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%e evaluate those processes in perturbative quantum chromodynamics which can lead to the production

of three high-pT jets in hadron-hadron collisions. A formalism is proposed which incorporates event vetos to

separate hard-scattering jets from spectator jets. These vetos modify the scaling violations of the initial

parton distribution functions. A simple estimate indicates that the three-jet fraction in high-pT hadron

processes may be up to four times larger than the corresponding three-jet fraction in e e annihilation.

I. INTRODUCTION

We now have excellent reason to believe that it
is possible to use quantum-chromodyna. mics (QCD)
perturbation theory to discuss cross sections for
the production of hadrons or hadronic jets at
large transverse momentum. There are two com-
ponents to the reasoning behind this belief:

First, the property of asymptotic freedom in-
sures that the running coupling in QCD becomes
small in kinematic regimes characterized by
large momentum transfers between fundamental
constituents. ' This means that we should be
able to calculate an approximation to these large-
momentum-transfer processes using the pertur-
bation expansion.

Second, it has now been shown possible to fac-
torize perturbation- theory diagrams so that the
leading soft or collinear (infrared) divergences
can be isolated and, hence, absorbed into unknown
distribution functions or decay functions. These
unknown functions should have a mild (loga. rithmic)
dependence on the momenta of the hard internal
subprocess. The distribution functions should be
approximately universal (subject to the uncertainty
of higher-order or nonperturbative effects) so
that they can be used in many different processes.

These two features indicate that it is sensible
to organize the calculation of large-P~ hadron
production in the framework of the parton or hard-
scattering model as long as one uses scale-vio-
lating quark and gluon distribution functions and
the appropriate form of the perturbation series
for the internal processes. They are not suffi-
cient to guarantee that we can calculate cross
sections to arbitrary precision. For example,
there may be nonperturbative. effects of unknown

magnitude which destroy the assumed factoriza-
tion properties of the hard-scattering model.
Qr else the perturbation series may be slowly
converging so that, in kinematic regimes where
o., is not truly miniscule, results are changed
significantly by high-order corrections.

In this respect, it is important that the formal
demonstrations of the consistency of the general
hard- scattering model in Ref s. 3-5 have been
supplemented by specific phenomenological studies
of high-P~ production by Feynman, Field, and
Fox, ' by Owens and collaborators and by Conto-
gouris, Gaskell, and Papadopoulos. The overall
agreement of these calculations with each other
and with data is reassuring. They begin to dis-
agree at low values of transverse momentum,
where the exact form of k~ fluctuations in the
parton distribution functions or the contributions
of semicoherent constituent-interchange- model
(CIM) processes can be important. '

The calculations of Refs. 8-10 all represent
correct phenomenological applications of QCD
within the leading-logarithm approximation for
higher-order corrections. In order to improve
our understanding of high-P~ processes, it is
obviously important to do calculations which in-
clude higher-order corrections in some manner
other than the leading- logarithm approximation.
This can be difficult. To go beyond the leading-
logarithm calculation for the inclusive single-
particle cross section, one needs to handle simul-
taneously a number of effects including (1) non-
leading corrections to o.', (Pr'), the effective coup-
ling in the hard-scattering subprocesses, ' (2) non-
leading corrections to the scaling violations of the
quark and gluon distribution functions and decay
functions, " (3) higher-order corrections to cross
sections for the fundamental 2-2 processes (vir-
tual loop diagrams), and (4) the contribution of
2-3 and 2-4 subprocesses in the hard-scattering
expansion.

We can, however, decouple the problem of the
production processes [(4) above] from the other
corrections by defining experimental observables
which are preferentially sensitive to them. There
are many possible ways of doing this. We will
discuss the problem here in terms of "quasiexclu-
sive" jet cross sections in which almost all of the
energy in the initial hadron-hadron collisions is
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detected either in two jets directed along the initial
beam and target directions or in some central
region in the c.m. system which contains two,
three, four, . . . "high-P~" jets. The purpose of
the approach is to define an experimental setup
as similar as possible to that used for the analysis
of multijet events in e'e anni. hilation.

The analogy with e e annihilations is important.
De H, ujula, Ellis, Floratos, and Gaillard'4 origi-
nally performed detailed calculations which showed
how multijet events in e e annihilations could be
identified and used to test the underlying perturba-
tion theory. Since that time there have been sev-
eral other analyses which identify observables
sensitive to multijet events in 8 e annihilations
that can be used to provide nontrivial tests of QCD
perturbati. on theory. 5' It would be desirable to
apply similar analyses to high-p~ jets produced in
hadr on- hadron collisions.

There are solid experimental reasons to seek
data on multijet events in hadron-hadron collisions
in addition to e'e annihilation. The high flux pro-
posed for future hadron-hadron colliding-beam
facilities should make it practical to get many
more multijet events in high-p& experiments than
possible in e'e machines. This is important
since, because of nonperturbative confinement
effects, few events are expected to be clean.
Measurements which involve finding special axes
and sampling techniques will benefit from the
added statistics.

In addition, there will be less contamination in

pp collisions from events containing either a
heavy quark or a 7. lepton than would be possible
in e'e annihilation. These events are, of course,
interesting in their own right, but they can com-
plicate the study of gluon and light-quark jets.

Balanced against the advantages of hadron-had-
ron collisions for jet production, we must con-
sider the following disadvantages. First, we
face the necessity of dealing with the jets of "spec-
tator" partons traveling approximately along the
directions of the initial hadrons. What we term
"three-high-p& —jet" events are, in fact,Wive-jet
events if we count the low-p~ particles produced in

typical hadron collisions. We shall see, in Sec.
II, how this complicates the kinematics. Secondly,
there are many more fundamental 2-3 reactions
which must be considered in hadron-hadron col-
lisions. In e'e annihilation, the O(o.,) correc-
tions to the dominant two-jet process can be ob-
tained by looking at 8'e -qq V. ' In high-p~ had-
ron-hadron collisions we must include many 2-2
processes (qq-qq, qV-qV, VV-VV, etc. ) and
many more 2-3 processes (qq-qqV, qV qVV,

q V-qqq, etc.), each with its own distinctive fea-
tures. These must be averaged in order to get

observables involving hadrons.
In this paper we w'ould like to discuss the for-

malism of calculating quasiexclusive jet cross
sections in the modified parton model. We discuss
the kinematic criteria useful for separating high-

p~ events into classes with two, three, or more
jets. We give the calculations to lowest order in
perturbation theory for the fundamental 2 -3 pro-
cesses of QCD involving quarks and gluons. With
the appropriate interpretation of the observables
this will give the three-jet cross section asymp-
totically within logarithmic accuracy.

The production of three high-P~ jets has been
discussed previously by Combridge' in the quark-
fusion model and also by Kripfganz and Schiller'
and by Maxwell in the framework of perturbative
QCD. Since the basic observables discussed in
this paper are different from those of the above
authors, we give some of the details and motiva-
tion behind our approach.

II. HARD-SCATTERING FORMALISM AND KINEMATICS

The details of the formalism for the hard-scat-
tering model depend on the definitions of the cross
sections to be measured. We shall be interested
here in the cross sections for the (approximately)
exclusive production of high-p~ jets in hadron-
hadron collisions. The reason for our approach
is the growing belief that jets are the "dressed"
quanta of the perturbation theory'and the assump-
tion that we can use calculated jet cross sections
to define hadronic observables insensitive to ques-
tions of how jets materialize as hadrons in much
the same way as has been done in e'e annihila-
tions. ' ' An exclusive observable then has direct
contact with the underlying dynamics.

A. Veto-restricted cross sections

Following the work of Sterman ' and Tiktopou-
los, we suggest that the following criteria can
be used to specify consistent and useful cross
sections. We define cross sections for the large-
P~ production of hadrons such that an idealized
detector vetos an event if any particle or group of
particles deposits more than a small fraction of
the available c.m. energy (E' 'a &v s) outside
of the acceptable kinematic region sketched in
Fig. 1. (We will, for simplicity, usually define
our experimental criteria in terms of c.m. ener-
gies and angles. As emphasized by Furmanski2'
a boost-invariant set of criteria would require
us to use rapidities. Since we will always calcu-
late Lorentz-invariant quantities up to the imposi-
tion of the veto requirement, we can restore
Lorentz invariance by giving a boost-invariant
veto criterion. ) By vetoing events with large en-
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VE sive single-particle production cross section be-
haves as

(n&

~ s "a„(xr= 2pr/v s, 8),d3
finite

(2.2)
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FIG. 1. Figure which specifies configuration for
quasiexclusive j et cross sections. Events are vetoed if
particles deposit energy &ED (Eo/lls )6) in the region of

~de P ~ ~foigjd ~~ Or P ~ (& ~golbM) ~~~
ward and backward cones contain remnants of the beam
and target particles. Active counters cover the central
and measure energy Ez which can be made from two,
three, .. . "large-pz" jets. No counters need be along
the beam and target directions.

ergy deposited in the region 8, c (5, p) or (v- p,
m —5) in this manner, we have defined a guasi-
exclusive configuration where most of the energy
is carried by either the two jets along the initial
beam and target direction or by one, two, three, . . .
"high-p&" jets in the central region. If we choose
the energy detected in the central region to be
large, we can eliminate (by transverse momen-
tum conservation) the possibility that it is carried
by one quantum. We can therefore guarantee that
we are counting events which are the result either
of a hard 2-2 scattering among constituents or of
a hard jet-production process such as qq-qqV
or qV-qVV in a manner similar to that originally
advocated by Bjorken. We will be able to find
criteria for separating events in the central region
into categories such as two jets or three jets by
using analogs of observables such as thrust de-
fined for e e annihilation events.

In the usual formulation of the hard-scattering
model. " it is assumed that large-p~ events are
dominated by hard 2-2 subprocesses. To under-
stand this assumption in a scale-invariant theory,
we can use familiar dimensional-counting argu-
ments. An internal process, where two energetic
constituents collide to produce n large-pT jets
(h,h„-jg2 'j„), gives rise to a cross section

do
El ''E(n-1) d3 . .. 3 s Hn(Pf 'Pg/s)

P1 P6g-1)

(2.i)
(modulo factors involving logarithms) in a kine-
matic region where all invariants p; p& become
large and proportional to s. The contribution
from a finite region of phase space to the inclu-

(modulo logs) and, hence, the single-particle
production appears to be dominated by 2-2 sub-
processes. However, what really happens is
much more subtle, Notice that if we were to
naively integrate the cross section in Eg. (2.1}
over all phase space, we would necessarily enter
regions where the perturbative calculation has
either soft divergences (p;-0) or collinear diver-
gences (p& 'p& -0). These divergences must be
regularized in some manner such that we get finite
results when we sum over all physically degen-
erate states. These procedures are familiar in
QED, and there have been several recent discus-
sions of their applications to QCD calculations.
It can be shown that, with logarithmic accuracy,
the divergences can be absorbed into scaling-
violating distributions or into the final-state-jet
observables such that the 2-2 configuration still
dominates if we interpret our quanta to be jets of
finite angular resolution. The dominance is,
however, only logarithmic. That is, if we inte-
grate (2.1}"hard" multibody phase space where
all invariants are large, p; 'p& & &s, and jets can,
in principle, be isolated, we obtain a contribution
to the single-particle inclusive distribution which
has the same power behavior as the 2-2 contri-
bution but fewer powers of logarithms. The sepa-
ration of these nonleading contributions from other
"corrections" to the single-particle inclusive
distribution depends on conventions, i.e. , just how
we choose to absorb the contributions from the
"soft" regions into the distribution functions. We
will not address this question here. Instead, we
turn to the calculation of these quasiexclusive jet
cross sections which are directly related to the
existence of 2-3 processes.

