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Phase diagrams for coupled spin-gauge systems
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Using Monte Carlo techniques, we study Z~ lattice gauge theory coupled to a Higgs field represented by
spins situated on the lattice sites. We present phase diagrams for the Z, and Z6 theories with the Higgs field

in the fundamental representation of the gauge group and for Z6 gauge theory coupled to Z, Higgs fields,

I. INTRODUCTION

Recent results establish the utility of Monte
Carlo procedures for ihe study of phase trans-
itions in lattice gauge theory. '' Here we extend
those investigations to coupled spin-gauge sys-
tems. Placing spins on lattice sites provides a
prototype for a matter field which can produce
gauge-meson masses via the Higgs mechanism. '
This system carries two coupling constants, P
corresponding to the gauge-field self-interaction
and P„representing the strength of the nearest-
neighbor gauge-invariant spin-spin interaction.
For large p the gauge fields become ordered and
the model reduces to a conventional nearest-
neighbor spin system exhibiting the ferromagnetic
transition responsible for the Higgs mechanism.
For vanishing PH the site spins disorder and the
model reverts to the pure gauge theory. Depen-
ding on the gauge group and the dimensionality
of space-time, there may be one or more phase
transitions along this line. ' "

Several authors have discussed phase diagrams
for these systems. ' When the site spins are in
the fundamental representation of the gauge group
Q, the ordered spin phase of the Higgs mechanism
is analytically connected to the disordered phase
of the pure gauge field. When the spins are in
another representation R, the theory at large PH
reduces to a pure gauge theory with group G/R,
i.e., the subgroup of G under which the matter
fields are invariant. In this case the above-men-
tioned phases can be distinct. In this paper we use
Monte Carlo techniques on a four-dimensional lat-
tice to "experimentally" confirm this structure.
We restrict our treatment to the discrete Abelian
gauge groups Z~.

In the next section we define the models and
summarize the Monte Carlo procedure. In Sec.
III we discuss the limiting regions bounding the
phase diagram. Section IV contains the phase
diagrams for Z, and Z, gauge fields. For Z, we
consider matter fields in both Z6 and Z, . The
latter case gives a nontrivial quotient group
Z, /Z, =Z, . Section V contains some discussion.

Conclusions on U(1) a,re drawn from the Z, model
at low and intermediate p.

II. THE MODELS AND THE METHOD

We work on a four-dimensional hypercubical-
lattice. On each site i we have a spin variable
S. taken from the group Z„,

S cZ„=fe"'~'~
~

m —1, . . . , MJ. (2.1)

For each pair of nearest-neighbor sites i and j
we have a gauge or link variable U.

&
in the group

ZN~

~ (~2trinlii~~ —1
t

We require that the quotient

l =N/M

(2.2)

(2.3)

be an integer so that Z~ i.s a subgroup of ZN.
The link variables are oriented in the sense that

U.)
= U,.*.. (2.4)

The dynamics of this system of spin and gauge
degrees of freedom follows from the action

(2.5)

The first sum is over all nearest-neighbor pairs
of sites (i,j) where each such pair contributes

3 ~ (2,j ) = 1 —Re(S.U,AS ~i), (2.6)

where the power l is defined in Eq. (2.3). The
second sum in Eq. (2.5) is over all elementary
squares or plaquettes, each such square con-
tributing

1 —Re(V, , V,,U„U„), (2.7)

Z= P e-',
S. U. .

(2.8)

where the sites i, j, k, and l circulate around the
square U. A nearest-neighbor pair contributes to the
action a number from the interval [0,2P~j and
a plaquette contributes from [0,2P] .

We insert this action into a path integral or
partition function
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where the sum is over all allowed configurations
of the link and site variables. The free energy
of the syste'm is defined as

1F =—lnZ,
N (2.9)

where N~ is the number of sites in the lattice.
The correlation functions we study are. the aver-
age link and average plaquette defined by

L =(&,(f,i))=-4, &(P, p ), (2.10)

1 aP= (g )=-- —&(P P ).cl 6 gp & H (2.11)

2'"' =1.2 x10' (2.13)

terms. Indeed, this immoderate sum suggests a
statistical treatment. The Monte Carlo method
generates p, sequence of states which simulates
an ensemble of configurations in thermal equilib-
rium. In this ensemble the probability of finding
a given configuration is proportional to the Boltz-
mann factor e ~ . Expectation values in the states
of this sequence should then fluctuate about the
true correlation function of the full path integral.

