J~ »]-2 [»i ~j- ( J»' y») ~

(8)

(7)

It is well known that the spinor representation of
SO(2N) is 2" dimensional. To write it in terms
of the SU(N) basis, let us define a "vacuum" state
IO) which is SU(N) invariant. The 2"-dimensional
spinor representation is then given in Tabl. e I.

This representation can be split into the 2~ '-di-
mensional representations under a chiral projec-
tion operator. We now proceed to construct this
operator. Define

number of the g particles. To make it more ex-
plicit, let us consider N = 5 and define a column
vector lg) as

I
0) = 10)4.+ x,' lo)g, + —.x,'x', lo)g, »

+ 1 ~ j»l mnxt Xt Xt I0)P

+,~'"'""Xt
X

t x'xt„l0) pj + xt xt Xt'x,'x,' l0)V. ,

(12)
where g, is not the complex conjugate of g but an
independent vector. We will denote the complex
conjugate by an asterisk. The generalizat-ion of
Eq. (12) to the case of arbitrary N is obvious if we
write

(13)

I,=(-I)", n=g n, . (10)

Also define a number operator n&
———g&~&~ . Using

Eq. (4), I", can be written as follows:

FP [Xzl Xy][X» y XP] ' ' [X~, X~],
~

N

(1 —2n,.).
jul

Using the property of the number operators n,.'
= n, , one can show that 1-2n, = (-1) ' and so we
get

Under chirality,

where

0, = »(I+ I'p)4

TABLE I. Construction of the states belonging to the
spinor representation of SO(2N) and their SU(N) dimen-
sionality.

SO(2N) spinor state SU(N) dim. ension

It is then easily checked that

[Z,„,(-1)"]=0.
The "chirality" projection operator' is therefore
given by —,'(1 + I',). Each irreducible "chiral" sub-
space is therefore characterized by an odd or even

(14)

For the N = 5 case, p. arfd g, , represent (5}-and

(10}-dimensional representations of SU(5) and gp
is the singlet. All the fermions are assigned to g, .
It is then easy to write down the gauge interaction
of the fermions. We further note that for the case
of So(10), the formula for electric charged Q is
given by

lo&

xJI o&

x tx»t
I e)

XtX»tXjl »

N(Nr- g
2

N(N —1)(N —2)
6

9 —.I:tp —-,(~i.+ I'»4+ ~pe) ~ (15)

III. FERMION MASSES AND THE "CHARGE-
CON JUGATION" OPERATOR

We next tackle the problem of the spontaneous
breakdown of symmetry and generating fermion
masses and mixings.

xttx2" x»tI o&

Total 2

As is well known in the framework of gauge
theories, at present, the fermion masses arise
from Yukawa couplings of fermions to Higgs bo-
sons and subsequent breakdown of the gauge sym-
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&=tsar. E~A' ~

s&su4-Esv~

5g = is„,gZ„„.

(16)

Thus, ttI does not transform like a conjugate spinor
representation of SO(2N). However, if we intro-
duce a 2 && 2" matrix B such that'

B-'Z„„B= Z, „, (17)

metry by nonzero vacuum expectation values (vev)
of the Higgs mesons. In general grand unified
theories, both particles and antiparticles belong to
the same irreducible representation of the gauge
group. So, to generate all possible mass terms,
one must write down gauge-invariant Yukawa
couplings of the form

qBc 'r,-qy„, jBc 'r„-r„rpy„„„.. . ,

where g stands for transpose of g, B is the equiva-
lent of the charge-conjugation matrix for SO(10),
and C is the Dirac charge-conjugation matrix.
The p„, Q&,q, etc. , are the Higgs mesons belong-
ing to irreducible representations of appropriate
dimensions of SO(2N), i.e., p, is{2N) dimensional,
$1„„~is {2N(2N —1)(2N —2)/6) dimensional, etc. (for
N=5, p„, P„„,are, respectively, {10)and{120)di-
mensional). To see the need for inserting B, we
note that under the group transformation