B. General kinematic constraints

The experimental configuration proposed above
provides constraints on the various kinematic
observables which appear in the formulation of the
hard-scattering model. Because of the veto re-
quirement, the quark and gluon distribution func-
tions which enter into the calculation are not iden-
tical to those in the usual inclusive formulation.
We denote G„„(x, kr, lnP') as the distribution
function for a parton a to carry fraction x of had-
ron A. 's longitudinal momentum P subject to the
veto requirement that no hadrons deposit a large
amount of energy outside of an angle 6 from the
direction of P. We will discuss these distribution
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functions in more detail in Appendix A. Here we
will just summarize some of their properties. -

The first constraint we will consider is that on the
transverse momentum of the initial partons. . We
should have approximately

k c max[k, P(l —x) sin6], (2.3)

where p~ =xP and k~ is some momentum associa-
ted with the scale of nonperturbative effects in

QCD. The constraint (2.3) is necessary in order
that the unscattered remnants of hadron A are not
directed outside the allowed cone for the initial
hadron jet in Fig. 1.

Because the angular gap in the experimental set-
up removes significant interference terms be-
tween initial- and final-state jets, we can justify
the use of the probabilistic hard-scattering formu-
la for the production of n~ distinct high-p& jets in
the central detector,

dg(AB —12 nX) 3n-4

d2kr, dx,G,~~„(x, kr„ lnP2)d2kr~dgG, ~( e(x~, kr„, lnP')
2m g5 ~ 12~ ~ ~ f)X

~(q) p p po (2.4)

8 /vssl —2c, (2.6)

which guarantees that the forward and backward
"spectator" jets can exist and that we are not
trying artificially to discuss coherent processes
within the framework of an incoherent, parton-
model formalism. Other approaches based on
counting rules, factorization, etc. , of various
coherent (constituent-interchange model) proces-
ses seem more appropriate to the regime of high-
x~ events. These approaches are discussed else-
where. " Expressions (2.5) and (2.6) express
the fact that we want each of the jets to have more
c.m. energy than av s and that it is not possible
with finite resolution to arbitrarily subdivide the
system indefinitely. With, for example, E =0.1,
(2.5) and (2.6) tell us it is meaningful to try to
separate two-jet and three-jet events for

We have included in (2.4) the integration over un-
observed quanta outside of the forward and back-
ward cones as a single "phantom" particle po either
in the initial or final state. In order that each of
the large-p& jets be observable we shall require

2xr Er/u s ~n—' e,
where E~ is the c.m. energy detected in the cen-
tral, active detector. We should also impose the
constraint

By changing &, it is possible to expand or contract
this region. Note that we are assuming a hypo-
thetical detector which in both the active and veto
regions are equally sensitive to neutral and
charged particles. If we consider the central
detector as a single entity, the cross section for
it to detect energy Er(xr 4 0, 1) is finite and cal-
culable in the hard-scattering model. For this
reason we do not need to specify the energy or
angular resolution of each jet separately at this
point. These resolution questions will become
important when we explicitly try to separate two-
jet and three-jet events.

Let us consider briefly some of the other con-
straints implicit in Eq. (2.4). In the hard scat-
tering depicted in Fig. 2, constituent a is carried
off mass shell by an amount

2 2 2 k 2

(2.10)

,
. & (0, 8))

Er/~s C(0.3, 0.8),

CERN ISR v s =60 GeV, &r e(18, 48) GeV,

(proposed) ISABELLE ~s= 400 GeV,

(2.7)

(2.8)

e. e (m'/2-p, ~~+@)

g, ~ (')7 -8,7F')
)

Er e(120, 320) GeV. (2.9) FIG. 2. Hard-scattering-model conQguration.



106 THOMAS GOTTSCHAI K AND DENNIS SIVERS

where x, is the light-cone scaling variable. The
veto constraint we introduce restricts both kT,
as in (2.3) and m„; since the relative kr of parti-
cles in the Aa cluster must be limited. For sim-
plicity we assume we can neglect the later effect,
suppress all intrinsic masses in (2.10), and write
using (2.3)

(P.'/I") = (1-x.) sin'5+ O(m'/S ') . (2.11)

(2.12)

In the symmetric region where x, =—x, =—xT,

(1 —xr) sill 5
ACr~/6gr 6

4XT
(2.13)

The exact amount of the error depends on the
shape of the kT distribution and the processes
involved. We can see by the form of (2.13) that the
main contribution is at small xT.

In a similar manner, we can consider some
purely kinematic uncertainties associated with
the hard-scattering model. Using the dimension-
al-counting rules' we can write

d&, „=s f(8;,). {2.i4)

Owing to possible off-shell effects, we have a
kinematic uncertainty in the invariant subenergy
s of the internal process. Using (2.1) this can
lead to an uncertainty

&der ~s -n sin'~ xb 2 x,=—-n = &— — —"(1—x.) +—'(1 —x,)da' S 2 X+b X~ Xb

+ 2(1 —x.) (1 —x,)

When we calculate in the framework of the hard-
scattering model using on-mass-shell parton
kinematics for the internal subprocesses we may
be making errors proportional to (p,'/P ) . Two
simple examples of the kinds of errors possible
are instructive. Off-mass-shell gluons can have
longitudinal polarization. Cross sections for
scattering from these modes will vanish as p, -0
but we have an uncertainty

so~(p 2, g, 8,.) p,2 (1 —x,) sin 5

2 ~ 2

$, = In(kr /A ) =—ln (2.16)

C. Final-state identification and the two-jet background

In the preceeding sections we have argued that,
with some restrictions on the fractional energy

XT deposited in the central region, the hard-scat-
tering model provides a reliable description of

hadronic exclusive multijet production. We can
now discuss the classification of events with re-
spect to the jet multiplicity in the central hadronic
detector. Several observables sensitive to the jet
topology of events in e'e -hadrons have been
proposed. ' ' To be meaningful calculable in

terms of underlying QCD processes, these vari-
ables must be insensitive to the parallel decay of

any quantum involved. Such variables are then

said to be infrared safe.
We shall consider two basic types of these ob-

se rvables.
Thrust . The thrust variables was first suggest-

ed by Fahri for e'e"-hadrons and the transverse
thrust defined as

where A = 0.3-0.7 GeV governs the scale of the
QCD coupling. If we want to require that the
scaling violation in these distribution functions be
calculable in QCD perturbation theory, we will
want the opening angle to be chosen large enough
so that kr ~ /A» 1. This is discussed further
in Appendix A.

Kinematic uncertainties of the type illustrated
in (2.15) appear also in inclusive cross sections
and have been handled phenomenologically in sev-
eral ways. One approach is to use specific regu-
larization parameters in the perturbative cross
sections to protect IR-sensitive regions in the
integrations in (2.4). ' Another approach is to
use the off-shell estimate (2.10) with a specific
value for m„-, as a strict equality together with
off- shell generalizations of parton kinematics.
The extent to which different assumptions give
different answers depends on the distribution func-
tions, but we can get a rough measure of the un-
certainty by using (2.15). Of course, to actually
resolve these uncertainties one must carefully
consider higher-order effects.

2Q
I4(i —x,)'].2XT' (2.15) Tr =4 maxdr(i) —1,

where (2.i7)
Again, to keep this possible source of error under
control, we must stay away from xT near 0.

The uncertainties we ha, ve discussed so far are
proportional to sin ~. We should also mention
that the scaling violations in the distribution func-
tions G',q„(x,kr, lnP } should be most conveniently
expressed in terms of the variable

K(~ pr&) 8(~ ' pr ~~

dr(f )

and r is a unit vector in the transverse plane, was
introduced by Maxwell to describe large-pT pro-
duction.
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Shape variables. Among the general class of
variables which are sensitive to the event shape
but which do not depend on maximizing with re-
spect to a specific vector, we can consider the
observable s

Prl Prl P (cos(y y ))
S

where s =48~' and

(2.18)

(2.19)

suggested by Fox and Wolfram. ' In applying the
variables (2.1V)-(2.19) to hadronic multijet pro-
duction, we restrict the summations to particles
observed in the central region.

For the lowest-order QCD process in electron-
positron annihilation e'e -qq, the analogous vari-
ables have trivial values

T(e'e -qq) =1,
0, odd L

H((e 8 qq) =
even L.

(2.20)

Empirical studies of the fragmentation of "free"
quarks and gluons into physical jets spread these
extreme values, but indicate that, for E„~& 15
QeV, these nonperturbative effects do not com-
pletely obscure three-jet events arising from
e'e -qqV. '4 "

In hadronic multijet production, the situation is
further complicated by the intrinsic inability to
completely specify the underlying kinematics.
Ideally, the values of thrust and the shape vari-
ables should be measured in the c.m. frame of
the hard-scattering subprocess. In general, this
frame coincides with neither the c.m. frame of
the incident hadrons (due to parton transverse
momenta) nor the c.m. frame derived from the
particle configuration in the central detector (due
to possible unobserved hard- scattering partici-
pants). To get some feel for these effects of such
uncertainties, we examine the kinematics of tmo-

jet events in some detail, interpreting Eqs. (2.1V)-
(2.19) via measured hadronic c. m. quantities. In
the hadron-hadron c.m. system, we write the
parton four momenta as

p.= ((x.'P' +m,.')'", kr. sin@., k,.cosy. , z.P),

p, =((x, P'+m» )' ', k» sing~, kr~cosg„—x,P),

p'j =zlP(1, »n8, sing» sin8g cospg, cos8)), (2.21)

p2 ——z2P(l, sin82»ny2, sin82 cos42 cos82)

P, =z0P(r, sin80sin&f&0, sin80cosfo, cos80),

where p0 denotes a possible unobserved parton

jet. We restrict
Kzo

Zj~ Z2 & E.
For the observed two-jet parton state, the mea-
sured thrust value is (assuming complete detec-
tion)

Tr(parton)=2 max(z~r, z»j/(z, r +z»), (2.23)

(2.22)

where z;~ =z, sin~&. Because of the possible un-
detected jet p0 and the transverse momentum of
the initial state, we do not, in general, have z&

=z2, so that

Tr (parton) & 1, (2.24)

and we expect a shift to larger values of thrust
by an amount

1 —zg
~T~ c2 sin5 +

z] zg
(a.a5)

(1+oooe, (I+oos8)
2

+z2
2

,(1+cos80 1 m&g
ax~' ' (a.as)

This is in the opposite direction from the shift
in thrust of two-jet events due to the decay of the
jets into physical hadrons. Small measured
thrusts in large-p~ hadron-hadron collisions
therefore reliably signal multijet final states.

The effects of incomplete initial/final-state in-
formation are more tr'oublesome for the shape
variables. Let us first consider the azimuthal
relationship between the jets. This was first
identified by Bjorken as a signature for two-jet
processes. Define a transverse frame so that
sing& ——0. From transverse momentum conserva-
tion and the constraint (2.3), we have

(2-z fr 22r) sin5+ e
sin/2 [

&
g2T

so that P2 is centered around v with smearing
which is limited by our choice of &, &. The exact
amount of smearing within the allowed range de-
pends on the distribution functions. We can see,
however, that this smearing due to missing trans-
verse momentum mill affect the shape variables
in the same way as the hadronic decay or "con-
finement" effects. For example, since cos(tPq
—P2) &1, H2&1. Since these effects can be limit-
ed, it still makes sense to use shape variables
to separate two-jet events, but the separation may
not be as clearcut as that obtained from a thrust
cut.