We use a Monte Carlo algorithm which is equiv-
alent to successively placing a heat bath in con-
tact with the individual spins and links of the
lattice. After touching any particular spin var-
iable S, , we replace it with a new value S,' in a
random manner weighted by the Boltzmann factor

g = exp[-S(S,') j, (2.14)

where 3 (S,) is the action evaluated with site i

The factors,'- and are the ratios of the number
of sites to the number of links and plaquettes,
respectively, in a four-dimensional lattice.

This system possesses a local gauge symmetry.
Given an element g. of Z„associated with each
site of the lattice, the action is unchanged by the
replacement

U&& g.U&&g '»

S.-S.g '. . (2.12)
g.

Note that by selecting g'. =S. the spin variables
all become unity. For gauge-invariant correla-
tion functions the theory is thus equivalent to the
pure gauge theory coupled to a non-gauge-invar-
iant applied field of strength P„. We call this
choice the unitary gauge. It will be useful in the
discussion of the small-P and the large-P„ limits
of the theory.

Even for extremely modest lattice sizes, it is
impractical to evaluate the sum in Eq. (2.8) dir-
ectly. For Z, gauge and Higgs fields on a mere
24-site lattice this sum has already

having spin S'. and all other dynamical variables
fixed at their previous values. We similarly treat
the link variables. In the remainder of this paper,
one Monte Carlo iteration refers to one application
of this algorithm to every link and spin variable
in the lattice.

For initial configurations we set all S.=1 and
t

set the links either randomly or to unity. (A
situation where both site and lj.nk variables are
random is gauge equivalent to random links and
ordered spins. ) These two initial states represent
infinite and zero temperature. A measure of
equilibrium is the agreement of correlation func-
tions obtained with Monte Carlo iterations from
these two initial conditions.

The phase diagrams of Sec. IV follow from sim-
ulations on a 5 x 5 x 5x 5 lattice. Vfe then check a
few points in crucial regions on an 8' lattice. To
minimize surface effects we always impose per-
iodic boundary conditions. Although gauge invar-
iance theoretically permits us to fix spins and
only vary links, we have found that convergence
of the Monte Carlo procedure is enhanced when
the gauge is allowed to fluctuate. In addition to
running at fixed P and p~ we have found it useful
to adjust p and/or p„after each iteration to search
for values giving a desired average plaquette
and/or average link. This allows a rapid deter-
mination of contours of constant correlation.

p, =1.00 +0.01,

p =1.61 +0.04.
(3.1)

In Figs. 1 and 2 we show the average plaquette
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FIG. 1. The average plaquette as a function of P for
pure Z2 gauge theory. The solid line represents the
series results in Ref. 1.

III. LIMITING REGIONS

We now discuss the four limits p„-0, ~ and
P-O, ~. For vanishing P„ the site spine random-
ize and the model reduces to pure Z~ gauge the-
ory. For N = 2 this model has a first-order phase
transition at the self-dual' point p = —,

' ln(1+ v2 )
=0.44. .. . For g, we have two higher-order trans-
itions occurring at'
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FIG. 2. The average plaquette as a function of p for

pure Z6 gauge theory.

as a function of p for the groups Z, and Z, . Al-
though in Refs. 1 and 2 we used larger lattices,
this simulation shows the typical fluctuations ex-
pected on a 54 lattice. In Ref. 2 a study of lattice
size showed no qualitative changes down to a 3'
lattice; only the fluctuations grew as the size was
reduced. In Fig. 1 we also show the series re-
sults for Z, quoted in Ref. 1.

When P»- ~ the system must have vanishing
average link L. In the unitary gauge this is equiv-
alent to

(3.2)U' 1id

If the Higgs field is in the fundamental represen-
tation, i.e., if l =1, the gauge fields must order
and both P and L will vanish. However, if l 11
then Eq. (3.2) only implies that a.ll gauge variables
lie inthe quotient group Z»/Z» =Z, . Thus as p„-~
the theory goes over to a pure Z, gauge theory.
Our treatment of Z, gauge fields coupled to Z3
spins will reduce to Z, gauge theory in this limit.

