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Hadron masses in quantum chromodynamics on the transverse lattice
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Calculational methods are formulated for the transverse lattice version of quantum chromodynamics.
These methods are used to study the low-lying spectrum of gluon bound states in the pure Yang-Mills

theory.

I. INTRODUCTION

It has been proposed that the strong-interaction
aspects of particle dynamics can be described by
a Lagrangian field theory, quantum chromodynam-
ics (QCD). The theory consists of colored quarks
interacting via colored gluons. The original appli-
cations of the theory to short-distance and light-
cone-dominated processes have been extended to
encompass various inclusive processes' (e'e -n
jets, Pp-7'7&, and others) and maybe even cer-
tain exclusive processes (elastic form factors of
hadrons). Renormalization-group equations and
general factorization properties were used to
analyze those phenomena perturbatively.

The applications of the same methods to study
the large-distance structure of the theory have
not resulted in the emergence of a spectrum con-
sisting of only color-singlet bound states. Vari-
ous attempts have been made to incorporate non-
perturbative eff ects in QCD. Semiclassical meth-
ods utilizing instantons and other configurations
have important consequences for the chiral struc-
ture of QCD and may even result in an effective
MIT-like bag theory. The strong-coupling as-
pects are emphasized by reformulating QCD in
terms of a lattice gauge theory. Wilson' has pro-
posed a four-dimensional Euclidean lattice version
of QCD while Kogut and Susskind6 have studied a
Hamiltonian formulation of QCD. Within those
lattice theories, bound-state spectra have been cal-
culated in a strong-coupling expansion. This was
done for pure Yang-Mills theory and for c.olored
quarks interacting" with fermions. These cal-
culations are qualitatively successful for aspects
not involving chiral symmetry and seem to result
in a stringlike picture for excited bound states.
Finally, 't Hooft has proposed the I/N, expan-
sion, where the color group is taken to be SU(N, ),

which leads to a pictorial simplification of the
theory. The task of summing the surviving planar
diagrams still seems formidable. However, if
QCD confines, then for large N, a valence-quark
picture emerges for the meson sector which will
consist of an infinite number of stable hadrons.
The pure gluon-bound-state sector will also con-
tain stable hadrons decoupled from mesons. '
Another approach to QCD was discussed by Bar-
deen and Pearson" (to be referred to as I). It will
be reviewed in Sec. II. Its structure is nontrivial
in both the weak- and strong-coupling regimes. In
this paper we discuss the calculation of hadronic
gluon-bound- state masses in the strong- coupling
regime. In Sec. IG we discuss the nonperturbative
longitudinal dynamics of the model. Bare hadrons
are constructed from gauge potentials and "real"
color degrees of freedom. In Sec. IV, a pertur-
bative strong-coupling analysis of an effective
field theory for bare hadrons is performed result-
ing in hadrons with transverse motion. The
calculations are discussed in Sec. V.

II. TRANSVERSE-LATTICE VERSION OF QCD

In this section we will review the transverse-
lattice version of QCD given in I. First we will
present the lattice action functional in terms of
the link variables introduced by Wilson. ' Then
we will discuss the transformation to linearized
degrees of freedom. Finally, we will quantize
the resulting linear theory. Since this paper is
only concerned with the pure Yang-Mills sector
of the theory we will not discuss here any of the
problems associated with describing fermions on
the lattice.

If we use the matrix form of the gauge field

A„—= igA„' T',
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where the group generators are normalized by
the conditions

x i = a(n„, n„), (2.5)

tr(7 a7b) Jab/2 [7'~ 7b] =if (2.2)

then the QCD action has the form

A '— d'x, tr(G""G„„),
2g

(2.3)

where the Yang-Mills field strength is given by

where a is the lattice spacing and n„and n„are
integers. The transverse gauge fields A, and 4„--
are replaced by link variables U;, (f, z) which
are associated with the link between the lattice
sites m and m+ &, where c'=1, 2 and &=(a, 0} or
(0, a). The U's also depend on the longitudinal
coordinates t and z. The U's may-be interpreted
as the phase factors

G„„=8„A„—Bg„+[A„,A„] . (2.4) i,+a

exp( ig A,dx' [. (2.6)
Since there are only two dynamical gauge fields

we choose a way of putting the theory on the lat-
tice, with a gauge andquantization procedure which

exploits this fact. First, we choose toleave the
longitudinal coordinates t and z and the longitudi-
nal gauge fields A, and A, intact while we make
the transverse coordinates discrete. Thus,

We may now write down a discrete version of the
@CD action which reproduces (2.3} in the naive
continuum limit (ga-0) with the expression .(2.6)
substituted for the U's and the exponential ex-
panded out in powers of a, viz. ,

QA= J) dgdt~ g, tr(G "G»)+ g ~ tr(&~U~, ~&"U;„~)+ g & z tr(U;„~U;,.e,bU-„,,b, Ut, b) ~,
Xeg tV Xs& rP

(2.7)

where p, v = 0, 3 and ct, p = 1, 2. The (longitu-
dinal} covariant derivative of the link variables is
given by

dimensional@CD given by several authors. ' Ex-
plicitly setting A to zero, the terms in (2.7) which
depend on &, become

D„U-„„.=[&.+A„(x )]U, —U-„,.A„(x,+ d) .
(2.6)

Q
A = dx'dx

i
—(& A, ) +gA, J

4 X

The action for the longitudinal gauge fields is
unchanged from the continuum except to replace
integrals by sums. The action for the purely
transverse gauge fields is the familiar "plaquette"
action used before in lattice gauge theories. The
mixed term involving D„U is the simplest local
interaction which reproduces the corresponding
mixed term in the continuum. Most importantly,
the lattice action (2.7) remains gauge invariant
under the restriction of the original gauge group
to the lattice. We can use this gauge invariance
to completely eliminate the longitudinal gauge
fields A„ from the theory. This may be accom-
plished by using light-cone gauge [A =(Ab-A, )/
v 2 =0] with light-cone quantization [~=x' =(x
+ x )/~2 so that A, becomes a parametric field
which may be eliminated by its equations of con-
straint in favor of a nonlocal Coulomb interaction.
In this respect the treatment of each transverse-
lattice site is the same as the discussion of two-

+ ~tr &„U;,, 8" U-„, +''

(2.9)

where we are using the Hermitian form of A, in
the vector representation and the current J is
given by

J = fg tr[T (U„„iB U;„-

The Euler- Lagrange equations for .A, are

8 A, =~J

(2.10)

(2.11}

which contain no "time" derivatives 8, = 3/a~ and
so can be solved for X, in terms of J without up-
setting our subsequent quantization. Eliminating
A, by (2.11}gives an effective action which only
depends on the U's,



HADRON MASSES IN QUANTUM CHROMOD YNAMICS ON THE. . . l039

f
A = ' dx'dx Q ~Q tr(B„U„-„6&"U„-, , )

al
2+, , g r)( ;))„))~„.,~));,)„);),~)+ dx';(x -x (J.(x)'J.(x )). (2.i2)

In order for this action to give the usual QCD ac-
tion in the continuum it was necessary to assume
that the matrices U have the form