Another important kinematic effect arises if we
attempt to measure the scaling variables x„x~ of
the initial partons. The 6-function constraint for
P c +Pb Pi +P2 +~0 lmplles
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If we denote the "observed" value by

1+cos81 1+cos8&
xa —~1

2
+ ~2 (2.27)

and
~ ~ P dd'PLl-=(») '~"'(p. +pp pl--pp-pp). „,

then, we have to smear 6'(x„kr„ lnPP) near x,
=x', '

by an amount

1 ~xa
&x, ~&+ ' sin &. (2.23)

Only if E and sin 6 are small is x, well deter-
mined; for steeply falling parton distributions,
such discrepancies can have large effects. This
structure function dependence can be partially
eliminated by considering the ratio of various
multijet cross sections at fixed observed xT, as
discussed in the next section. '

Pa+Pa P1 +P2+P3+Po ~ (2.29)

where Po again represents a possible unobserved
jet. In the c.m. system of the colliding hadrons,
we can parametrize the involved four momenta as

P, =- ((x, P + mr, ) ~', kr, sing„kr, cosp„x+),

Pp=((xp P +mrp ) kryo slngp, kn, cosfp —xpP)~

pl ——zlP(l, sin8, sing„sin8, cospl cos81),
(2.so)

p&
—z&P(l, sin8„sin&1, sin81 cospp cos81)

Pp =zpP(l, sin8p singp, sin8p cosgp, cos8p),

Pp
—zpP(P sl118p sing„sin8p cos&p cos8p);

In complete generality, this configuration is de-
scribed by eleven Lorentz scalars P, , P, ', po and
the eight independent dot products P& P&. To
simplify the analysis, we shall first work only to
zeroth order in 5, p: ri. e. , setting zp, kr„kr, -o
in Eg. (2.30)]. We shall discuss briefly the effects
of nonzero &, e at the end of this section.

Neglecting c, 6 in the kinematics, we can re-
write the three-jet production cross section as

do(AB-3 jet, X)

dx,dx, G'.,„(x,)G,'~~ (x,)
a pb 123

&&2 ~ & IM~-up I')d'Pl. li

tabb

where

(2.31)

GP(x)= td'k, G'(x, k, ), (2.32)

D. Elementary 2 ~3 kinematics

Given our "experimental" definition for multijet
cross sections in Eq. (2.4), the underlying hard-
scattering process for three-jet production is
potentially a 2 -4 process

S = (P~ +PP) —X@PS I

x, =-2Z,*/Ks,
(2.34)

where E,. is the energy of jet j in the parton-par-
ton c.m. frame, and

x1+x2+ x3 ——2 ~ (2.35)

We also define the normal to the final state plane

~=-(Pl &&Pl')/IP1 XPP I. (2.s6)

The five independent scalars defining the kine-
matics are taken to be s, x„xp, Q„, 8„, wh'ere P„
and (9„orient n. with respect to p, . Then

d'P, =
( ), dx, dx,—dpi'( cos8„) . (2.37)

Using a coordinate frame with z=n, x=p1, the
c.m. momenta can be written as

P, =(~s/2)(I, sin8„cosg„, sin8„sing„, cos8„),

p„= (p s/2)(I, —sin8„cosp„, —sin8„sing„, —cos8„),

p, =(x,&s/2)(I, I, O, O), (2.33)

Pp ——(xp~s/2)(I, cos8», sln811, 0),

p, =(x,p s/2)(I, cos8„, —sin8», 0),
where

cos8,, =1 2(x, +x, —1)/(x, x, ) . (2.39)

The descript'ion of three-jet production simplifies
further if we take p-m/2 in Fig. 1. In this limit

Xa Xb XT

cos&„-+1. (2.4o)

With sinp, e, & all zero, the scalar products for
the 2 -3 process are

A 2S =2pa 'Pb —xT S
p

4pa 'p1 =4pb p1 =Sxl

4P, 'P2 =—4P, 'P2-=sx

4P, P3 —4P, P3 —sx3,

2p, p, =s(1 —x,),
2pp p, -=s(l-xl),

2p, p, =-s(I —x, ) .

The azimuth Q„ thus decouples, so that

(2.41}

(2.33)

We expand this Lorentz-invariant (LI) phase-space
element in the c.m. system of the colliding par-
tons. First we define
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sd Pz, , [,OS+, 16(2 )3dxfCtx2 (2.42)

It is instructive to investigate the final-state
topology using a Dalitz plot in the scaled energies
x~, as shown in Fig. 3. Using Eqs. (2.35) and

(2.39), each point in the physical region is paired
with a unique event geometry. In the case where
we don't measure the flavor or color of the jets,
the physical cross section is obtained by summing
over the six distinct orderings of the lengths of
the momenta P» P2p P3.

Along the boundaries of the plot, the nominal
three-j et configurations are indistinguishable
from two-jet systems in which one of the quanta
subsequently undergoes parallel decay. As em-
phasized in Ref. 3, this parallel propagation can
occur on an arbitrarily large time scale; such
processes are not expected to be describable to
perturbative QCD. The inapplicability of pertur-
bation theory is evident in the canonical (1-x&)
singularities of the corresponding squared matrix
elements.

Perturbative description of three-jet production
must be restricted to configurations away from
the Dalitz plot boundaries. This is easily ac-
complished by imposing upper limits on the jet
parameters T, II2 discussed in the preceeding
section. For idealized kinematics with massless
quanta,

Z', (x„x„x,) = 2 max+, &
- 1,

H2(xgp x2p x3) = 1 —6(1 —x,)(1 —x2)(1 —x,)/x, x2x3 ~

(2.43)

Both Tr, H2 attain a maximum value of 1 (identical
with the two-jet values) on the plot boundary and

decrease to minimum values T~= 3, H2 ——~ at the
plot's center x&

——', . Contours of constant thrust
are triangles' concentric with the plot boundary.
Those for 82 are qualitatively similar.

The effects of the imprecise kinematics on the
three-body final states are, in general, compli-
cated. From (2.30) we can see that measurement
of p» p» and p, does not completely determine

P, and P, so that dot products involving both initial
and final states are uncertain by amounts which
depend on &, &.

Since (p» + p»+ par) & 0, we can see that trans-
verse thrust can be displaced from the estimate
(2.43) by an amount similar to the 2-2 case
(2.25), but now this displacement can be either
positive or negative depending on whether the
Projection of Pr along the P-body motion is Posi-
tive or negative. Since the distributions in thrust
and II2 for the 2-3 processes are increasing as
we increase T~ and II near the two-jet boundaries,
the overall effect of the uncertain kinematics and

of the decay of the jets into hadrons will be to
degrade the three-jet values.

III. EVALUATING MATRIX ELEMENTS

In order to use the hard-scattering model dis-
cussed in Sec. II for calculating jet cross sections,
we need the mean-squared matrix elements for
the fundamental 2-3 processes in QCD as func-
tions of their kinematic invariants. %e now give
the calculation of these processes to lowest non-
trivial order in the QCD perturbation expansion.
Because we will be calculating a large number of
processes related by crossing, we will express
our results in terms of "cuttings" of diagrams
with no external legs.

(j-x

2

(i-x, )

A. Evaluation of cut QCD diagrams

%e summarize here our prescription for cal-
culating the cut diagrams used in evaluating the
spin and color summed squared matrix elements
for QCD processes. The metric convention is that
of Bjorken and Drell. We take all particles to
be massless and use spinor normalization uu= 2m.

The rules for vertices and propagators are given
in Fig. 4. The tensors appearing in the three-
gluon and four-gluon vertices are defined by

p ((23)
~~in=

X
I

X j«X&«X&

I 2

()-x, )

2 I

+(p. -p.)Y,
&(~P; &5) =(Z"'S ~ g"-g '") . —

(3.1)

(3.2)

FIG, 3. Dalitz plot for 2 3 processes. Collinear
configurations of momenta occur on the boundaries as
shown. The six regions corresponding to the distinct
orderings of x's are also shown.

T'= —,'X' and f~' are the usual color matrices and

structure constants as discussed in Ref. 30.
The basic procedure for evaluating the cut dia-

grams is the following.
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VERTICES

(FFV)

a, a

—ig y T. .
IJ

P&,a, a P~, b, P

(2) (GGV)
gP

c a

a, a

abc p
gf P

P,

P+P,

c,y

(4) (V )

PROPAGATORS 2
i P/k

xab xcd

f
xac

f
xdb

K ( y p p )

. 2fxad fxbc K( ~p ) p)+ p~, m P(+ P~, n

PF=+ & k

k
a b P

G

k

p =+-8 ~-g +((- ) k k /k
ab I ap a p 2]

tl

~G
= GAUGE PARAMETER

FIG. 4. Feynman rules for @CD perturbation theory.

(i) Using the rules from Fig. 1, construct the
expression for the corresponding Feynman dia-
gram.

(ii) Remove the factors 2jk' for each cut propa-
gator (also ignore loop integrations for cut loops).

(iii) Multiply the resulting expression by -1.
Rule (iii) is easily understood. Unitarity (on which
our approach can be based) is formulated in terms
of the T matrix, which differs by a factor of i

P, , i

(b)
Pj:G. 5. Squared s-channel contribution to quark-gluon

scattering evaluated directly from the corresponding
cut diagram.

from the S matrix (on which the rules of Fig. 1
are based). The corresponding factor of (i)2 is
rule (iii). Note that there is no factor of —1 for
cut fermion loops.

As a simple illustration, consider the contribu-
tion to qV-qV scattering arising from the square
of the diagram in Fig. 5(a). The corresponding cut
cut diagram is shown in Fig. 5(b). The square of
the matrix element for Fig. 5(a), summed over
colors, spins, is determined from Fig. 5 to be
(for oo ——1)

l2
IM

I
=( )( g ")(-g ) Tr(T'T T T')(-ig) 2 Tr[P'2&(P1+P'2)ymgly (P'1+P'2)P]

col ass -(Pl +P2)
spins

(3.3)

782 Tr[PS+(Pl +P2)&P'1&(P'1+P2)&l
P1 +P2 (3.4)

where repeated indices are summed.
Given the above rules, we are effectively using

a covariant spin sum operator for external gluons:

e ~*'--g"8+ (1 —ao)k k'/k'
spins

(3.5)

However, in @CD the k k terms in Eq. (3.5) do
not, in general, decouple from the rest of the
diagram, so that the basic procedure outlined above
above is not gauge invariant. Qne solution in-
volves replacing the covariant operator in Eq.

(3.5) by noncovariant transverse polarization pro-
jection operators. This has advantages for cer-
tain approximate schemes. For exact expres-
sions, however, we find that such a procedure
intro'duces a great deal of complexity into the cal-
culations. Instead, we remove the unwanted longi-
tudinal polarization components from the spin
sums in Eq. (3.5) via Fadeev-Popov ghosts. "

Using ghosts, we expand on our previous three
steps for evaluating cut diagrams:

(iv) For a given cut diagram, calculate also all
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those diagrams obtained by replacing closed gluon
loops by ghost loops.