The limit P-0 is trivial in the unitary gauge.
Without the gauge interaction the link variables
decouple and the average link is

I = — Ie P exp{- P„[l- eRll{')]{).
p» UE Z»

(3.3)

As each link is decoupled from the others, the
average plaquette is

P=1- (1 —L)' &, , (3.4)

In Fig. 3 we plot the functions in Eqs. (3.3)»d
(3.4) as a function of P» for the group Z, . For
comparison, we superpose Monte Carlo results
obtained without gauge fixing on a 5' lattice.

Finally we come to the limit P- ~. Here all
plaquettes must go to the identity. The gauge
fields are then gauge equivalent to total order-
ing and the model reduces to a pure Z„spin sys-
tern with nearest-neighbor couplings. In Fig. 4
we show the results of simulations of this system
with Z, Higgs fields. The Z, model is the Ising'
model and the Z, model is equivalent to the three-
state Potts' model, both in four dimensions. These

FIG. 3. The average plaquette and link as a function
of P@ for the &2 system at P = 0. The solid lines are the
exact result and the points are from Monte Carlo simu-
lation.

systems all exhibit ferromagnetic phase trans-
itions. Based on mean-field theory, conventional
lore is that for Z, and Z, these transitions are
second order. For Z„however, there is ap-
preciable evidence that this is a first-order phase
transition. ' The inverse temperatures of these
transitions are

0.150 for Z,

P~= 0.258 for Z,

0.34 +0.01 for Z6.

(3.5)

The values for Z, and Z, are from Refs. 9 and
10, while for Z, we used our own analysis on an
84 lattice.

To summarize this section, the models under
study have one or two transition line, s entering the
phase diagram from the axis PH=O, one trans-
ition at p=~ and zero or one transition at p»=~ .
In the next section we will see how these lines
connect in the interior of the diagram. The figures
in the present section serve to indicate the typical
fluctuations occurring in Monte Carlo simulations
on a 5' lattice.

IV. THE DIAGRAMS

In Fig. 5 we show contours of constant L and P
in the (P, P») plane for the gauge group Z, and
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FIG. 4. A thermal cycle on the four-dimensional Ising
model. Each point is the average link after 10 iterations
at fixed PH. At each PH the lattice was started in the con-
figuration obtained froin an adjacent point, either hotter
or cooler.
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Higgs field also in Z, . The trajectory of the
gauge transition through the diagram is apparent
as a "cliff" in the values of P and L. The Higgs
transition appears as a steep "hill" in the value
of L. This hill disappears beneath the cliff at a
triple point. The first-order line continues into
the diagram until it unfolds at a critical point.
Beyond that critical point the system appears
smooth as predicted in Ref. 6. Figure 6 sum-
marizes the general features of the phase diagram.

As gauge fluctuations induce disorder, the Higgs
transition should move to larger P„as P is re-
duced. ' However, the gauge field is so thoroughly
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FIG. 5. Contours of constant I. and I' for Z2 gauge
theory coupled to Z2 Higgs fields.
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FIG. 7. Fifty iterations on an 8 lattice for the Z2
system at (a) p = pz= 0.32, (b) p = pz= 0.33, and (c) p = pz
= 0.325.



1010 MICHAEL CREUTZ 21

ordered for P &0.44 that we cannot see this shift.
Similarly the gauge transition should move to low-
er P as P~ is increased, but below the triple point
this shift is also too small to appear in our an-
alysis. Thus we place the triple point at p=0.43
+ 0.02, P~=0.16+0.02.

In Fig. 7 we show the average plaquette and
link as a function of number of Monte Carlo it-
erations on an 8' lattice with P and P„chosen
near the transition line above the triple point.
These runs were initiated with three distinct start-
ing conditions, ordered, disordered, and a mixed
phase. In the latter, half the lattice was ordered
and half random. Such a state should evolve with-
out being caught in a metastable phase, associated
with a first-order phase transition. Figure V(a)
shows that the point P = Ps= 0.32 lies on the dis-
ordered side of the transition line while Fig. V(b)
shows P=PH=0. 33 is ordered. The first-order
nature of the line is manifest in Fig. V(c), where
at p=P~=0.325 two stable phases appear and the
mixed phase drifts rather slowly. The critical
point where this first-order line terminates is
difficult to locate precisely because of the steep
behavior beyond it. %e estimate P = 0.22 + 0.03
and P„=0.48 +0.03 as its coordinates.