U eiqgT'A (2.is)

so that over small regions of space, U can be ex-
panded in a Taylor series. (This is the same as
the "spin-wave" expansion used at low temperature
in statistical mechanics. In I it was incorrectly
stated that in order for the expansion to be valid
it was necessary for U to develop a vacuum expec-
tation value. It is actually only necessary that
over any small region of transverse space that
the differences between U's be small. ) Thus in
particular, we are assuming a functional measure
for U which restricts it to the space of unitary
matrices. There are several reasons why this is
not the correct choice if we wish to describe
physics correctly. The first and most mundane is
that there is no compelling reason for finite values
of the lattice spacing a to use this measure. Any
measure which preserves the remaining gauge in-
variance under gauge transformations which are
global in the longitudinal coordinates t and z [i.e. ,
a global SU(n) associated with each vertex of the
transverse lattice] is a Priori a suitable candidate.
The correct measure can only be determined by a
real- space renormalization-group analysis but
might take the form

dU dUexpl dx'dx V(a, U, U~)&l

—dU dUt')(Ut U 1)5(det(U) —-1), (2.14)
a 0

where U is allowed to be a complex general ma-
trix, and dU is an unrestricted measure. This
potential V may depend on the lattice spacing a
and the invariants U U and det(U). Put simply,
the variables of a lattice theory can never de-
scribe the underlying continuum theory exactly
but are supposed to represent, in an aggregate
way, the nearby degrees of freedom of the con-
tinuum theory. If the microscopic variables satis-
fy a constraint the new aggregate may not and we '

may wish to choose a linear variable to describe
the average behavior of a collection of nonlinear
(i.e. , unitary) variables. A more rigorous argu-
ment for the above statement comes from the,
now exactly known, ' behavior of the nonlinear
[O(n)] a model in two dimensions. The local de-

(2.15)

The effective potential takes the form

+ &3[det(M) + H. c.]+ ' ' (2.i6)

Since in later chapters we will make use of the
large-& expansion, only the first two terms in
(2.16) will play any role in our quantitative analy-
sis. Thus, we can write the action in terms of
~ as

grees of freedom are nonlinear, i.e. , satisfy a
constraint, and in greater than two dimensions
the field would develop a vacuum expectation value
and the spectrum would consist of (n - 1) mass-
less Goldstone bosons. In two dimensions the
particle structure of the theory contains (n) mas-
sive scalars transforming under a linear realiza-
tion of the symmetry group. Particle structure
is inherently a large-distance property and thus
depends on the correct aggregate variables and

not directly on the microscopic variables. Any

physical description of the theory in terms of the
underlying nonlinear degrees of freedom must be
highly nonperturbative, but it is possible to
achieve a much simpler description of the physics
with an effective action in terms of explicitly lin-
ear variables and their interactions. For large
n the form of the effective action for the O(n) non-
linear 0 model can be constructed explicitly.
In the action (2.12) the kinetic energy terms for
U are identical to the action for an SU(n) &&SU(n)

nonlinear o model defined at each link of the
transverse lattice. If the other two terms of the
lattice action which couple these 0-model sys-
tems together do not modify the above conclusions, ,

then the physically correct variables would be
some linear variables to replace the U's as in

(2.14). If we knew the exact behavior of the SU(n)
x SU(n} o model, we could rewrite the action (2.12)
in terms of linear variables without approxima-
tion. Since we do not, we adopt the ansatz (2.14}
with a minimal set of operators included in V.
The coefficients will have to remain as free pa-
rameters to be fit to the desired spectrum and be
eventually determined through the continuum limit
analysis. It is useful to introduce the scalar field
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&= Jt dx'dx Ql Q&r(B M„-
~

8~M „,-)+ p, 2Q tr(Mt, M-„, )+Lz Q tr[(M», M;, ) ]
Xg Q Of

2 2

+~~intr(M;. ..M».;.~-'...»..M';.,)+ ~
« ~, lx -x l~(x) J-(x )&I. (2.17)

In this version of the action. , M is a full n &n complex matrix of fields.
We have discussed in some length the reasons why we have chosen the form (2.17) for the action of the

theory. In return for a more physical starting point for the description of this system, we have given up
exact knowledge of some of the parameters which must be fit to the desired spectrum. We feel that there
should exist an exact transformation to an effective linear theory derivable by renormalization-group ana-
lysis, but we have not carried this out. The remaining task of this section is to quantize the action (2.17) in
the light-cone variables. This is standard" and presents no new difficulties. The Hamiltonian corre-
sponding to (2.17) is given by

2
P'=H= Jt dx g ju, g tr(M-„, Mt, )-~gtr(M,"„M,";,PIt;y, Mt„»)

af Qg

—&I» t»f(M-. ..M;...)'] —f d» ., I» -» lz.(» & J-(»') I. (2.18)

The link fields may be decomposed into creation
and annihilation operators in momentum space as

"du
M» ~ [A» -„, e +B» „, e -],

0

(2.19)
where the &'s and &'s obey the equal-light-front
commutation relations

[W„~J ]= [If„a,']= 2n~(f - f ') . (2.2O)

In the subsequent sections of this paper we will
study the spectrum of the mass operator M'
=2P P by diagonalizing it in the space generated
by the decomposition (2.19) when limited to states
containing few particles.

'III. LONGITUDINAL DYNAMICS

In this paper we study the pure Yang-Mills sec-
tor of @CD based on the effective action of Sec. II.
Since the full theory cannot be solved we seek a
practical and physically motivated approximation
scheme. The principal ingredients of the scheme
we propose are (1) a perturbative expansion in the
terms in & responsible for transverse motion on
the lattice, (2) a perturbative expansion in the
nonlinearities introduced by the effective poten-
tial for the link mesons, and (3) a topological ex-
pansion in the nonplanarities of link-meson inter-
actions. The longitudinal free-link- meson dy-
namics and the longitudinal Coulomb potential will
be treated exactly. Although we performed a
nonperturbative step by changing from the original
gluonic degrees of freedom to the link mesons we
have not yet constructed hadrons. In this section
we shall study the transformation from the link-
meson gluons to intermediate hadronic degrees
of freedom, the bare hadrons. This transforma-
tion is characterized by a single parameter and

may have accordingly weak-, strong-, or inter-
mediate-coupling features.

We start by showing how confinement arises in
this approximation as a consequence of both sym-
metry and energetics: Using the transverse lat-
tice and the light-cone gauge, the gluon dynamics
have been separated into link mesons and Coul'omb
potentials. The link mesons connect (x„x ) sheets
and interact in each sheet via Coulomb potentials
which are instantaneous and confined to the given
sheet. All states of finite energy are singlets with
respect to color rotations at each transverse site.
It is this feature of local color confinement which
leads to binding of the link mesons. The bare
Hamiltonian which governs the longitudinal dy-
namics of the link mesons may be written as

H, =g Jt dx f(,' tr(M; M~ )
lL»O

2

Z j"dx@lx-yl[J;(x) J;(y)]' ',
(3.1)

where

J;= trTM.- i8 M,'- +TM -
g.e M;-

(3.2)
The notation Coul signifies that we are to'keep
only the direct Coulomb potential part of the inter-
action and not those parts which produce or anni-
hilate pairs. Using the expansion of M into plane-
wave creation and annihilation operators, &0 may
be rewritten as

tr(4», - + - + +»
n»a 0

2 f+ 00

Jl ~pa((f) g, ( (I), (3.3}

where
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i;(q) =fg, , &{a+q)(2a+ q) tgT: [(A~,'.,), . {B„'.,B„)... (A,'.g,);.-,.+(B,B,'.,),- -. ..]:J.
4&&&+ q)

(s.4)

In Z(q) pair operators have been dropped. The
Coulomb interaction represents a momentum
transfer q from one link to another with a propa-
gator 1/q . The integral is infrared divergent
when q = 0 and this divergence is regulated by a
principal-value prescription. It may be shown
that the properties of color-singlet states are
independent of the way in which these infrared di-
vergences are regulated.

By construction &p conserves the number of
links or antilinks. The eigenstates of &o are thus
all color singlets that can be initially classified
according to the number of link mesons in each
state. In this gauge the linked mesons may be as-
cribed the role of "valence gluons. " The mass
spectrum of each "number sector" is infinite and
discrete due to the linear Coulomb potential, IIp

also conserves the total longitudinal momentum
and the group representation at each vertex, al-
though we only consider states which are color
singlets at each vertex. The simplest nontrivial

The extra factors have been introduced so that the
norm of this state is

{PIQ)=2P~(P-Q)

if P is normalized to|
dx x =1.