(v) Multiply each ghost diagram's contribution
by (-)"~ where Nz is the number of disjoint ghost
loops in the diagram.

(vi) Adding all ghost diagram contributions to
the original ghostless expression yields the de-
sired physical spin sum.

An example of this procedure is illustrated sche-
matically in Fig. 6. Each cut diagram is evalua-
ted using the basic rules (i)-(iii). The additional
minus signs before the two ghost diagrams arise
due to the odd number of ghost loops. Note that
a given ghost loop can have two directions, leading
to two contributions to the physical spin sum.

u(P, ) -v(k, ),
p2 —k, ,

p5 =k2,

P le P3r P4 k1& k3& k4 '

Thus

j~H j' =-g E(kz, —k~, ks, kq, —k2).
colors, spins

(3.7)

(3.6)

The corresponding functions for the remaining
processes are obtained from I" and G by various
crossings. For example, ~H is obtained from
9R~ by the substitutions

B. Elementary 2~ 3 processes involving a single gluon

We evaluate here the spin- and color-summed
squared matrix elements for the seven distinct
2-3 elementary processes involving a single gluon,

(F) qg(Pi) + qa(P2} -q~(P3) + qs(P4}+ V(PS»

(G) qA(P1) + qA(P2} qA(P3) . qA(P4} (Ps)

(H) q„(k~) + V(k2} -q„(k~) + q~(k4} + q, (k,),
(I) q&(k&} + V(k2) q~(ks) + qg(k4) + qg(ks) ~

(&) q&(k&) + qB(k2) -q&(k&) + q&(k4) + V(k5) ~

(K) q„(k,)+q„(k,)-q„(k,)+q„(k,)+ V(k,),
(I) q„(k,) +q„(k2) -qs(k, )+qs(k4)+ V(k, ),

where A., 8 represent distinct quark flavors. The
charge conjugates of (F)-(I) give four more single
gluon processes (which require no new matrix ele-
ments).

In evaluating the spin- and color-averaged
squared matrix elements, we first introduce two
base functions,

The overall minus arises from the antifermion
spin sum

g ~(k)~(k) =k=-(-k').
spias

(3.9)

can be written as a sum of five invariant ampli-
tudes M&, associated with the five diagrams in Fig.
7. Here, i, j, k, l, a are color indices. Writing

(3.11)

where &~ is the polarization vector of V, and the
terms && are determined by the rules in Fig. 4

(in the Feynman gauge, o.' = 1):

In Table I, we list the spin- and color-averaged
squared matrix elements ( j off~ j ) in terms of the
base functions E and G defined in (3.6).

We turn now to specifics of the functions I' and

G. The matrix elements W for the process

q„(P» i) +qs(P2,j) -q„(P~, k) + qs(P4, I) + V(P~, a)

(3.1Q)

1
E(Pi P2, Ps P4) Ps}= ~

co&ors, spms

=1
G(Pn P2) P3i P4s P5}

B colors, spins

jott j2,

jstt, j'.
(3.6)

TABLE I. Spin- and color-averaged squared matrix
elements for single-gluon three-jet processes eval-
uated in terms of the functions &, G of Eqs. (3.14) and
(3.20). The factors [2] for processes (0) and (I) arise
from final-state phase-space reduction for identical
particles.

Process

PHYSICA L
POL A R I ZATIOIIIS

I

FIG. 6. Schematic illustration of the use of ghosts to
remove contributions from longitudinal gluon polariza-
tion s.

(~)

(6)

(H)

g)

(J)

(K)

(L)

1
(38)+(P1,P2,P3,P4,P))

~-&(-)G{P,P,P,P,P )

-(9-8)F(k(, -k5, k3,k4, -k2)1

[2](98)G(kf ksk 3k4k 2)

(-)9 (k1, -k 4,k 3, -k 2,k 5)

(-)G(k1, -k4, k3, -k2, ks)

(-)9'(ki, -k 3, -k~, k4, ks)
1
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(P4-P2)'(Ps+Ps)'~l =sg'(»') QTII [u(ps)y" (P'3+ p'5)»(PI)][u(P4) y u(ps))

(p4 —ps)'(pl —ps)'Ons it——'(T'T') I T,' I[ u(p 3)r (pl —$5) r"u(p, )][u(p,)r"u(p, )],
(p, -p, )'(p, +p, )'Ons =ig'T';, (T'T'), , [u(p, )r u(p, )][u(p4)r" (p', +p', )r u(p, )],
(p, —p )'(p —p, )'On' = ig'T", (T'T')„[u(ps)r u(PI)][u(P4)r"(p'2-$5)r"u(P2)],

(PS Pl)'(p4- p2) ons g f(4& TI&&T'I V (ps p3 pl p4 ps)lu(ps)r"u(PI)1[u(P4)r'u(P2))

e shall, in fact, compute directly the traces for the squared matrix elements

M;j ——Mj, =—
1

spgns. colors

from the six distinct cut closed-loop diagrams in Fig. 8. The objective function E is then given by

9(9»9~ 9 94 9 t= 2. &tii
isj=l

where we can identify

Mll Tt(P1&P2& P3&P4&PS) r

M13 TIII(Pl&P2&P3&P4& P5) &

M14 II( PS& P4& pl& PS& PS) t

~15 Tv( P3& PS& Pl& P4& P5) &

M22=TI(-Ps PS -Pl P4 Ps)

Mss = TII(PI& P» ps&P4& Ps) r

24 TIII( P3& P4& Pl& P2& P5) t

~25 = Tv(P» P» Psr P4& Ps) &

M33 T'I(P2&P1& P4& P3t P5) t

~34 Tlv(P2& Pl& P4& P3& P5) 9

~35 TV( P4&Pl& Psr P3t P5) t

M44 = TI( P4& Pl& P2&Ps-r Ps) &-
~45 Tv(P2& Pl& P4&P3& P5) &

M55 Tvl(Pl& P2& P3& P4& P5) '

(s.i2)

(3.13)

(s.i4)

(s.i5)

In (3.16), the. functions Tz denotes the spin- and color-summed traces associated with diagrams in Fig. 8.
The rules of Sec. IIIA give (removing the universal g factor)

3(PS P5)'(P. P.) TI =2 Tr(P'. y'P'. r ) Tr(P'42"P'5»

48(P. 'P.)(P. P.)(p& 'P. )(p PS.)TII =»r[y P'.&P'.r'(P'. A))»[y"P'&r'P-'p'(P'4+1'. ))

24(p, p, )(p, p,)(p, p, )(p„p,)TI» ——Tr[y'p, y"p,ys(p, +p, )]Tr[y p, y psSy(p, +p, )],
(3.16)

24(p, p, )(p, p, )(p, PS) T« ——Tr[y'pp, rsvp, +p, )(p, -p, )]Tr(psysp, y ),
16(p, p,)(p, p, )(p, PS)'Tv=sV~" (p„p, -p„p, -p, ) Tr[p, y p,ys(p, -p, )y"]Tr(p 4yg, y),

8(p, p, )'(p, P4)'Tvl =-3V~"(p„p, p„p„-p, ) V"~(p„—p, —P„PS-p, ) Tr(p, ysp, y') Tr(p~y'psy') .
The functions T,—T» are given in terms of kinematic invariants in Appendix C.

Identical flavors, The formalism above must be expanded for identical quark flavors 4=B in Eq. (3.11).
The matrix element OR is replaced by

5

&i=&it-tti = i. (&It,
" -tt,"))t" ',

j=1
(3.IV)
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where OR& is obtained from OR,'. by the interchange of the final fermion lines

(p„n) -(p„ f) .
Our objective function 6,

&(Pl. PS, P„P4,P5) =-
1

s yins i cola's

can be written as

G(Pl»P2»Ps»P4»P5} ~(pl»P2»Ps»P4»P5}+~(pl»P2»P4»Ps»P5} ~(pl»P2»ps»P4»PS)»

where F is as defined above and

(3.ia)

(3.ie}

(3.2O)

colcr isyins

OR+ QR, (3.2i)

We write F as a sum

F= M]),
i 5)=1

where the 25 distinct terms

M-, =-

colors ss yins

(3.22)

(3.23}

(3.24)

can be evaluated in terms of the five cut diagrams shown in Fig. 9. Again removing the g factor, the

corresponding spin and color sums are given by

9(P .P.}(P..P }(P. P.)(p P.}T,= «(P. P }'tpa. (P. +P.)lip. (P.+P.}l,
&8(p P.)(P. P.}(p.'P.}(P.'P.}~ = »lP'P-'AA(P'. -P'.}(P'.+P'.))

9(Pb'P. }(PS P4)(p 'P )~525=64(PS'P )(Pb'P }

3(p. 'P.)(p 'P.}(P 'P.)(p. 'P.)~ = &'"(P. P. -P» Pa-p. ) Tr~P'. &"P'P.~P'(A. +P')&l

Tv =0.

g (P . )
r

,
IO

g„(P,k),

V(p, , o, n)

g.

g (P, j) g (P, e)4'

gA

e

8

Pb

Pc

A gA

V

B B Pb t

FIG. 7. The distinct Feynman diagrams for
q&qz q&@~V. A,B represent distinct quark Qavors.

FIG. 8. Cut diagrams corresponding to the base func-
tions T&-T&& in Eqs. (3.15) and (3.16).
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+ii (Pl& P2& PS& P4t P5) +& i (Plt P2& P4r P3& P5)

T
Pg

I

l p

p
l

a

p0

ZiL

po

The color sum in Tv vanishes. The required
terms M;& needed in Eq. (3.22) are given by

MII =Ti(P»P»P3 P4 PS)
~V

M12 —TII(P 1& P2& P 3& P4& P5) t

M13 TIII(P3&P4& P2& Plt P5) &

M14 TII (P3& P4& P2& Plr PS) &

M15 TIv(Plt P2& P3& P4t P5) t

M22 TIII(P1& P2t PS& P4& P5) &

MIS=TII(PS& P4& Plt P2& -PS) t

FIG. 9. Additional cut diagrams corresponding to the
identical-particle interference traces in Eq. (3.24).

(3.26)

The 7's of Eq. (3.25) can also be found in Appendix
C.

Given the limited number of invariant ampli-
tudes for qq-qq V, explicit construction of the
correspondence tables for I;& terms is a rela-
tively simple task. This approach is awkward for
three-gluon processes (136 distinct M,I terms)
or five-gluon processes (325 terms). As an al-
ternate method of evaluating the complete spin-
and color-summed functions, one can work di-
rectly from the expressions for the cut diagrams.
The total contribution from a given cut diagram
is obtained by summing the value of the diagram
over all distinct "permutations" of the cut lines.
This will be our approach in subsequent sections,
where the "permutations" will be more precisely
defined.