Since

yBc'r, y=(y*lBc 'r, ly&,

the Yukawa coupling (for N= 5) of fermions with
Higgs mesons P„will be written as

c 'r.-I t&&@. (22)

where all quantities are listed in this and the pre-
vious sections. Note that in writing Eq. (22), we
used the fact that [r„Br„]=0.To get fermion
masses, all we have to do is set (Ps&ss 0 for appro-
priate p, and evaluate Q,*lBc 'r„

l p, & using the
anticommutation relations of the X,.'s and the fact
that x& l

0&= 0. In the next section, we give explicit
examples for the case of the SO(10) grand unified
group.

IV. FERMION MASSES IN SO(10): AN APPLICATION

As as explicit application of our techniques, we
will calculate the fermion masses for SO(10) the-
ory with Q Higgs mesons belonging to both {10)-
dimensional (Q, ) and {120}-dimensional (Pa„~} re-
presentations. ' Before doing that, we would like
to identify the various particle states belonging to
the {16j-dimensional spinor representation of SO(10).
We identify

& (yB) = -ss„„(qB)Z„„.
Thus, gB has the correct transformation property
under SO(2N}. It is.easy to see that Eq. (17) re-
quires that

B-'r,B=~r„. (19)

We will choose the negative sign on the right-hand
side. Since the ~ 's are represented by symmet-
ric matrices for even p, in the spinor basis of
Table I, one obvious representation of B in this
spinor space is

B= '"„' r„.
w =odd

Using Eqs. (12) and (20), we conclude that

0

d2

d;

0

C—Q3

@~i I,

Q3 -Q2 Q~ dj

0 Q', u, d,

A. (10)-dimensional Higgs representations

Since we want color symmetry unbroken, the
components of P, , which can acquire vev's, are
Q, and Q». Let us set

u', u,' 0 u, d,

—u, -u, Q 0 e'
2 3

-d, -d, -d, -e' 0,
We remind the reader that g, and P, , are the usual
SU(5) representations of Georgi and Glashow. '

B

0

g's&= vr, (P, a&
= v, .

We have to evaluate

~....=-t~v, &0,
* IB(x.—x }I o,&

+ Kv. Q,* IB(X,+ X.) le, &

(24)

(25)
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Using Eqs. (12) and (20) and after some algebra,
we obtain

2 „,=K(vs v, )—(d dn+e e„)
+ K(vs+ v~) (urn+ P~ vn) + H. C.

We thus see that we get

m„=m, and m„=m„.

(26)

B. (120}dimensional case

The invariant Yukawa coupling of O(10) spinor
fermions g-=(ss ) to the (120)-dimensional Higgs
field Q „can be written down as

8,"=K.,y.ac 'r„r „r„t),y„„„ (28)

where a and b stand for the different generations
of fermions. Using the fact that

&= -B and C= —C,
we find that

(29)

So, if we restrict ourselves to only one genera-
tion, it does not contribute to the fermion masses.
It will, however, contribute to mixings between
various generations. To analyze the kind of mix-
ing pattern that this representation generates, we
note that under SU(5), Q„„„breaks up as follows:

It is also easily seen that if there is more than
one spinor multiplet of fermions corresponding to
different families of particles, the mass matrix is
symmetric. We note here that the mass relations
ms = m, and m, =m„ follow essentially because (P&
breaks SO(10)- SO(8) -=SU(4I) x U (1)„, where SU(4')
is the symmetry group involving the three colors
plus the leptons, as in the Pati-Salam model.