(s.6)

(3.7)

Applying Ho to this state gives

sector of &o consists of one link and one antilink
meson between the same pair of vertices. Such
states are created by the action of A; &; on the
ground state. The only way to make a group sin-
glet at both ends from this operator is to take the
trace of the matrix product. Thus, we consider
the state

I
iP) = — dx y(x)[2x(1 —x)] '

o

xtr{A p„-. B(~i- M'. -.

2 1 1

80 ~P) = —
~

dx @(x)[2x(1—x)] [1/x+ 1/(1 —x)] tr(A~B(g „)~) ~
0)

0

dx y(x)[2x(1- x)] [1/x+ 1/(1- x) ] tr(A, $»($, )f )~ 0)

I „„ —' I .~(*)l ( — )I'"

x(x+y)I[(l —x) +(1—y)]/(4~x —y ~
)';tr(A~B, „)~0) .

To be an eigenstate ~P) must satisfy the equation

a, [P& =
~'

[P).

(s.8)

( s.9)

Projecting out the momentum components gives the integral equation for @

2 2 2g C„f"dq(q+P) )~
1 1

I
2g C„~~ dx', (x+x')[(1—x) + (1—x')]

va' f q(q-P)' ] x 1 —xj mcP 3 ~x-x'[' 4[xx'(1-x) (1-x')]"
(s.10)

In the first term on the right-hand side the quan-
tity in brackets is the renormalized mass. This
equation differs from the bound-state equation in
the 't Hooft model' in two respects. First, the
current vertex of a boson introduces the additional
spin factor

(x+ x')[(1-x) + (1-x')]
4[xx'(1 —x)(1—x')]'"

and second, there is an overall factor of 2 since
the links are bound by two Coulomb potentials,
one at each end.
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g'C '~ z' '"(1+z)
2vs', (i ~)' (s.ii)

from the requirement that the leading singularity
in x vanishes. For the integral to converge at
both ends, we require ——,'& p &-', . If p &-,', the inte-
gral approaches a finite limit independent of x as
x'-0, so there is no solution. Performing the
integration gives the condition on P

We do not know an explicit form of the solution
to this equation; nevertheless one can recognize
some qualitative properties of the solutions. Since
the equation is invariant under x (1 —x) with
P(x)-ag(1 —x), we may classify states as being
even or odd with respect to this symmetry. Q(x)
will have power behavior near &-0, or 1. If we

suppose @(x)-x"near x-0, we obtain the con-
sistency condition

is either even or odd under x (1-x). If the P„
are chosen as the appropriately normalized and
scaled Jacobi polynomials, the g„'s provide an
orthonormal basis. One may then diagonalize
the finite-dimensional matrix H„,„=(m ~H, ~n).
The eigenvalues provide estimates to the true
eigenvalues which converge rapidly as the order
of the matrix is increased. The eigenvectors,
which are the expansion coefficients of Q(x) in
this basis, also provide converging estimates to
the wave functions. The evaluation of the matrix
elements can be performed analytically. First
the polynomials are expanded as power series in
[x(1—x) ]" or (1-2x)[x(1-x)]" and then the inte-
grals are performed using the identity

'd„d [x(1-x)) [y(1-y)]'
0 I&-yl'

2 2C„
p, '= ~, 'vptanmp

wa
(s.12)

2m o.'P r(o.)r(P)2""( + p)r( +-,')r(p+-,')

y„(x) = [x(1 x) ]"P„(x), (s.is)

where P„(x) is an nth-order polynomial in x which

There are two solutions in the range -2 & g & —,
' for

any positive value of p . There are no solutions
for negative p which ultimately will imply that
the lightest bare hadron is massive. For the
limiting case g =p = 0, g(x) = 1 fails to be a solu-
tion and the bound-state mass remains finite.
Thus at the bare-hadron approximation, gluon-
bound states are inherently heavier than usual
qq mesons. One could also note that the same
feature holds in the strong-coupling limit on the
Wilson lattice and is a general property of the
theory. An analysis of the self-adjointness of Ho

rules out the negative solution for P. For highly
excited states where the end-point behavior is
unimportant, this equation is effectively identical
to the 't Hooft equation except for the previously
mentioned factor of 2; thus if one relates these
bare hadrons to the spinless daughters of the Pom-
eron trajectory, the Pomeron trajectory would
have half the slope of the "usual" particle trajec-
tories. The parameter P determines the features
of bare hadrons. For small P they are strongly
bound states while for P near —,

' they are weakly
bound systems well described by two link mesons.
The physical hadrons will eventually be labeled by
a definite P.

In order to proceed with our program, we need
to know the eigenvalues and eigenfunctions for the
bound states in the two-link-meson sector. A

numerical procedure allows us to compute accu-
rate values for the eigenvalues and eigenfunctions
g(x). in particular, we consider as a basis set
of functions

The convergence of P(x) at the end pointsis onl,y
algebraic due to the presence of subdominant
singularities. As these singularities are weak
[-x ln(x)], the convergence is nevertheless rapid.
However, if we require higher derivatives of g(x),
the method would fail to converge. In all subse-
quent applications the matrix elements of &f& which
are needed are not highly sensitive to the end-
point behavior so this is not a restriction.

In Fig. I we plot the values of M versus m, the
principal quantum number for P = 0.1. For fixed
P, M increases with n approaching linear depen-
dence on n, for large I.

Returning to the whole lattice theory, the spec-
trum of Ho in the two-body sector consists of a
set of Coulomb bound states which may be labeled
by a transverse coordinate n, a polarization &

160—

C9
K
IJJz l20
z0
Q:
D 80—
x:
LIJ
K
cQ 40—

X

I I I

2 5 4
EXCITATION NUMBE R

FIG. 1. The masses of two-body even (2E) fmarked

( ~ )] and odd (20) [marked {&&)] bare hadrons as a function
of the radial excitation index, g. Plots are for p= 0.1.
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=x, y indicating the orientation of the bound state
with respect to n, a quantum number n indicating
the excitation of the state, and a total longitudinal
momentum P. We may construct from this basis
states which are eigenstates of transverse mo-
mentum, but there would be no dependence of the
energy on transverse momentum because of
the local nature of H, . This unphysical re-
striction we will remove by a perturbative
treatment of the remaining terms in H. To do
so we must introduce the four-body bare-hadron
states.

There are several distinct ways to place four
links on the lattice so that group singlets may be
formed at every vertex. These are indicated in
Fig. 2. The fact that all the states should be
color singlet at each transverse site leads to diffi-
culties in defining the N, -gluon state at each trans-
verse site leads to difficulties in defining the N, -

I

~ ~ ~

~ ~ ~

Ap
~ 0 ~

~ ~ ~ ~

Di iieet

~ ~ ~ ~

D2

B) li E)
~ ~ ~

Bp 1I

FIG. 2. Two- and four-body lattice configurations.

gluon state in the limit N, -~; this is like the
baryon problem for quarks and thus we do not
discuss in this work three-link-meson states,
etc. For the open boxes &1,2 there is only one
way of forming a group singlet which is to trace
the group indices around the box. Proceeding as
in the two-body case we define a general state

1

I» = ' t dxldx2dx3dx4&(I x, -X2 -X3 -X4)y—(x„x„x3tX4)(2X12X22X32X4) tl(~g P~xpff p~~x P) IO) (3.»)
0

with the normalization condition

f 1

dxldx2dx3dx45(1 —xl —x2 —x3 —x4)
l Q (xl, x2, X3, x4)

~

= 1 .
4p

Applying Bp and projecting out momentum components leads to the bound-state equation

—+
I

N —(C»+ C23+ C,4+ C41)y,
t'

1

(s.16)

(3.1V)