C. Elementary 2~ 3 processes with three gluons

The basic transitions of interest here are

M24 = TI(P4 PS Pl P2 -PS»

M25 TIV(PS&P4r Plt P2& P5) r

M33 TI (P2& Pl& P4t P3& P5) t

MM TI I(P2& Plt P4& Ps& PS) t

M35 ~iv(P2& Pl& P4& P3& P5) &

M44 TIII(P2& Pl& P4&P3& P5) &

M45 TIv(P4&P3& P2& Plt P5) t

M55 Tv(Pl&P2tP3 P4&P5) '

(s.25) (p) q(f, )+ v(&.,) -q(f, )+ v{f,)+ v(&,),

(q) q(f, )+ q(f, ) —v(f, ) + v(f,)+ v(f, ), (3.2v)

(R) v(f, )+v(&,)-q(f,)+q(f,)+v(f,).
A fourth process, qV-qVV, is the charge on con-
jugate of (P) and is described by the same squared
matrix element. In order to make the symmetries
of these three-gluon processes most evident, we
evaluate the spin- and color-summed functions
in terms of that for a fourth, unphysical process

=1
If(PI&P2& kl& k2& k3) -=~ Z I~(q(») -q(P2) + v(kl) + v(k2) +v(k, ))I' .

color Ssyins
(3.26)

The corresponding functions for P, Q, and 8 are
obtained from H by simple crossings, as sum-
marized in Table II.

The 16 invariant amplitudes contributing to M
are of four generic types as illustrated in Fig.
10. The complete sets of graphs is generated
from this set by distinct relabelings of the exter-
nal particles under the 12-fold permutation group
generated by

(i) permutations of (k„k2, kS) and
(ii) Fermion line reversal P,—-P,.

I

A word of caution is needed here. At the level of
Feynman graphs, the permutation generator (ii)
should be interpreted simply as reversal of the
ordering of vertices along the Fermion line, with-
out altering the spinors. The "analytic" inter-
change p&

——p2 is an appropriate formulation of
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TABLE II. Spin- and color-averaged squared matrix
elements for triple-gluon three-jet processes eval-
uated in terms of the base function H in Eq. (3.29).
Factors in square brackets represent identical-
particle phase-space reduction.

P~ ii k~ P~0 k~

kI
Ii'eeynmee '

p

Process (I sR~I '&
p li P 0

I

(P)

(Q)

(R)

f-J(98)H(l (,l 3, .-l ),l 4,l 5)

—f 6] (-6)H(l (, -l 2,l 3,l 4, 5)

(p g)+(—l-4- l 3 l f j l
2 jl5)

( I) (It. ) (IIt ) (m)

FIG. 10. Distinct classes of Feynman diagrams for
q qVVV.

this vertex reordering in the spin-summed cut
diagrams discussed below.

Returning to Fig. 10, graph (I) has a twofold
s7mmetr7: (pq, p2, ks, kz) (-p2, Pg& kj, —k,).
There are thus six distinct amplitudes of type I con-
tributing to SIt. Graph (II) also contributes six
amplitudes, with a twofold symmetry k2 —k3.
Graph (III) is fourfold symmetric under k2 —kj,
p~ —-P2, giving three distinct terms. Graph (IV)
is completely symmetric under the permutation
group and contributes only once.

The 136 distinct terms W*;&,. needed in evalua-
ting H can be expressed in terms of 21 functions

where Q,'„R~ indicates a sum over permuta-
tions which yield distinct values of A». Alter-
nately,

H=I (W(N)(I 8), (3.30)

A» corresponding to the cut diagrams shown in

Fig. 11. We assign to each graph a weight W»

which is 1 for diagrams of the form OR~&9tt, and 2

for interference terms OR&9R&, itj. The spin- and

color-summed function H is then given by

P, /

p

s sasu~gg~I

Pp I Pp

I I 2.

I p
I

Pp p

I

Pp Pp

PI

I

p&

k~
k~

I

I I xvii xvi&i PI

p I

FIG. 11. Cut diagrams for q qVVV. The corresponding base functions are listed in Eq. (3.31).
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where R~ is summed over all 12 permutations dis-
cussed above, and the symmetry factor N~ ac-
counts for multiple counting. The symmetries,
weights, and symmetry factors for the diagrams

in Fig. 11 are listed in Table III.
Using the rules of Sec. IIIA, we obtain the fol-

lowing values for R~ (removing the universal g
factor):

9(pl kl)(P2 ks)R, =512(kl k3) &

9(PI k1)(PI k2)(P2 ks)RII 8 (Pl k3)(kl k2 Pl kl PI 2) &

18(pl kl) (pl '
ks)(&t&2 ks) (p2 k2)R„, = Tr[ p'2P'I(P'2 + k2) (p'2 + ks)(p'I —ks) (p'I —pl}],

9(PI ' kl)(pl ' ks)(&t 2
' kl)(P2 ' k,)R,v = 80(PI P2) (PI P2 +PI k3 P2 ks)(PI P2 +Pl kl P2 kl) &

(pl kl)(ps ks)(k, k, )Rv =-2V '(kl, k2, —kl —k2} Tr[ttsr'(P'I —NI)r"p'Ir'I

8(pl 'kl)(pl ks)(P, ks)(kl'k )R„,=-V '(kl, k2, —kl —k2) Tr[psy'(p'I-}23)(p'2+ks)y'(pl-)I)y p'I],

8(P, k,)(P, k,)(P, ~ k, )(k, ~ k, )R „=v '(kl, k, -kl —ks) Tr[P'2(PI —kl)y"P»'(&2+12)(PI+f3)r"]

(kl k2) (k3 P2}RvIII 8L1 (klyk2) Tr[ksr'Ar'],

2(P, k, )(P2'ks)(kl'k2) R, „=LI'(kl, k2)Tr[pdlr'(ps+|as)(pl —ks)y'],

18(PI kl)(P2 k, )(kl k, )(k, k,)R„
=-9V" (kl, k2, —kl —k2)V" '(ks, k2, —k2 —k )Tr[psy "(ps+$3)y'p'Iy (P'I-32'I)y'],

Rx&
——0, (3.31)

8(l 1 P2)(~1 kl)(P2 k3)(kl k2)RxII

=—9V '(k„k2, —kl —ks)V'"(-k„—kl —k2, kl+ks+ks) Tr[PIr" (P'I+/3)r'(p'I —PI)y plr'],
Rxrrr =0~

4(k2 3) (P 1 P2)(pl ' kl)R„,v =-9L,' (ks, k, ) V' '(-k, —k„-k„k,+ k, + k, ) Tr[psy'(p'I —$1)y P'ly']

18(PI 'P2)(PI ' kl)(k2 ' ks)(k2 ' kl)Rxv =9L2 (kl, k2& ks) Tr[psy~(P'I —kl)y ~p'Iy'],

(Pl P2) (k2 k3) RxvI 9L3 (kl k2& ks) Tr[PI Y QI Y ]

8(PI 'P2) (k2
' ks) (k2 ' kl)Rxvll ——-9L4 (kl, k2, k, ) Tr(psy'P'Iy"),

8(PI ' kl)(P2 ' ks)(PI 'P2)Rxvlll = 9[II(&P-; r &) +K(n&; yp)] Tr[psy" (P2+ $3)ys(pl $1)y~plys],

P2)(kl k2)(P2 ks)Rxlx'= 27&(IIP; r&)V "(kl& ks, —kl —k2) Tr[ply" (p'2+$3)y'ply ]
4(pI p2)'(kl k2)Rxx —-2VII(III; r~)»(p'2y'plr')V'"(kl+ k2+ks, k, kl k2) V 3'(kl, ks, —k, —k2),

(PI P2)Rxxl = 1944

The color sums for diagrams XI and XIII vanish. The tensors I& in the above expressions arise from
ghost corrections to closed gluon loops, as illustrated in Fig. 12, and are given by

L'I'(q. , q, ) = 4(q. q,)g"—(q',q', + q', q', ) —3(q'.q', + q', q', ),
L2 '(k„ks, ks) = V "(k2& ks, —k2-ks) V '(k„ks, —kl —k2}V' (kl+k2+ks, —kl —ks& —ks)

—(k, +k, )k,k; —ksks(k'1+k'2)
&

L3 (kl& k2, ks) = V '(k2, k„—k2 —k, )V "(k2& ks, —k2 —ks) V "(-k„-k2 —k„kl + ks + k, )

X V (—kl, —k2 —ks& kl+ ks+ ks)

+ (k3k2 + ksks) V "(-kl, —ks —ks, kl + k2 + ks) V (-kl, —ks —ks, kl + k2 + ks)

+ 2(k2 ' ks) [kl (ks + ks) + (k2 + k;)kl], (3.32)
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&4 (h. k2 k~)=V "'(-k&, -k2-k»k, +k, +k,)V (k„k„-k, k,)V»~(k„k„

V '(-ks, kg + k2 + k» - ki —k2)

+ V ( k3p k1 + k2 + kgb . kl —k2)[Fp(k2 + ka)k~ + (k2 + k~)kfk2 j

+ V '"(-kg, kg + k2 + ks, —k2 —ka) [k2ks(kg + k2 ) + ka(k~ + k2)k2 ]

(k$ k3)(k2 + k~)(kz + k2) —(kg k2 + k2 k3 + kg k~)kgk3

Expressions for the R's of Eg. (8.31) are given in Appendix C.

colaas esyins
I5!tel =-a'K(-Pi, -P2, PS, p4, Pg).

(8.33)

The 25 distinct amplitudes are of two types as
shown in Fig. 13. Diagram I has three twofold

symmetries, corresponding to the interchanges (i)
k, k2, (ii) k4 ks, and (iii) (kg, k2) —(k4, k~).

D. The process VV~ VVV

The final elementary 2-3 process to be con-
sidered is

(S) V(P,) + V(P, ) —V(P,) + V(P,) + V(P, ) .
%e shall evaluate the five-gluon squared matr ix ele-
ment in the unphysical, symmetric configuration
where all gluons are outgoing with momenta k&.

Denoting the corresponding spin- and color-
summed function by K(k„k„k„k„k,), we obtain

by crossing

I

There are thus 5!j(2 ) = 15 distinct amplitudes of
this type. Diagram II has a twofold symmetry
kz kz and a sixfold symmetry f6r arbitrary per-
mutations of (k3, k4, k, ), giving ten amplitudes.

The required 325 distinct product terms Stt,*BR&

can be evaluated in terms of the ten cut diagrams
shown in Fig. 14. Denoting the spin- and color-
summed functions for these diagrams by Q~, the
function K may be expanded as

10

K=+ W~ Q Q~, (8.84)
perms

where g indicates a restriction of the sum to
permuta, tions of (k„k„k» k4, k, ) which yield dis-
tinct values of Q~. The weight factor W~ is 1 for
J=1 and 8, and is 2 for the remaining interference
terms. %e again may reexpress. the sum in Eq.
(3.34) as a sum over all permutations of the mo-
menta A, ; by introducing multiple-counting sym-
metry factors Nz '.

TABLE III. Symmetries, weights (S'&), andmultiple-counting factors (N&) for the basic

triple-gluon cut diagrams in Fig. {11).