In this case, the mixing pattern is very different
from case (i). We get

mg g 3m/ g )

m„„=0,
a b

m„„~O.Na+b

C. {126)dimensional case&

The invariant Yukawa coupling in this case in-
volves 5 I'„matrices:

8~ = K,s),BC 'I'„I'„I'„I;I' $$$~„, . (36

We note first that I.~'=L~~. Thus, this makes a
symmetric contribution to various masses. We
may choose the following vacuum expectation
values for the Higgs field consistent with local
color-SU(3) symmetry remaining exact:

1278~ 3478 is 5678 )A (37)

where p, = 9 or 10. Substituting this into the Yuka
wa couplings, we get for one generation (a = b = 1)
the following kind of mass relations:

m 3m/ m 3m (38)

matrix between generations a and b; d, means the
-3-charged quark of the a generation. and simi-
larly for u, E, and v.

(ii) Only the SU(5) {45)-dimensional Higgs field
acquire vev. This means the following fields
acquire vev's:

&0„,& = -3&4...&
= -3(4'...&

=-3(4...&~0,

&~7f4 tc& &~12I10& 3(~$4, 10&

= -3(4,.,..& +o

(120}={45)+{45*)+{10/+(10*)+ {5)+{5*).
(3o)

Thus, one can choose either of the following pat-
tern of vacuum expectation values:

(i) A linear combination of {45)and (5) acquires
vev. This means we have

(p„,&e0 and (p„„&x0.
Inserting this into the Yukawa couplings and pro-
ceeding with the calculation as in the case of the
(10)-dimensional Higgs field, we find that the
mixing between the various generations of quarks
and lepton' @re related as follows

mg ff 3m@
a b a b

mgt 3m

where m„„stands for mixing terms in the mass

V. APPLICATION TO 80{12)GRAND UNIFICATION

It has recently been suggested' that to incor-
porate more families of fermions into one repre-
sentation, one may consider O(10+ 2m). We
analyze this proposal for m = 1 and discuss the
nature Of the weak interaction of the extra genera
tion. As already noted by the authors of Ref. 8,
we show that the second 16-piet of fermions has
V+A structure for weak interaction. The SO(12)
case will be completely specified by

As usual, we consider the algebra generated by
the 12 1,'s def ined by

I'„=(X +X~), p=even

r„=-i(x. —x'.),
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and the generators

(40)

(41)

where i,j,k, l = 1, . . . , 6. Here (g„g,~, g, ) and

((b,', Ytt,'~, gt) constitute the two (16)-dimensional
spinors. Since the electric-charge formula for
this case is

Q 2~78 a ( 12+ 34+ 58) t (42)

We then note that as in the case of SO(10) there
exists a chiral projection operator for this case,
which commutes with all generators and splits the
(64)-dimensional spinor representations into chiral
even and odd subspaces, corresponding to even
and odd numbers of "X particles*' in the state. As
before, we can assign the physical particles into
one of these subspaces, as before to the even sub-
space, which is now (32) dimensional and is given
by

I0&, X'.X,'I», X'.X,'X,'»'I0&, XlX2tx.'X4Xlxt I0&

Under SO(10) it breaks up in the following way:

0= I0&&.+Xax~ l0&tl+ 'Xlx,' I-0&«;

+m& ' X6XaXtXml0&A&+4& '
X~ XaXiXml0&A

we see that g,',. and gf have opposite electric
charges to P„. and Q, . If we want to identify the
second (16)-dimensional part withthe second gen-
eration (c,s, p, , v), then it is obvious that their
weak interaction will have to be right-handed, in
conflict with observations. Thus, to incorporate
two families, one has to go to SO(14).'

In conclusion, we have discussed an SU(N) basis
for SO(N) grand unified gauge theories and have
outlined a calculational framework which proves
useful in the study of fermion masses and mixing.
We have applied it to some examples in the SO(10)
case. We have also discussed the nature of the
weak interaction of the extra generation of fer-
mions in the case of SO(12) grand unification. We
wish to study in detail the generation puzzle in the
context of SO(2N) groups using our techniques and
we also wish to study the problem of fermion
masses and mixings in a future publication.
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