2

C, @=-, I' dx, dx 5(x, + x —x, —x ) , y(. .. , x(, . . ., XJ, . . .)(x, +x,')/4(x, x,x,'x,')'i'.
m'a

~ 0 ~ P j ~ ~ ~ P g P ~ 0 ~ (s.la)

When- four links impinge on a vertex there are two ways to make a group singlet. For example, D2 could
be drawn in the two ways shown in Fig. 3. It turns out that for large N (the number of colors) these are
the correct eigenstates, in group space, of H0with l1) a true four-body bound state and I2) two indepen-
dent two-body bound states. For general N we must be more careful. The two orthogonal combinations
are l+) =(l 1) a l2))/[2N (N+ I)] ~ . In terms of these one obtains the bound-state equation valid for the C
and D configurations

M P =P, P Z —+ N — l(C14+C23)g ——(C12 —C13+C14+C23 —C24+C34)$
1) 4 1

Xf

Nyl (N2 1)112
+ (C12 + C14 + C23 + C34)g + (C12 + C34 14 23)@2 2

(s.lo)

In the limit N- neglecting nonleading terms one
obtains the two uncoupled equations

M g = P. P Q —+ N(C 12 + C23 + C34 + C41)@,Xf
(3.2o)

M @'= P, g g —+ 2N(C, 4 + C23)g
Xf

The equation for
l 1) is identical to the equation

f:~ t
~ ~ ~ ~

121&
~ ~+3

FIG. 3. I'ossible color structure of the D2 four-body
state.
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for the 8 configurations. The equationfor
~
2) de-

couples the variables (x„x,) from (x, , x,) and will
reduce to two independent two-body equations. For
the E configurations, similar results are found.

If we adopt the approximation of keeping only
the leading contribution in the I/N expansion all
of the possible configurations of four links on the
lattice are described by the same bound-state
equation, or reduce to two independent two-body
bound states. As we shall see later in the same
approximation, only the four-body bound states
will contribute to the perturbative expansion of the
transverse dynamics.

Many of the qualitative features of the two-body
equation apply to the four-body equation as well.
In particular, the consistency condition that the
most singular power cancel when each of the x&

-0 requires that p( 'x, )-xq as x~-0, where
P is the same as given in Eq. (3.12). The wave
functions may also be classified according to
their symmetry under exchanges of various in-
dices since the bound-state equation is invariant
under cyclic permutations of the four variables or
the reverse of their order. This is the symmetry
of the dihedral. group D4 which has five irreduci-
ble representations, four of which are one-dimen-
sional and one of which is two dimensional. Thus,
the spectrum will be characterized by five inde-
pendent trajectories, one of which will be popu-
lated by doublets. The WEB approximation to the
bound-state equation is related to the spectrum
of normal modes of a three-simplex. Asymptoti-
cally the density of states only depends on the
volume and dimensionality of the region and be-
haves as n(M') ~ (M')' as M'-~, or M„' behaves
roughly as n'~'.

The solutions of the bound-state equation may
be computed approximately just as in the two-
body case by constructing a variational basis

Q(g g(xly x2p x3p x4) (xlx2xgx4) Pgp (xgy x2y 3y x4) y

(3.2l)

where x, =1—x~-x2-x„and the P„are chosen
as linearly independent polynomials in the four
variables which transform irreducibly with rep-
resentation G' under the group D4. They are ortho-
gonal with respect to &, but it is not parti. .ularly
useful to require them to be orthogonal with re-
spect to n since this is easily dealt with in the
final numerical diagonalization. The eigenvalue
equation is then cast into the form of a finite-di-
mensional matrix eigenvalue problem in each sec-
tor separately by working out the necessary inte-
grals analytically. This part of the calculation
was greatly facilitated by the algebraic manipula-
tion program MACSYMA. The resulting solutions

500

400

~ 300
IJJ

O

f. 200

100
20
2E

0
0 O. I

I I I I

0.2 0.3 0.4 0.5

FIG. 4. Ground-state energies of two- and four-body
bare hadrons is plotted as a function of P.
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FIG. 5. Bare-hadron mass spectrum for P= 0.1.

to the matrix problems provide estimates to the
masses and wave functions as before. The details
of this calculation have been relegated to Appendix
A.

Patterns of the radial excitations are not pre-
sented for our numerical calculations. The
ground-state energies of the various sectors (in-
cluding the even and odd two-body sector) are
plotted as a function of P in Fig. 4. Note that all
ground-state energies tend to some finite fixed
value as P-0. In particular, the smallest two-
body eigenvalue approaches =v /2; the symmetric
four-link meson A1 seems to have a lower limiting
value than the odd two-link-meson state. In Fig.
5 another look at the spectroscopy of bare hadrons
is given. All the results can be generalized to
include hadrons with a higher link-meson num-
ber,' however, in the spirit of the approximation
scheme one wants to explore the consequences of
truncating the link-meson sector at some small
number and at a latter stage check that indeed
such an expansion is convergent. By now enough
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information about the bare hadrons has been ac-
cumulated and one may proceed to evaluate the
full Hamiltonian in the Hilbert state of bare had-
rons.

IV. TRANSVERSE DYNAMICS

The bare hadrons constructed in Sec. III from
link mesons with Coulomb binding are static on the
transverse lattice. In the full Hamiltonian there
are additional terms which generate nearest-
neighbor residual couplings enabling the various
bare-hadron states to move along the transverse
lattice. They also break the conservation of link-
meson number mixing various n-link-meson
states. In particular, our calculation involves
the mixing of two- and four-body bare-hadron

states. This effective field theory of bare hadrons
is treated as a strong-coupling perturbation ex-
pansion.

The various residual couplings can be identified
by examining the full Hamiltonian governing the
motion of the system. These terms are generated
by the Coulomb interaction, the magnetic inter-
action, and local potential interactions.

The Coulomb terms are identified by expanding
the current-current interaction V" in terms of
creation and annihilation operators. %e obtain

(4.l)

where the Fourier transform of the current is
given by

, [6(k —q —q')(q' —q)A„;, Br, ; +5(k —q+ q')(- q'- q)A„;, B, ,„
0

+5(k +q-q')(q+q')A, '„, Br.„;-+6(k+q+q')(q-q'}A, '-„-, B~~, ~ ]. (4.2)

In Fig. 6 we show the various vertices generated
by this interaction; Figs. 6(a) and 6(b) show the
Coulomb scattering vertices, already used in the
longitudinal dynamics calculations, which corre-
spond to the terms

gN LBg( I I 1

and the production term [Fig. V(b)] is

, 5(k —q+ q')(q+ q'}A,.A, ,v'2q 42q'

, 6(k —q+ q')(-q- q')B,.B, .
v'2q 2q'

(4.2)

The new vertices, Figs. 6(c) and 6(d), describe
Coulomb production and annihilation and are given
by

, 5(k+ q+ q')(q —q')A,'B,',v'2q 2q'

, 5(k —q —q')(q —q')A, B; .1 1
V2g V 2Q'

(4.4)

The transverse-magnetic term, which we call
the nonlocal box (NLB), also gives rise to scatter-
ing and production terms as shown in Figs. V(a)
and 7(b). The scattering term [Fig. 7(a)] is

As noted in Sec. II, the linearization of the link-
meson degrees of freedom is only consistent if
we add local potential terms to the effective Ham-
iltonian. One necessary term is a local four-
link- meson interaction whose matrix elements
are identical to those of the nonlocal box (replace
gNLe by g»). All the vertices are written with
a normalization appropriate for direct matrix ele-
ments between the normalized wave functions
y(x„.. . , x„).

Our purpose is eventually to diagonalize the
full Hamiltonian in a finite basis of bare hadrons.
To this end we must calculate all the matrix ele-
ments connecting the various bare mesons which
are given in terms of wave functions of the form

0(+1& ~ ~ ~ y +N) (+1& ~ ~ ~ y +N} +1

Up

(0) (b) (c)

FIG. 6. The vertices generated by the Coulomb terms
in the current-current interaction. (a) and (b) are the
Coulomb scattering terms. (c) and (d) represent Cou-
lomb production and annihilation, respectively.