Term Symmetries Ng No. of terms

I
II
III
IV
V
VI
VG
VIII
IX
X
XI
XII
XIII
XIV
XV
XVI
XVII
XVIII
XIX
XX
XXI

1
2
2
2
2
2
2
1
2
2
2
2
2
2
2
1
2
2
2
2
1

(p~,p2, k(,ks} (-p2, -p(,ks, k()
k( k2

(P&,P2,k&,k 2) (-P2, -P&,k 2,k&)

ki —ks' (pi p2) —(-&» ~~)
none
none
none

k, -k, ; O, ,p, )—(-p, , -p, )
(p~ »2»~ »s) —(-p2 -p~ *ks
k, —ks

none

(pi»2*k~ ks) —(-p2 -p~»s»i)
k2 ks

none

k2 —'ks' (p~»2) —(-&2 -P~)
k( ks, (p(,p2) (-p2, -p()
(p, ,p2, k, ,k s) —(-p, , -p, ,k, ,k, )

k~ ~k2
2& (P1&P2) ( P2& Pl)

completely symmetric

2
2
2
4
1
1
1
2
4
2

1
2
2
1
4

2
2
4

12

6
6
6
3

12
12
12

6
3
6
6

12
6
6

12
3
3
6
6
3
1
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-68 L {q,q }=po
I a'

~DD OP D 0 d dg, PD 0dk

(S,a)
a I

Lz (k), kz, ks) =

l

(a, a)
I

I

I

I

gggoDC 4 P~D c7D&

)

I r guuuu
I

I r

—98 L~ (k), k~k~) =

T

~3
-9/2 8 L (k) k( k)) =

st OT k&

(s,o ) i),r)
k

ODD

FIG. 12. Ghost-loop expansions for the tensors L. in Eq. (3.32).

1P

K=.g (W i&, ) g Q, .
J'ag aR yerms

(s.s6)

The symmetries and weights corresponding to the
ten cut diagrams in Fig. 14 are summarized in
Table IV.

The color sum for Q», vanishes. The expres-

sjons for Q~, Q~z, and Qzvare a hit lengthy due to
the large number of ghost contributions and are
given in Appendix B. Diagrams V-VIII each re-
quire a single ghost loop corresponding to the
outer gluon circle. Diagrams IX and X admit no
ghosts. The corresponding Q~ terms are given
here:

4(kg ' k2)(kg ' k4)(k4 k4)Qv

=27[K(py; 5(x) +K(pv; &y)]

x [V'+(kg, k2, —kg —kg) V~~" (kg+ kp, k3, k4+ k, ) V""(k4, k„—k4 —k4) V'"(kg, k„—kg —k4)

+ (k, + k))(k4+ k",)k4kg+ k~4(k", + k2)(k4+ k4)ks],

4(ki k2)(k, k4)(k& k, )Q« =-81K(po; y6) V"'"(k„k„-k, —k, )

x[V "(k„k,', -k, —k, )V'"'(k, +kg, k3+k4yk5)V (k]gk5y kf k5)

+ kg(kg + k2)k4+ (kf + kf)k,"kg],

2(kg k, ) (ks 'k4)Qv~, = 81K(pv, -&y) V" "(k'4, k4, - k4 —k4)V "'(k2, ks+ k4, kg+ k4)

[V ' (k,p k, p
—ks —k4) V"i"(kf, k4 —k4 —k4) + ksk4 + k, k'sl,

(kg ' k4)Qv„, =-29160,

(k, k,)(k, k, )Q, „=-27[2K(py; 5g)K(py; ap) +K(pl; yo)K(pp; ey)]

x V "(kg, k4, —kg —k4) V (kg, k4, —kg —k4),

2(k& k, )(k, k4) Q„=243K(oe; y~)K(p5; yo) V "(k&, k„-k, -k, )V @'(k2, k„—k, —k, ) .

(s.s6)
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eon ueaa~&

k5
k) l

kg

FIG. 13. Distinct classes of Feynman diagrams for
the five-gluon process.

Complete expressions in terms of invariants for
the Q's can be found in Appendix C. kl

IV. RESULTS

We would now like to use the cross sections
calculated in Sec. QI to make some simple numer-
ical estimates of three-jet production. One of the
most straightforward things we can do is to com-
pare at fixed FT, the relative importance of three-
jet configurations and two-jet configurations. This
will serve to illustrate our formalism. More
complicated calculations will not be considered at
this time.

Idealized transverse cross sections. We use
the kinematic variables for three-jet production
in (2.40)-(2.42) in the limit when all jets are pro-
duced at 90' in the c.m. system and neglecting
effects proportional to &, E. After spin and color
averaging, the squared matrix elements for the
2-3 processes in this configuration can be writ-
ten

I

ks

kp

5
I

4

k

k~

k3 l +k~
tI Oisin taft

(4mo. ,)3
&1~.3 1331 &- 2 Aab 223(Xla X2) ~

XT S

We can define the three- jet cross section

(4.1)

(3) d 0' 3

dw d(cos 8„) ~ =p ~ a~a

where w=x, —xp. Inserting (2.42), (4.1), and

(4.2) into (2.31), we can write the cross section

2 ) M GalA(XT)&glja(XT)
XT X1 X2 T S cg "12

(4.2)

ap-»3( ka

We would like an analogous expression for the
transverse two-jet cross section. We define

(4 4)

& leap-»I & =16+ o'4 &ap-22 ~ (4.5)

g(2) 2doA3
dw d(cos 8,)

QQl()) 1~0

and the color- and spin-averaged squared matrix
element

k I IX. x
I

FIG. 14. The ten distinct cut diagrams used to evaI-
uate lOR[ for VV VVV.

Inserting these into the hard-scattering model
Eg. (2.1) gives

dZ mu,g) 2

d d"d",)~ xT Gq]~ xT B~ 12
dxTdx1dx2 xT s, )5, „12

x 5(1-xk) 5(1 —x2) .

(4.6)

The functions A~ »3(x» x2) are obtained from the
squared matrix elements in Sec. III by the dot-
product substitutions of Eq. (2.41). All the func-
tions increase toward the edges of the Dalitz plot



THOMAS GOTTSCHALK AND DENNIS SIVERS 21

TABI,E IV. Symmetries, weights, and multiple-counting factors for the basic five-gluon
cut diagrams in Fig. 14.

Term Symmetries No. of terms

IV

V

VI

VII

VIII

k( k2, k4
(k, ,k, ) —(k4, k, )

k( k2, k3 k4

k( k~-, k2 k4
(k, ,k, ,k4, k, ) —(k, ,k, ,k, ,k4)

(k (,k 2)
~ (k ),k 3)

(k(,k~) ~ (k5,k4)

k3 k4

k( k~ k4 k3

k( k5
all perms. of q, ,k, ,k4)

k4 k~-, k~ k3

k~ k5-, k2 k4
(k(,k5) ~ (k~,k4)

12

30

60

60

60

30

10

30

so we, can obtain a crude lower estimate of identi-
fiable three-jet events by looking at the symmetric
value

/t 83M
~ab 122 ~ab 123%1 +2 +2 3) (4.v)

TABLE V. Spin- and color-averaged squared matrix
elements for three-jet processes evaluated in the symm-
etric configuration, as defined in Eq. (4.7).

Values of A™for the various three-jet processes
are listed in Table V. Factors in angular brack-
ets arise from summing over quark flavors in pair
production processes and from identical-particle
phase-space reduction. For comparison, w' e
list in Table VI the constants 8 defined in (4.5)
for the 2-2 processes.

It is convenient to introduce notation for the

weighted sums of distribution functions occuring
in the cross section formulas (4.3) and (4.6).
%e define

~~(~T) =- Z G!/A(~T)Gb/B(~T)+~ 12
ab 12

AB ( T ) Z 6a/A(+T)~b/B (+T)/4 ab 122 ~

~123

(4.6)

7TQ
(&T) = ~Z ~AB (TT)

Xg S

dg3 je t

de' dXg dX2
1 2

Q~ C„(„),
4x& s

(4.e)

(4.10)

The transverse cross sections Z(xT) =-dZ//de are
given by

Process TABLE VI. Spin- and color-averaged squared matrix
elements for two-jet processes at 90' in the parton c.m.

qAqa qAqaV

qAV qAqaqa

qAV

qAqa qAqaV

qAqA q BqBV

VV qaqaV

qAqA VVV

22O/2

(-', )(iso)

(2)(s4/e)

(-', )(416/27)

160

1552/9

(2-) (224/2V)

(-', )i.v e~s/2 v

(3)(ll e/4)

(-', )sos/2

&-', )veeo

106.7

80.0

14.2

7.7

160.0

172.4

331.8

89.3

20.44

1215

P rocess

qAqa qAqa

qAqa

qAqA qAqA

VV

qAV qAV

VV

20/9

(-', &(»/27)

20/9

(2) (2/e)

70/27

(-', )2s/2v

ss/e

&2) (v/4s)

(-', )243/8

2.22

1.63

2.22

0.44

2.59

0.52

6.11

0.44

15.19
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so that 0 s ~ ~ s
I s s ~ s I ~ s s s

I s s s s I s s ~ s I ~ s s s8

Z' "'(xr) 4m C~(xr) ' (4.1i)

For comparison, we note that the corresponding
expression in e'e annihilation is

liras, C~(xr)/C2(xr) =80.
At large x&, the ratio is dominated by valence
quarks,

(4.18)

Iim C'(x, )/C'(x, ) =- 50 (pp)
x~ -0 60 pp

(4.14)

The makeup of the symmetric three-jet states as
a function of x& are shown in Fig. 16 for our sim-
ple models for the distribution functions. In this
figure we do not distinguish q from q. The qqq
final state never contributes more than 2%%uo and is
not included. Multigluon states are dominant for
x~ ~0.6 indicating that detailed analyses of three-
jet production using only the process qq -qq V"'
should only be applied at very large x&.

We can now use these numbers to estimate the
number of three-jet events. For simplicity we
will define candidate three-jet events in terms of
a thrust cut.

'

We can get a lower bound on the
number of three-jet events by integrating (4.8)
subject to max(x;) ( (To + 1)/2, with the approxi-
mation that A(xq, x2) =A'" within the allowed re-
gion. This gives an approximation of the ratio
of three-jet to two-jet events,

~n C'(xr) 3(To —1)'
R(xr, To) &—',

( )
(4.15)

We need to choose Tc small enough so that most

o' (e'e--qqV) n, &~(„) (4.12)o(e'e -qq) 4m j
There are corrections of 0(o.') to (4.11) and (4.12)
from virtual corrections to the two-jet cross
section. For most cases, these have not yet
been calculated.

In Fig. 15 we plot the ratio C3/C' vs xr. Since
the effects of scaling violations and of the & veto
should approximately cancel in this ratio, we have
used Field-Feynman quark distributions and a
simple counting rule ansatz for the gluon distri-
bution. Also shown is the constant value for e'e
annihilation. The fact that this ratio is 3-4 times
bigger in large-p& hadron collisions than in e'e
annihilation is important. Identifiable three- jet
events should be correspondingly more common
in hadron-hadron collisions.

The xr dependence of the ratio C'(xr)/C'(xr) can
be understood in terms of the makeup of the dif-
ferent processes. As x~ -0, the VV initial state
dominates both C' and C, and

60

M

40

V3

20

e'e

s s I ~ s s s I s s s s I s s ~ ~ I ~ s ~ s I s ~ s ~0
O. 2 O. a O.4 O. 5 O. 6 O. V O. 8

FIG. 15. The ratio C~(xr)/C~(xr) as used in Eq.
(4.11). The curves are calculated using Field-Feynman
scaling-rule quark distributions and a counting-rule
gluon distribution xV(x) =3(1 -x)5. The corresponding
constant value for e+e annihilation is shown as a dashed
line.

These crude estimates suggest that transverse
thrust distributions in large-pz production of had-
rons should be fairly broad compared to the thrust
distributions observed in e'e annihilations.