In Fig. 8 we show contours of I' and I. for the
gauge group Z, with the Higgs field in the funda-
mental representation. The Higgs transition
again appears as a steep slope in I.. For P~ below
this transition P is essentially independent of P~.
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FIG. 9. Fifty iterations on an 84 lattice for the coupled
Z6 system at P = 0.85, Pz

——0.525.
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P = 1.60 + 0.05,

P„=0.35 +0.02,

and for the low-P triple point

(4.1)

The two gauge transitions thus proceed essentially
at constant P until they join the Higgs transition
at two separate triple points. For P below the
junction of the Higgs and high-temperature gauge
transitions, we have a single transition line term-
inating at a critical point similar to that seen
with Z, . This line appears to be first order, but
this is not certain because the discontinuity across
it is less substantial than in the Z, case. For the
large-P triple point we quote

l.5

I.O

I

GE

GS

URS OF
NT L

p = 0.98 +0.03,

P„=0.42 +0.03 .
The location of the critical point is

P=O.GV +0.05,

I8„=0.6V +0.05 .

(4.2)

(4.3)
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The errors in the above numbers are subjective
estimates. To argue that the line connecting the
critical point with the low-P triple point is first
order, we show in Fig. 9 runs on an 8 lattice
at P =0.85, PH =0.525 with both random and ordered
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FIG. 8. Contours of constant L and P for the coupled
Ze spin-gauge system. FIG. 10. Phase diagram for the Z& system.



PHASE DIAGRAMS FOR COUPLED SPIN-GAUGE SYSTEMS IOI I

l.5
0.3

I.5

04

0.5

-0.6

NSTANT L

I.O—

0.5—
0.8

0

0.9

I

0.5

~ GAUGE.TRANSITIONS:

I.O l.5 2.0 2.5

0.5—
CONFINED

PHASE

l.5

I.O—

GAUGE

HIGGS

NTOURS OF
NSTANT P

0
0

I

0.5

GAUGE
TRANSI TIONS

I

I.O I,5

FIG. y2. Phase diagraxn for the &6 gauge &3 spin
system.

2.0

0.5—

0.9 0.

'0 I

0.5

0.3 0.2 O. I

l I I I

I.O l.5
P

HIGGS TRANSITION

I

2.4 2.5

FIG. 11. Contours of constant I. and P for Zz gauge
fields coupled to Z3 Higgs fields.

P„=1.58 +0.05,

P„=0.28 +0.02,

while the other occurs at

P =0.98 +0.08,

P„=0.51 +0.08 .

(4.4)

(4.5)

This phase diagram is summarized in Fig. 12.

V. DISCUSSION

initial states. These runs appear to yield distinct
phases, but the separation is small. The general
features of the phase diagram for this system are
summarized in Fig. 10.

Finally, in Fig. 11 we plot the P and L contours
for Z, gauge fields with the Higgs field in the Z3
representation. Qualitatively the diagram is sim-
ilar to that seen in Fig. 8 except that the first-
order line with Pz above the low-P triple point no
longer unfolds. Rather it continues to large-P„
and becomes the first-order transition of the
residual Z, theory. Both triple points are shifted
to lower P„because the Z, spin system is naturally
more ordered than Z, . The large-p triple point
occurs at

essentially as the U(1) model for P below the sec-
ond transition, the first triple point and the un-

folding of a first-order line are likely properties
of a similar phase diagram for the U(1) coupled
Higgs-gauge system. The lack of unfolding for
Z3 site spins coupled to Ze gauge fields corres-
ponds to the case of a doubly charged Higgs field
in the U(l) system. This work confirms the basic
structure of these phase diagrams as predicted
in Ref. 6.

Except for the Z, case, when P is infinite the
Higgs transition is second order. An interesting
question is whether this critical point is part of
a line of second-order transitions or if the Higgs
transition becomes first order in the interior of
the diagram. We cannot answer this with our
crude Monte Carlo results because when the gauge
fields are ordered the effect of P on the Higgs
transition is slight.

It might seem remarkable that we can obtain
information from a lattice as small as five sites
on a side. Note, however, that the number of
states for such a system is extremely large; for
the Z, case there are

2' "'=5.23x10' '
distinct configurations. This large number sup-
ports a statistical treatment. Also note that we
have only asked rather crude questions about the
location of transitions; more subtle points such
as critical exponents presumably require con-
siderably more detailed analysis on larger lat-
tices.
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