U)

(b)

FIG. 7. Scattering (a) and production (b) terms re-
sulting from the transverse-magnetic interaction.
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FIG. 8. The process denoted by B(1,1'2'3')624&.
FIG. 9. The nonlocal-box scattering term.

where QI, x;=1. Thus, we wish to calculate
analytically the various matrix elements of opera-
tors appearing in the Hamiltonian in this power
basis.

The Coulomb scattering matrix elements have
already been calculated in Eq. (3.18) in addition
to the kinetic energy. These interactions do not
change the link meson number. Both local- and
nonlocal-box scattering will have the same struc-
ture. Let us discuss in detail the nonlocal-box
case, which involves link mesons on four different
sites. This interaction mixes the link-meson num-

ber two and four sectors enabling the bare hadrons
to move on the lattice. We note that a bare had-
ron containing two link mesons can move only via
a second-order transition through a four-link-meson
state. The second effect of the coupling is to couple
four-link-meson states with diferent "polariza-
tion" configura. tions. Thus, four-link-meson states
can move on the transverse lattice on their own with-
out having to couple to the two- or six-link-meson
sector. An example of a process induced by the mag-
netic term is shown in Fig. 8, the process is denoted
by B(1,1'2'3') 624.(for generality the number of spec-
tators has been increased to N - 1), which is given by

B(l'2'3', 1)5 ~ =-gNLB t dII1 ' dIIN«'11 — u1 du1dy', dy25(241+y,'+y2 —2I,),2,2

O'N+2(II1~ 3 b 72y 02' ~
& NI)I4 N (I~I1& 242t ~ ~ t IIN) t (4.5}

where

y2 ~ ~ ~ y
QN(141~. . .) 2IN) =241 242

' ' 'MN N
~

AN+2( 1t ylr 32t 2I2y ~ ~ ~ y 2IN) —(241) (3 1} (J2) (2I2) (MN)

B(1 2.3 I)8 8. . . 1 r(P(+-.')r(P'+ l)r(P'+1)
4 2 4 I(Pt+Pz+Pt+ 3) gNLB

r(pj+P,'+ p,'+ p,'+ 1)r(y, + y,'+ 1) I'(y„+ y„'+ 1)
r(p1+ y2+

' '+yN+ p1+ p2+ p'+ y+2+y„'+N)

(4.8)

All other matrix elements are calculated in an analogous manner. The (non)local-box scattering relates
two-link-meson states in the four-link-mesons number four sector. It is represented by Fig. 9 and its
value is

(p1 + p2 + p1 + p2 + 1)r(p,'+ p2 + 1) ' ' ' r(pN + pN + 1) 1 r(p1 + ,'}r(p2 +——,')r(p1 + —,')r(p2 + —,')
r(P,'+ P2+ ~ + PN + P, + +PN + N 1) 4 r(P,'+ P,'+ 1)r(P, + P2+ 1)

(4.7)

Two other terms are induced by the current-current interaction. They are, respectively, the Coulomb
annihilation term which is shown in Fig. 10. It relates states in the link-meson four sector. The rea-
son it does not appear in the link-meson two sector is that it contains a colored gluon as the intermediate
state in that ca.se. It is given by

1 I'(P'+P,'+P, +P, + l)I'(P,'+P, + 1) I'(P' +P„+1) I'(P, +) (rP2+') (r'P+ ,' }(r'P+-,'-) (, p, )(p p (4 8
4 r(P1+ P, + + P„'+P„+N 1) -I'(P, +P, + 2) (rP1P+,'+ 2)

pi'

Ui

r'
3 ~ ~ ~ ~

I
Up Up UN

Py rg rg r,
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Ui "I
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~
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FIG. 10. Coulomb annihilation terms. FIG. 11. Coulomb production terms.
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Note that this term is nonzero only between states that have the same parity under an exchange u1 —u2

(u1 u2). The last matrix element needed is the Coulomb production matrix element. It relates the two-
and four-link-meson sectors, as shown in Fig. 11. It is given by

r(P,'+ P, +I) r(P„+P„+1.) (W, ~, )r'(y, +-,')I (V2+-,')
4 I'(P1+ +P„+$1+ r, + r2+P2+ +0g+&) (W, + r2)(1'1+ &2+1)

„I I (P (+-.) 1(71+7 2+P1+ P1+1)(71+@'2+ 2P' + 1) I'(P,'+-.)I'(W1+ r2+P2+ P2+ 1)(&1+&2+ 2P2+1) y

~(P1 + Pl + I)~(P + 11 + 1 2 + ) ~(~2 + ~2 + 1)~(~2 + 11 + 12 +
(4.O)

All matrix elements induced by the transverse
current-current interaction have not been multi-
plied by the Coulomb coupling constant (g C„)/va
which is set to be one. This coupling actually sets
the mass scale of the problem. We have accumu-
lated by now all the necessary information to cal-
culate the masses of the gluon-bound states.
Having allowed the bare hadrons to move it would
thus be natural to form a basis of transverse-
momentum eigenfunctions:

(4.10)

and calculate the Hamiltonian in this basis. We
have constructed the matrix for a general p~ along
the lines described in this section. The full ma-
trix is given in Appendix B.

Before turning to the actual computation of the
hadron masses, we note that although we have re-
stricted our discussion to a link-meson number
not larger than, four it is obvious that we have by
now all the machinery necessary to deal with any
link-meson numbe~. All one needs is to solve the
n-link-meson bare-hadron wave-function equation
by the same techniques used for the four-body
wave function and then set up the Hamiltonian as
done above. The number of terms increases
rapidly of course, but the calculations are
straightforward. This scheme is based on the
proposition that the perturbation in the link-meson
number is indeed reasonable and provides a con-
vergent procedure; this will be tested by the cal-
culations.

V. CALCULATIONS

The theory as formulated consists of three pa-
ra, meters (including an overall scale) and an un-
known function (the potential in the linear repre-
sentation). This is a consequence of the theory
being treated in a noncovariant gauge and with a
noncovariant cutoff. The relation between param-
eters fixed by Lorenz invariance can only be re-
covered in the continuum limit. The fact that we
have modified the theory for a finite lattice spacing
was discussed in detail in Sec. II. This left us

with the unknown potential function.
What we propose to check is that we have chosen

relevant degrees of freedom in terms of which a
tractable scheme to calculating hadron masses can
be described. At our present state of knowledge
this would require a parameter fitting to masses
of known particles. We thus limit ourselves to
describing features of this scheme.

The parameters are
(i) (g2C„)/11a: Chosen to be one during the cal-

culations, it sets. the scale of bare-hadron masses.
(ii) 0 (or P): The mass of the link meson (the

edge-point behavior of the n-link-meson wave
function). In the nonlinear o' model with O(N)
symmetry this mass was actually generated dy-
namically. One would expect that in a covariant
formulation there should be only one hadronic
mass scale. The value of P controls the nature of
the longitudinal dynamics. Large (small) P corre-
sponds to weakly (strongly) bound link mesons.

(iii) gNLs: The coupling of the nonlocal box, in
the continuum theory; it is essentially the gauge
field self-coupling g . For a fixed transverse-
lattice separation a, it should be related to g .
However, in this calculation we treat it as a free
parameter. gN„s'/[AE(P)], where AE(P) are bare-
hadron energy splittings (which are functions of P),
is essentially the expansion parameter of the ef-
fective bare-hadron Hamiltonian.

(iv) There are many other parameters associated
with the effective potential containing I„,all of
which are in principle determined dynamically
and calculable from g . We, however, do not
know, at the moment, how to perform such a cal-
culation and we thus pick one term-the local-box
interaction and treat the coupling g» as another
free parameter.