A more complete analysis of the event shape
implied by the three-jet production processes of
QCD will not be attempted here. Our preliminary
efforts indicate that the situation in large-p& had-
ron-hadron collisions is sufficiently different
from e'e annihilations to warrant detailed study.
We have shown that it is possible to use experi-
mental configurations incorporating vetos to con-
trol uncertainties associated with the initial par-
tons to define interesting high-p~ jet cross sections
and that these cross sections reflect the structure
of perturbative QCD.

of the two-jet events survive the smearing of the
5 functions in (4.6) implied by nonperturbative
effects. A conservative choice of T~ =0.75 and n,
—=0.15 gives

R(xr, To) &2.4x10'[C~(xr)/Ct(xr)] =0.2, x„-0.2
=0.1, x~ -0.8.

(4.i8)
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FIG. 16. Fractions of symmetric three-jet cross section for different final
Field-Feynman quark distributions and a counting-rule gluon distribution.

'T
states versus xz. The curves are for
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APPENDIX A: THE DISTRIBUTIONS 6~]„(~,k~, g)

In order to keep track of the hard central pro-
cesses inPP collisions without ambiguity or double
counting, it was seen to be convenient to intro-
duce the veto- restricted distribution functions
G', &&(x, kz, $), where )=ln(P /A ), with P =s/4
and A = 0.3-0.7 QeV. The experimental situation
envisioned includes a veto on any particle or group
of particles with fractional energy x ~ e emerging
with an angle ~6 from the direction of the initial
hadron in the c.m. system. These distributions
are clearly not identical with those familiar in
completely inclusive processes although they re-
duce to the usual ones in the limit 5 -m/2. The
functions also depend on E, but we will not show
the & dependence explicitly in what follows. It is
primarily important for x near 0 or 1.

To lowest order in the perturbation theory,

VE PARTON

~ eI8

+) =

ACTIVE PARTON

~)
e s

(a) (b)

FIG. 17. Lowest-order processes leading to a 6 veto
of a hard-scattering event.

there are two contributions to the probability
that an otherwise acceptable hard-scattering event
will be vetoed. These are indicated -.chematically
in Fig. 17. In many specific models ~r the
bound-state wave function, contributio. ~ of the
type illustrated in Fig. 17(b) were one of the
"spectator" constituents in the hadron fragments
to produce jets in the veto counter are suppressed.
The precise nature of the suppression depends
on the number of constituents in the hadron and on
the possible "correlations" in the wave function,
but, for our purposes, we will assume that we
can get an adequate representation of the proper-
ties of the veto-restricted distributions by con-
sidering only diagrams of the type in Fig. 17(a).

For the k~-integrated distribution functions we
can write to lowest order
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2 6'
G~»(x, lnP2) aG,»(x, lnP2) 1 ——ln,

~ g —G~»(y, lnP )P,q, (x/y) (A I)

where G,»(x, lnP2) is the usual (nonscaling) parton
distribution function, P, »( x) are the Altarelli-
Parisi probabilities for partons, and the loga-
rithm is

Neglecting terms of order &, sin5, we can see
it is possible to incorporate (Al) into the Altarelli
and Parisi master equations32 at the price of
making the effective scaling variable

(As)

(A2) The equations can be written

G, .g (x, $,) = '
Ji [G,', i (x, Q)P, »(x/y) +G 1(x, $,)P, g (x, y)]—,

Gmv»(x, f.,) = '
J G,

' »(x, $,)P„gq(x/y) +Gv( (x, &,)Pv,„(x/y)
~

y .

(A4)

These equations indicate that the scaling violations of the distributions G,&&(x, $5) in the variable $, should
be similar to the scaling violations of the usual inclusive distribution functions in the variable

)=in —r).

These scaling violations can, in principle, be studied by doing large-p~ hadron production at fixed p~ with
a 4m detector and varying the angle & in the veto in the off-line analysis of events.

Let us now turn to the k~ dependence of the veto-restricted distribution functions. We follow the forma-
lism of Lam and Yan" "to write the equation for the scaling violations

G'»(x, Q, $,) ~ ' Q J( dy dz d'kr, d kr, b(x —yz)

(kr z~T1 ~r2)Palb( x kT2)GblP(y&i kT1» ~d) ' (A5)

The condition that the jet P2 not be directed into the
veto counter can be approximated

kr22 s(z'P sin 5),

The oscillations of the Bessel function for b
» (zP sinb) give the approximate cutoff

kr ~ (1 —x) P' sin 5, (Ae)
so that we can write

1P',»(&, kr2) —=—P,»(&)~(kr2' —z' exp(h, ) }

It is instructive at this point to transform (A5)
into impact-parameter space

(A8)

given in Sec. II. Notice that the impact-parameter
equation does not, in general, decouple to become
an algebraic equation if we take moments in x.
If, however, we assume

G',
q (x, b, $,) H, q (x)E(xb),

Jo(bkr)G', »(x, kr, $6)d(kr2) .
0

(Av)

xG„,(x/s, zb, g8) ~ (A8}

I

We can then write (A5) in the form

dg
G'.„(x,b, 4)=-~ g —P.„(z)Z,((bxPsinb)/A}

where E(xb) is independent of type, then we can
pull F(xb) out of the integral in (A8).

We shall not go further into the characteristics
of the veto-restricted distribution functions.
From (Al}, (A4), (A8), and (AQ), we can see that
they are reasonable extensions of the usual in-
clusive distribution functions with properties which
can be approximately taken into account in the
calculation of quasiexclusive jet cross. sections.
Assuming the general arguments concerning the
factorization of multijet cross sections in QCD
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are correct, ' these distribution functions can
be measured in deep-inelastic lepton scattering
experiments with a similar veto requirement built
into the hadron fragmentation region.

APPENMX 8: FIVE-GLUON GHOST LOOPS

%e list here the complete ghost-loop expansions
corresponding to the diagrams I, II, and IV in Fig.
14.

Removing theoverall tactor of g, we can write

10 15

2(kl k2) (k4 k5) Ql:Lp QLl+Q Lq (Bl)
j=1 k =11

1
1-0 corresponds to the ghostless diagram in Fig. 14,

2~V+pe(k k k k )V&&'(k, k2, kl- k2)V'' "(k» k4, —k5 —k4)V (k5~ k4i "5 k4)

x V"" (k„k, +k„k, +k,)V"'(k„k,+k, k +». (B2)

The terms L& correspond to the diagrams in Fig. 18. The corresponding values, summed over directions
of the ghost loops, are given below:

L,' = B'AV 5~(k„k2, —k, —k2) V 5'(k„k„—k, —k2) V "~(k4+ k„kl + k„k,)V""(k4 + k„k, + k2, k, )(k,"k4 y k4k', ),
I 2~(kl, k„k3, k4, k, ) = I 1(k», k„k3, kl, k2),

I.,'=2V V "(k„k„-k,—k, )V""(k„k„k, k-, )(k—, k, )[(k,'+k;)k;+ k;(k,'+k', )],
L4 —L3

L,'(kl, k2, k3, k4, k, ) = I 3(k4, k„k„k„k2),
1 1

—Lp —L9 —I 15=54(kl ' k2)(k4 ' k5)(kl k4 + kl k, + k2 k4 + k, k, )

L» ——-&4(kl k, )[(k, k,)(k, k, +k, k,)+(k, k, )(k, k, +k, k, )],
~12 ~11 &

L13(kit k2t k3& k4& k5) L11(k4& k5& k3$ kl& k2) 1

1L ~a =~~3

L15 27V (k4+ kpy kl + k2)l k3) V (k4+ kp& kl+ k2& k3 (+lk2+ +2kl (k5k4+ k4kp) '

I

~DODD~
I

t 5

4 DDDD D $ggggQ
I

r
8

4

I
I

l
I

I

8

gDDDDa DDDD S/

10

t --)
r~De DDD Dk

I

l2

~Qg D DDDDD&

lo

FIG. 18. Complete ghost-loop expansion for Q&. Each
ghost loop can have bvo directions.

'7
l 3 l4

FIG. 19. Complete ghost-loop expansion for Q& ~.
Each ghost loop can have two directions.
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- 12 15

4(kl k2) (k4 ' k5)(k3 k5)QII Lo Z LI + Z L3 ~

& =1 &=13

The ghostless diagram gives

L3 —27V (kl, k2» —kl - k2) V '(kl, k2» —kl —k2) V""'(kl& k4+ k5, kl + k2)

x V 5~ (k4, k, + k„k3 + k, )V""(k„k4, —k4 —k,)V~'(k„k3, —k, —k, ) .

The ghost diagrams in Fig. 19 give

Ll ——-27V {kl, k2, -k, —k2) V (k» k» —kl- k2) V '(k3+ k5, k4, kl+u2)[k3k5(k4+ k5) + (k4+ k5)k3k5]&

2(kl& k2& k3& k4& k5) Ll(kl& k2» k4& k3» k5) &

L, = 27(k, ' kl) V '"
(k4, k5, —k4 —k5) [(k35 + k)5k&3( k31 +k )23+ (kl + k2) (k3 + k5)k3],

2 2I.4 —I3,

L5(kl& k2& k3& k4& k5) L3(kl& k2& k4& k3& .k5) &

2 26=1.s
Lq ——54(kl ' k2)(kl ' k5+ k2 ' k, )(k3 k5+ k4 k5+ k3 k4)

2 2LS=L7

(a5)

(a6)

I3=-54(k, 'k2)(k3 k4)(kl k5+kl. k5),
2 2

Ll, = 27 V' (kl + k2, k3, k4 + k, ) V ' '(kl + k2, k4, k3 + k, )V '"(k4, k5, —k4 —k5) V""(k3,k„—k3 —k5)(klk2 + klkl),

{kl» k2& kl k2) V (kl» k2» -kl —k2)[(k3 'k5+ k4 'k5+ k3'k4)k3k4+ (k3'k4)(k4+k5)(k3+k53)],

LI, =27[(k, k, +k, k, +k, k, )[(k, k, )(u, k, )+(k, k, )(k, k, )]

+(k, k, )[(u, k, +k, k, )(u, .k, +k, u, )+(k, u, +k, k, )(u, u, +k, k,)P,
L14 —27 V"'(k3 + k5, k4, kl + k2) {klk2 + klkl) [k3k5(k4 + k5) + (k4 + k5)k3k5],

L15(kl& k2& k3» k4& k5) L14(kl& k2» k4& k3» k5) ~

3. ~iv

8(kl ' kl) (k4 ' k5)(k3 ' k5) (kl ' k4)QIv ——LP —g LI + L15 .
j=1

(a7)

The ghostless diagram gives

L3 —=27V (k„k2, —kl —k2)V'""(kl+k2, k3, k4+k5)V '"(k4, k5, -k4 —k5)V""(k3, k5, —k3 —k5)

x V'5'(k3 y k„k2, kl + k4) V'"'(k4, kl, —k4 —kl) . (as)

The ghost contributions corresponding to Fig. 20 are given below&.

L', = 27 "V(5kkl2, —kl —k2) V ~(k4, kl, —kl —k4) V~(k„kl + k4, k3+ k5) [k3(k4+ k', )k5+ k', k', (k4+ k, )],
L,'(k„k2, k3, k4, k5) =L, (k5& k3, k2, k4, kl),

L', =-27V "(kl, k4, —kl —k4) [(kl k5 + k2 ' k5) k2 (k4 + k, ) (k3 + k5) + (k3 ' k4 + k3 k5 + k4 ' k5) (kl + k2 )k5k2]»

I.',(k„k„k„k4,k, ) =I.', (k„u„k„u4,k,),



126 THOMAS GOTTSCHALK AND DENNIS SIVERS 21

L, =27V ~(kj, kj, —kj —kj)[(k, k4+ k3 '
k5+ k4 'k5)k4 (kbj+ k45)k3'+ (k3' k4)(kj + k4)(k3+ k5)(k~+k5)],

Lb(k„ k2, k3, k4, k, ) =L,(k5, k3, kj, k4, kj),

L7 = 27V (k3 + k5& kj+ k4& k2)[(k3 ' k4)k5kj(kj + k2) + (kj ' k5 + k2
' k5)kbk4kj]

I,(kj, k2, k3y k4p k5) 7(k5, k3p kj, k4, kj),
I 43 =-27 V'"'(k„k3, —k3 —k5) V'5'(k3+ k5, k2, k, + k4) [(k4+ k5)(k", + k~2)kbjkb4+ k4(k4+ 85)(kj5+ k25)k;],

L,o(kj, k2, k3y k4g k5) g(k5p k3p kjy k4y kj) y

I.'„=27[(k, k, +k, k, )(k, .k, +k, k, )(k, .k,)+(k, k, +k, .k, +k, k, )(k, k, )(k, k,)],
12(kjl kjt k3$ k4& k5) Ljj(kbl k3) k2$ k4& kl) t

L,3 =27[(kj ' k5)(kj ' kj+ kj k4+ k2 k4)(k3 k, + k4 ' k5+ k3 ' k4)

+ (kj ' k4+ kj ' k, + k4 ' k, )(kj ' k5+ k2
' k, )(kj k, +k, 'k, )],

I» =-27V~"(kj, k4, —kj- k4)V '"(k4, k5, —k4 —k5)[(k;+k5)kj (kj+k2)k43+k2(kq +kj)k3(k3+k', )],
L„=27[(kj'k3)(k2 ' k, )(kj k4+ kj k5+k4 'k5) + (k2 k4+ k2 k,)(k, k3+ k3 k4)(k, k5)

+2(k, k, + kj k5)(kj'k5+k4 k, )(kj k3)].

APPENDIX C: INVARIANT EXPANSIONS 1. Single-gluon processes

For completeness, me list here invariant expan-
sions for the basic cut diagrams defined in Sec.
III.

The single-gluon traces are defined in Eqs;
(3.16) and (3.24). We write these terms as

T~ =C~N~ /D~ . (Cl)

The coefficients C~ and denominators D~ are given
in Table VII. The numerator factors for T„T„
and T„,are simple:

&j =(P. 'Pb)(P5'&. )+ (P. P.)(P. Pb»

&j = (P. 'Pb)(P. 'P4+P. 'P4)(P. P4+P. 'P.»

(c2)

(c3)

5

%e expand the remaining terms as

(c4)

TABLE VII. Coefficients and denominators for the
expansions of T z, 2'z in Eq. (C1).

Term Cg

t r
l2

l

IS

FIG. 20. Complete ghost-loop expansion for Q~v.
Each ghost ].oop can have two directions.

I
II
III
IV
V
VI
I
II
III
IV

64/3
28/3

8/3
4/3
12
48

80/9
4/9

64/9

(Py 'Pg )'(Pg 'P, )
(Pa Pe)(Pa 'Pc)(Pe '&e)(Pa Pu)
(Pa'Pe)(Pa 'P, )(Pg 'P, )(Py Pg)
( 'P. )'(P. P.)(P. P.)

(Py Pg)'(Pa 'P~)'
(Pg 'Pa)(Py'Pg)(Pc 'Pe)(Pz Pe)
(P$ Pc)(P/'Pg)(Pa 'Pe)(Pc &e)
(Po Pc)(P~A')(P. 'P )
(Pa 'Pu)(P~'Pc)(Pa '&~)(&c 'Pe)
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TABLE VIII. Coefficients Cg~~ for the sums in Eq.
(C5). The scalar products d; are defined in Eq. (C6).
(Throughout these tables, periods indicate zero values. )

TABLE IX. Coefficients and denominators for the ex-
pansions of Az in Eq. {C7).

Term Cg
~II ~III

3
1
2
6
1
3

~2

~1

111
112 -1
113 1
114 -3
115 -1
221 1
222
223
224 -2
225 -1
331 -1
332
333
334 1
335
441 3
442 -2
443 1
444
445
551 1
552 -1
553
554
555
123
124 6
125 2
134 2
135 ~

145 2
234 -1
235 -1
245 -1
345 1

3
2

-2

.-1
2
1

1
2

-2

2

-1
3
2

2
2

-1
-8
-5
-4
~2
-1

3

~3
1
1
2
2
1

-2
-2

1

1

~]
~1

1
1

~IV ~V ~VI. II IV

I
H
III
IV
V
VI
VII
VIII
IX
X
XI
XII
XIII
XIV
XV
XVI
XVII
XVIII
XIX
XX
XXI

512/9
64/9
4/9

80/9

2

64
8
9
0
9
0

36
9

72

36
162
162

1944

(pi kf)(P, k, )
(Pi kf)(pf'k2)(P2 k3)
(Pi'ki)(Pi k3){P2 k3){P2'k2)
(Pi'ki)(P 'k )(P 'kf)(p2'k )
(Pf ki)(» 'k3)(ki k»
(Pi'ki){Pi'k3)(P2'k3){ i' 3)

i) (P2 3){P2 2) { i 3)
(ki ' k2)'(k 3'P2)
(ki k2) (pi k 3) (p2 k3)
(P, kf){P, k,)(k, k, )(k, .k, )

(Pf 'P2}(Pi 'kf)(P2. k3)(ki. k2)

(k2 k3) (Pi P2)(pf ki)
{Pi P2) (Pf i) ( 2 3){ 2 ki)
(Pi P2) (k2 k3)
{p, p, )2(k, k3)(k2 k, )

1){P2 3) (Pf P2)

(pi p2)2(ki ~ k2)
(Pi'P2)

N~=kf 'k3,

+II (P 1 ~3)(~I ~2 Pl ~1 Pl ~2) y

+IV (Pl P2)(Pl P2 +Pl ~3 P2 ~3

X (Pl 'P2 +Pl ' $1 —P2
' $1) q

(cs)

(c9)

(cio)

The coefficients and denominators are given in
Table IX. The color factors for N~ and N~»
vanish. The numerator factors for R» R„, R,v,
and R», are simple:

N~ ——Q C I13d;dld3, (c5) TABLE X. Coefficients C~~ for the sums in Eq. (C12).
The scalar products d~ are defined in Eq. (C14).

using the independent dot products

di =Pe 'Pb ~

d2 =Pa'Pc ~

d3 =P. 'P& ~

d4 =Pb 'Pc ~

5 Pb Pd '

(cs)

The required coefficients are listed in Table VIII.

2. Triple-gluon processes

%e expand the basic triple-gluon traces of Eq.
(3.31) as

a, =c,x, /D, . (cv

11
22
33
44

- 55
12
13
14
15
23
24
25
34
35
45

1

-1

1
-2

+VIII

6
6

-1
4

~2
~2

XVIII

~MO3

-1
-1

2
1
1

-8
-8

8
8
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ijk

TABLE XI. Coefficients C;~g, for the sums in Eq. (C13).

&x &xvn

111
112
113
114
115
221
222
223
224
225
331
332
333
334
335
441
442
443
444
445
551
552
553
554
555
123
124
125
134
135
145
234
235
245
345

1
1

1
1
1
1

2
5
6

1

1

2
-2

3.
3

-6
5
3
3
5

-6
1
1

~]
~1

3
12
11

-10
-8

5

9
-10
-19
-24
-25

12
7

-10
11
23

-11
-5

-15
20
12
10

-8

5
12
22
17

-10
-6

2

~11

8
8

-14

4
8

-2

8
-6

-6
-21
-16

17
6

-15

1
2

-11

-15

-8
-8

-16

-16
24
10
31
22

-15
5

16
20

8
-20
-8

2

17

8

11
4

4
4
8

-8

-32
-64
~33

64
33
40

16
5

-16

5
3

-16

7
48
37
37
38

-37
-6
13

6
-13

&xx~ =&-

The remaining terms aie given by

N~ ——Q C))d;d)

(c»)

(cu)

TABLE XIII. Coefficients C;~ for the sums in Eq.
(C19). The scalar products ~;are defined in Eq. (C21).

@vu

I
II
III
IV
V
VI
VII
VIII
IX
X

108
27

0
27/2
27/4

243/2
1215

29160
1944

6561/2

(k, k,) {k,~ k, )
(k( k2)2(k4 k5){k3.ks)

(k( k2)(k( k4)(k3 ks)(k4 ~ ks)
(k( k2)(k( k5)(k4. k5)
(k( .k 2) {k( k 5) (k 3.k 4)
(k( ~ ks) (k3o k4)
(k) ~ k 5)
(k( k4)(k(. k()
(k) k )(k2 k4)

TABLE XII. Coefficients and denominators for the
expansions of Qz in (C15).

11
22
33
44
55
12
13
14
15
23
24
25
34
35
45

147
108
43

226
44

295
94

265
461
191
291
375
169

87
352

44
-1
-1
-9
-9

-44
44

-35
-35
-2

-13
-13
-13
-13
-18

12
8
8

~1
16
16

, 10
10
16

6
6
6
6

~2
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TABLE XIV. Coefficients C~~q for the sums in Eq.
{C20).

and XI. The independent scalar products are
taken to be

ijk

111
112
113
114
115
221
222
223
224
225
331
332
333
334
335
441
442
443
444
445
551
552
553
554
555
123
124
125
134
135
145
234
235
245
345

-170
-217

88
-217
-88
-13

17
8

119
24

-60
8

-13
119

24
17

8
-60

8

-28
34
4

-56
-28

32

32
48

-196
-252
-252
-252
-252
-78
-8

-19
-56
-5V
-78
-19
-8

-5V
-56
-78
-56
-57
-8

-19
-78
-57
-56
-19
-8

-280
-124
-260
-260
-124
-280
-76
-76
-76

, -76

48
-67

-175
148
159
-17

~32

-15
-168
-127

~20
-82
-28
-16
-64

13

15
101

32
2

74
10

-321
-33
~3

-29
-33
209
13

-78
-32

9

d2 —P1 P2 &

d2 —p] kg p

s=P

d4 ——p2 'kg,

d5 ——p2
' k2.

(C14)

QJ =C~N~/D~, (CI6)

with coefficients and denominators given in Table
XII. The color sum for Q,» vanishes. The num-
erator factors for Qv»z, Q, z and Qx are

Nvrrr =

Nrx ——k& 'k4+k, .k5+2k4'k»

N = ki ' k2+ kg ' k4+ k2
' ks+ k5 ' k4.

The remaining terms are expanded as

N~ =Q Cg(d;d)

(C16)

(C17)

(C18)

(C19)

or

Nz = Z C.gak&gk
f/'

(C20)

with coefficients C&&, C;» as given in Tables XIII
and XIV. The independent scalar products are
taken to be

3. Five-gluon processes

The five-gluon terms of Eg. (3.86) and Appendix
8 are written as

or

N~ — Cg .qd;d~dq,
jjk

(CI&)

with coefficients C;~, C&» as given in Tables X

dg —-- k)'k2,

d2 ——kq k3,

d, =k, .k„
d4 ——k2 k3,

dq ——k2 'k4.

(C21)
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