Fixing three parameters, one must next choose
the basis of states and truncate them. In the cal-
culations reported here we have chosen three even
and three odd states in the link-meson number two
sector to each such classification. There corre-
spond two possible "polarization" states (Fig. 2).
In the four -link-meson sector, one state was chosen
from each one-dimensional representation. There
are four such representations (Al, A2, B1, 82)
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and to each correspond 10 different polariza-
tion states (Fig. 2). Two excitations were picked
from the two-dimensional representation ~. To
each there correspond eight states (E does not
contain el, e2 states). All together the basis con-
tained 12+ 40+ 32 = 84 bare-hadron states. The
states were chosen by their energy ordering in
the mass spectrum of bare hadrons.

We first studied the hadronic mass spectrum by
diagonalizing the total Hamiltonian of zero trans-
verse momentum. In this case the same symme-
tries that served to classify the n-link-meson
states, namely the bare hadrons, also categorize
the eigenstates of the full Hamiltonian. For an
illustrative example let us turn to the link-meson
number two sector. In that case the states &~ and

A2 can form only three of the five representations
of the group D,.

Taking the symmetric and antisymmetric com-
binations of even two-body states one forms the
one-dimensional representations of &1 and 82

The odd two-body wave function can be placed in
a doublet to form the two-dimensional ~ repre-
sentation

r

Both the &2 and &1 representations are absent
from the link meson number two sector. In order
to appereciate this fact let us consider a spin l
particle on a transverse lattice. (These results
are valid also for helicity states in the infinite-
momentum frame. ) The irreducible representa-
tions of dimension 2l+ 1 will be broken into one-
and two-dimensional representations on the trans-
verse lattice'. By applying standard methods of
group theory one concludes that the spin-zero
state transforms like A1. The l, = 0 component of the
spin-one state is inA1 while the l, = +1 components
form two-dimensional 8 representations. In the
spin-two case the l, =0 component transforms like
Ai. The l, =+1 are in an & representation and the
l, =+2 form symmetric and antisymmetric corn-
binations which transform according to &1 and
&2, respectively. The general rule is

A1
l =+4 +8 +12

A 2 ' ' ' ' antisymmetric

B1
1 antisymmetric

B2 ' ' ' symmetric

E)l, =+1, + 3, + 5 .
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FIG. 12. The hadronic mass spectrum for (a) P= 0.2,
gN„—3.65, g 0, (b) P 0.45, g —46, gLB 0.
The bare-hadron masses are also shown. The arrowed
lines indicate the main bare-hadron wave-function de-
composition of the hadrons. The number is the mixing
probability (in %). For P= 0.45 only the important two-
body states were marked.

In the continuum limit one should recover the
I orenz degeneracy. Thus, the absence of the &1
and A2 representations in the two-link meson sec-
tor means that these would have to come from the
higher link meson number sector. This implies
that the two and four (etc.), sectors have to mix
in the continuum limit.

Note that one knows already from the study of
the bare hadrons in the link meson number two
sector that the lowest even eigenstate is lighter,
for all P, than the lowest odd eigenstate. This
leads to degenerate A1, &2 states split away from
an & state, identifying the &1 state with a spin-
zero hadron, &2 with an m =+2 symmetric com-
ponent of a spin-two component, and & with m =+1.
We get an embryonic degeneracy between a scalar
and a tensor piece of a gluon-bound state. If ~
will also be related to the tensor then the vector
gluon-bound state lies way above the scalar and
some components of the tensor. Even in the case
where the ~ will be related to a vector particle, a
hierarchy scalar-tensor and a heavier vector has
formed.

A similar classification can be obtained for the
link-meson number four sector at k~ =0. These
symmetry considerations serve also as a check of
our computer' program. Most of the eigenfunc-
tions have been checked to show that indeed all
eigenfunctions of the total Hamiltonian can be
classified according to D4 and that they contain
only the allowed combinations in the two- and four-
link-meson number scalar. The classification of
all.four-body states is shown in Appendix C.

In Fig. 12 we show the mass spectrum for two
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sets of parameters:

(a) I =0.2, gNLs =-3 65, gLs ——0,

(b) P = 0.45, gtu, s —-46, gLII ——0 .
These lower-lying states are classified according
to the D4 symmetry.

The next question to be addressed is the consis-
tency of the link-number expansion. It is checked
by studying the four-body content of the low-lying
excitations. These results are summarized in
Fig. 12. It turns out that the expansion is rather
satisfactory. The four-body mixing in all possible
cases (Al, 82, and E) is not too large as to upset
the expansion and not too small, thus allowing the
two-body states to move on the transverse lattice.
[For the set of values (a) perturbation theory would
give a 50% error while for the set of values (b)
although g~~ is very large, perturbation theory
gives a correct result within 10% because gIu, s /
&&(P), the expansion parameter, is small. ]

In the absence of a physical gluon-bound-state
spectrum qualitative considerations are used to
zone the relevant range of parameters. For a
general set of parameters the Hamiltonian is
not positive definite. The requirement that all
bound states have positive energies constitutes a
nontrivial constraint. In particular, for g»' ——0,
a curve forms in the P, gNLs plane. One defines
g to be the largest absolute value of g~~ al-
lowed for a fixed value of P g.is an increasing
function of P. Its behavior is shown in Fig. 13.
In the allowed region of the plane one looks for
those parameters which simulate on a rather
large lattice the continuum limit.

The &1-&2 degeneracy is broken once the full
Hamiltonian is diagonalized leading to a scalar-
tensor-vector-like ordering. This result is stable
under a large variation of all the parameters of
the theory and is one of the qualitative results of
our analysis. One should point out that in the cal-

culation of Kogut and Susskind a scalar-tensor
degeneracy is obtained (or more precisely, in a
cubic lattice a spin two breaks into one three- and

one two-dimensional representation; the state-
ment is that the scalar is degenerate with the
three-dimensional piece of the tensor) and they
are both lighter than the vector (all of whose com-
ponents fall in a single three-dimensional repre-
sentation on the cubic lattice and thus remain de-
generate). As a matter of fact, two interacting
spin-one particles with a conventional potential
would be in an s wave and thus if the angular mo-
mentum interactions are not too large, one indeed
should have the vector lie above the scalar and
tensor.

A naive guess could be that having a light link-
meson mass p, —which is tantamount to P near
zero (strong longitudinal coupling)-would pull
together the bare-hadron masses and help them
mix. However, as was shown in Sec. III by re-
ducing P to zero one cannot generate even one
zero-mass hadron (unlike the situation in the bare
quark-antiquark meson sector). The ground states
of the various representations become increasingly
heavier because of the welding energy" at each
transverse site. This a Prior spacing of the
low-lying bare particles means that a nonnegligible
coupling should exist between two- and four-body
states, in particular, g~& would have to be large.
However, for small P the lowest-lying even two-
body state has a small mass relative to its sepa-
ration from the four-body states. Thus, a large
gNL~ falls outside the allowed region. %e are thus
pushed to values of P around 0.2 and gsLs =-3.5
(the values used in Fig. 12) before a reasonable
four-body mixing occurs. Even in this range some
improvement may be desired. The energy dif-
ference between the bare two-body even state and
the first four-body B2 state is rather large and it
mixes much more into the second excited two-body
even state only for P =0.45. g~B can be made
large enough to overcome the energy difference
and reach a 20% mixture. This reflects itself in
the dispersion relations for nonzerd transverse
momentum,

Before studying the 0& &0 case in detail we note
that the local-box term has a negative eigenvalue
and thus cannot serve to increase significantly the
allowed region. By studying the structure of
theory at kT & 0 one gets additional information
on the "continuumlike" behavior of the excitations.
The Hamiltonian described in Sec. IV is diagonal-
ized for nonzero transverse momentum. In Fig.
14 we plot the dispersion relation: The energy of
the hadrons versus their transverse momentum.
The x- and y-transverse-momentum components
are equal.
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of the energy for large k2 . This is in the right
direction as the edge of the Brillouin zone moves
to infinity for small values of the lattice spacing.

FIG. 14; Dispersion relation; the energy vs transverse

gNLB 6 gLB 0. The trans-
verse momentum is in the k„-k„direction.

We first note that each of the lowest-lying states
involving two- and four-link meson mixing satis-
fies a physical acoustic dispersion. This allows
an appropriate transverse motion for the hadrons.
The next information available relates to the extent
to which the hadrons in this approximation have
continuumlike properties. We can study several
aspects of this question; in the infinite momentum
frame the dispersion relation is

E =m'+cQ '
where c stands for the velocity of light. In the
continuum limit all states should have the same
coefficient c and in addition the rotational invari-
ance of the theory should be restored. In our
case one compares c in the x or y direction to c
in the 45' direction (k„=k„). In Table I we list
c for the lowest-lying A. 1, 82, and one of the &
states (for kr + 0, the & states are no longer exact-
ly degenerate). The large P and g~s region is
again more continuumlike. For the 45' direction,
c is the same for all representations within 20%.
For A1 and I32 states the 45 rotation changes c by
less than 10%%uc. The & states are not yet behaving
in a satisfying manner. One state (shown in the
table) has a very large value of c and the other
(not shown) is essentially flat [they change roles
when going from (k„, 0) to (0, k„)j.

For smaller values of P the situation is some-
what different for B2 states, which hardly mix
with the high-energy four-body state. As a final
observation we note that for large P both the A1
and B2 masses are much smaller than the value

VI'. DISCUSSION

The transverse-lattice, infinite momentum
frame version of QCD attempts to deal directly
with the physical degrees of freedom of QCD,
maintaining and imposing the full internal sym-
metry structure of the theory at the cost of the
full Lorentz symmetry. The main thrust of this
paper is in actually implementing this program.
This was done by treating the longitudinal dynam-
ics nonperturbatively and perturbing in the trans-
verse motion dynamics.

The hadrons emerging from the analysis are
composed of a superposition of bare hadrons.
Each bare hadron is a weakly bound system of link
mesons (P is rather large). Link-meson-number
violation is large enough to allow a reasonable
transverse motion but is small enough to validate
the expansion in terms of link-meson number.
Strongly bound bare hadrons cannot be supported
by our approximation to the effective potential.
An improvement of our understanding of the linear
version of QCD is needed before it can be estab-
lished as a faithful effective theory at some had-
ronic distance scale.

We wish to conclude with some remarks on the
general characteristics of the gluon-bound-state
spectrum. Gluon-bound states have the rather
unique property of being formed from gauge parti-
cles which are color nonsinglets but have triality
zero. One would like to know in what way will the
gluon-bound-state spectrum reflect these special
facets of its constituents.

In our analysis the Lorentz pattern of the low-
lying excitations seems to be explained by a val-
ence-gluon picture. It is however not clear that
this description is faithful. The first source of
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doubt is the gauge dependence of the separation
between the dependent potential and the indepen-
dent degrees of freedom. However, if there exists
any gauge in which a valence-gluon picture serves
to classify the gauge invariant physical states, it
is a useful concept. The more serious problem
is the strong-couplinglike bias inherent in our
analysis. In both the straightforward strong-
coupling calculations in the A = 0 gauge' and in
our more complicated approach the valence struc-
ture is a strong-coupling feature. The expansion
in link-meson number dictates (as was shown in
Sec. V) the order of the Lorentz excitations.

To leading order of the 1/&, expansion an infi-
nite number of stable gluon-bound states was ob-
tained. This is consistent with expectations
from the continuum limit. In this sense there
exists a limit in which gluons (link mesons) are
confined and attract with constant forces. In our
scheme there was no algebraic characterization
of the states save that they are color singlets.
One may wonder if these states form some de-
generacy patterns associated with a surviving
global symmetry. Such a symmetry should be
explicit in a string theory of hadrons.
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APPENDIX A: SOME DETAILS OF THE SOLUTION OF
THE FOUR-BODY BOUND-STATE EQUATION

Ident' 2C4 2C2 2C2'

1 1

The four-body bound-state equation is simplifi. ed
when decomposed in terms of states with a definite
D4 symmetry. D4 has four different one-dimen-
sional representations &1,A2, 81,B2 and one two-
dimensional representation &. The character
table of the group D4 ean be found in standard
books on finite dimensional groups. It is

APPENDIX B: THE HAMILTONIAN FOR GENERAL
TRANSVERSE MOMENTUM

The Hamiltonian is given in the bg, sis of two-
and four-body states as defined in Fig. 2. A

dictionary for the symbols is given below and an
example was done in Eq. (4.5):

P ',„(x„x»x~, x4) = (x,x,x,x4)~P„(xf x2 xs, x4),

(3.21)

For 0.=&1:

Po ——1,

Py =x +y +z + w +xy+yz+zw +wx
&

P2 —X +y +Z +%

s
—x4+y'+ z'+ w4+ x'z'+ y'w'+ xsz

+z @+y w+%y+xyzw ~

0

where the various group members of D4 generate
the transformations on square whose sides are
denoted (in order) by x, y, z, w,

For n=A2:

P, =xy(y —x) +yz(z —y)+ zw(w —z) + wx(x - w) .

C2'. x ~z
p y ~w

~

C4(90'): xyzw-yzwx,

For a=@].:
P, =(x —z)(y —w). (S3)
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TABLE II. The appropriate matrix elements for the Hamiltonian for general transverse
momentum. The following notation is used: M=kinetic energy, C =direct Coulomb, LB=.local
box, B=nonlocal box, CP= Coulomb production, CA= Coulomb annihilation, e„=e' "', and

e $kyc
0

Af
A2
Bf
B2
Cf
C2

C3
C4

Df
D2

E

Mf + M2+ 2 Cf2+ LBf2
0

B(234, 2')~ ff +e~,B(412, 1')~32
B(123,1')&42I + e~B(341,2') t5)f
CP(1234, 1'2')
CP(3412, 2'1')
e„CP(3412,1'2')
e„CP(1234,2'1')
CP(1234, 1'2') + e~CP(3412, 2'1')

0
0

v 2CP(1234, 1'2') +v 2CP(4123, 2'1')
+v 2LB(123,1')642i +&2LB(234, 2')6 ff

M, + M2+ 2Cf2+ LBf2.
B(123,1')642 +e„B(341,2')&2f
B(234, 2'}&ff +e„B(412,1')432~
e CP(3412, 2'1')
CP(1234, 2'1')
e,CI (1234, 1'2')
C P(3412, 1'2')

0
CP(1234, 1'2') + e„CP(3412,2'1')
v 2CP(1234, 1'2') +W2CP(4123, 2'1')
+v 2LB(123,1')&42i+V 2LB(234, 2')4 f f&

0

B,

Af
A2
B,
B2
Cf
C2

C3
C4

Df
D2

B(2, 2'3'4') & ff ~ + e~+B(1,4'1'2') ~23~

B(1 1'2'3')~24 +ey*B(2 3'4'1')~f2
2 3 4 f2 23 34 4f

0
B(34, 3'4') &ffi&22i

B(34,2'3') &2f.&f4.
B(34,4'1') 6 f2.~».
B(34, 1'2') 624I6 f3'

0
0
0
0

B(1 &'2'3')~24 + e*B(2»'4'1')& f2

B(2, 2'3'4') ~ff ~ + e~ B(1,4'1'2') ~23I

0
+M2+M3+ M4+ Cf2+ C23+ C34+ C4

B(12,1'2') 633 444

B(12,2'3'}~34.n4f.
B(12,4'1')6».643.
B(12,3'4') 63f i642I

Cf 'C2

A2
Bf
B2
C,

C2

C3
C4

Df
D2

CP(12, 1'2'3'4')
e,*CP(», 3'4'1'2')

B(12,1'2') 633.~44.

M, +M, +M, +M4+ C„+C»+ C34+ C4,
+ LB23+LB4f+ CA23+ CA4f

e,*CA(23, 4'1')~».642.

e„CA(41, 2'3') &3f.&~24&

0
CA(23, 2'3') ~„.~44.

e„e~ CA(41, 4'1') &22~~33

e,*V 2CA(41. 4'1') ~22 ~33
v 2CA(23, 2'3')~ff~~44

CP(21, 3 4'1'2')
CP(21, 1'2'3'4')
B(23, 3'4'}~f2.~4f.
B(23, 1'2')~f4 ~43'

e~CA(41, 2'3') ~3f ~24~

Mf+M2+M3+ M4+ Cf2+ C23+ C34+ C4f
+ LB23+ LB4f + CA23+ CA4f

0
e„CA(23, 4'1') & f3i~42i

e,CA(41, 4'1') 6» ~»
e„CA(41, 2'3') &24i~3f i

v 2CA(23, 2'3') ~„.~44.
W2CA(34, 4'1') 6 f2.&23'

C4

A,
A2
Bf
B2
Cf
Cp

C3

e*CP(12, 3'4'1'2')
e *CP(12,1'2'3'4')
B(41,3 4 )g„,~»,
B(41,1'2') &23~~34'

e„*CA(23,4'1') & f3i~42i

0
Mf+M2+M3+M4+ Cf2+ C23+ C34+ C4f
+ LB23+ LB4f+ CA23+ CA4f

e *CP(21, 1'2' 3'4')
CP(12, 3'4'1'2')
B(12,3'4'}~3fi~42~

B(34, 1'2') & f3&~24~

e„*CA(41,2'3') 6,4.~„
e~CA(23, 4'1') 4 f3' 642'
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TABLE II. (Continued)

C4 e~ CA(41, 2'3')&3fl&24t

'Df e„*CA(23,4'1') &13 &42

D2 e~ CA(23, 2'3 }~f1'~44
Ef e~+v 2 CA(12, 2'3') ~34t&4f t

E2 e„*v 2 CA(41, 4'1') ~22 ~33

Mf+M2+M3+M4+ C12+ C23+ C~+ C41
+ LB23+ LB41+ CA41 + CA23
e„*e~CA(41,2'3') ~31 ~24

CA{23,4'1') &f3t642t

W2CA(12, 4'1') &32i~43i

e.*~2CA(34. 2'3') ~f4 ~2f

Df

D2

Ef 0
E2 v 2 CA(23, 2'3') 4 f f t&44t

+e~ v 2CA(34, 4'1')512 623

A 1 CP(12, 1'2'3'4') +e„"CP(21,3'4'1'2')
A2 0
Bf 0
B2 0
Cf CA(23, 2'3') 4 ff ~44.

C2 e~ CA(41, 4'1') ~gsi~22t

c, e„cA(41,2'3') n». 624.

C4 e„e„*CA(23,4'1')442t5 f3I

Df Mf+M2+M3+M4+ C12+ C23+ C34+ C41
+ LB23+LB41+ CA23+ CA41

0

0
CP(12, 1'2'3'4') +e„*CP(21,3'4'1'2')

0
0

e +e~CA(41, 4'1 )~22tp33
e„*CA(23,4'1') &42' ~ fst

e,CA(23, 2'3') ~,4.~„.
CA(41, 2'3') 631.6,4.

Mf+M2+M3+M4+ C»+ C»+ C34+ C«
+ LB23+ LB41+ CA23+ CA41
&2CA(23, 3'4') &4f ~12 + e„W2CA(41, 2'3') &Sf ~24

0

E2

A2 v 2 CP(12, 2'3'4'1') +v 2 CP(21, 1'2'3'4')
+v 2LB(l, 4'1'2') ~23t +v 2LB(2, 3'4'1')~12'

Bf 0
B2 0
Cf e~v 2 CA(41, 4'1') &22 ~33

C2 v 2CA(23, 2'3')4 f f1644I

C3 e v 2CA(23, 1'2')~43 &14

C4 v 2CA(41, 1'2')623t634

Df 0
D2 v 2CA(23, 3'4') &

+ e„~2CA(41, 2'3')bg, hg4y

Ef Mf+M2+M3+M4+ C12+ C23+ C34
+ C41 + LB12+LB23+ LB34+ LB41
+ CA(12) + CA(23) + CA{34) + CA(41)

0

&2CP{12,1'2'3'4') +&2CP(21, 4'1'2'3')
+W2LB(l, 1'2'3') 624' +&2LB(2,2'3'4'}~

11t

0

&2CA(23, 2'3')612 ~,4
v 2CA{41,3'4')~21 l~32t

e„&2CA(41,4'1') &22 &3y

e„v 2CA(23, 3'4')44f t& 12t

v 2CA(23, 2'3')off ~44 +e~v 2CA{43., 3'4')42f ~32

0

Mf ™2+M3+ M4+ 12+ C23+
+ C41 + LB12+LB23+LB34+ LB41
+ CA(12) + CA(23) + CA(34} + CA(41)

For &=&2:
P, =x+z (y+ w),
Pt =x'+ z' - (y'+ w'),

P2=x +z -(y +w ),
P, = (x+z)yw —(y+ w)xz.

For u=E:
Po=(x —z, y —w),

Pt —(x z~ y w))
P2=(x'-z', y'- w'),

,P, =[yw(x —z), xz(y —w)],

,P2 =[xz(x-z), yw(y —w)].

The appropriate matrix elements for the Hamil-
tonian are tabulated in Table II.

APPENDIX C: DECOMPOSITION OF HADRONS, AT ZERO
TRANSVERSE MOMENTUM, IN TERMS OF

BARE-HADRON SYMMETRIES

One can classify the hadrons with k2 ——0 accord-
ing to the symmetry D4. However, only certain
configurations of bare hadrons are allowed in a
hadron of a given symmetry. The following is a
list of such a decomposition. The letters a, &, &,
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d, & correspond to the states Af A2, B2, B2, Cf,
C2 Cs~ C4 D f D2 Ef Eq appearing in Fig. 2:

A 1: even(a(++)},

Al(b(++}, c(++++),d(++), e(++)},
A2(b(++), c(++++),d(++), 8(++)},

Bl(c(++++),d(++)}, B2(c(++++),d(++)}.
A2: Al(b(+ )}, A2(b(+-)},

E(1}(c(++++)},E(2)(c(++++)}.
Bl: Al(c(+--+)}, A2(c(+--+)},

Bl(b(++), c(+--+)},
B2(b(++), c(+ +)-}-

B2: even(a(+-)},

Al(d(+-), e(+-)}, A2(d(+-), 8(+-}},
Bl(b(+-), d(+-)}, B2(b(+-), d(+-)},

E(1)(c(+—+)}, E(2}(c(+--+)}.

odd

)' c++-- )

-I(".„) (:(.'. ')) I
E(1)bl+ E(2)b2 E(1)b2 —E(2)bl
E(2}bl+E(1)b2 ' E(1)bl —E(2)b2

(

d,
i

( (++--)'I
\ d2 I (c(+-+-))

d, c++-- I

This assumes the following sign conventions for
the E states: E(1)(1234)=E(2)(2341)=-E(2)(4123)
and E(2)(1234)=-E(1)(2341)=E(1)(4123).

~Operated by Universities Research Association Inc.
under contract with the Energy Research and Develop-
ment Administration.

/Permanent address: Institute for Theoretical Physics,
University of California, Santa Barbara, California
93106.

fPermanent address: Racah Institute of Physics, He-
brew University, Israel.
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