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We analyze the conditions under which several coupling constants in field theory can be related to each
other. When the relation is independent of the renormalization point, the relation between any g and g'
must satisfy a differential equation dg'/dg = P, (g,g')/P (g,g'), as follows from the renormalization-

group equations. Using this differential equation, we investigate the criteria for the feasibility of a power-
series relation g' = g;, ,K„g" for various theories, especially the Weinberg-Salam type (including Higgs
bosons) with an arbitrary number of quark and lepton flavors. There is sometimes an arbitrariness in the
higher tK„) arising from the integration constant of the differential equation, but K, is well determined in

terms of only group theory for the theories we have investigated. We use the information on K, to compute
approximately the value of the Weinberg angle 0~, the magnitude of the Higgs self-coupling, and hence the

mass of the Higgs boson IH.

I. INTRODUCTION

Quantum field theory specifies the strength of
particle interactions through one or several cou-
pling constants. In general, when there are two or
more coupling constants, each can be given an ar-
bitrary value, and the theory is always presumed
to be well defined.

Theories exist, of course, in which relationships
exist among several g p~o~j unrelated coupling
constants. This is usually accomplished through
the existence of sym~e~«e+. Gauge invariance,
for example, demands that the gauge field be cou-
pled to matter fields at the same strength as its
self-coupling. Other unrelated fields are forced to
couple with equal strength through the requirement
of some discrete symmetry, for example. Super-
symmetry, in general, enforces a slightly more
intricate relationship of the couplings within the
supe rm ultipl et.

We also know of an example of coupling-constant
relationships that arise dynamically. If the spon-
taneous symmetry breaking of a Higgs-gauge field
system is attributed to radiative corrections, a
relationship mas found' between the Higgs field
self-coupling A. and the gauge coupling g.

In this paper we propose to investigate a general
kinematical requirement necessary for the exist-
ence of coupling-constant relations (CCH's). We
restrict our attention to those CCR's that are in-
variant under a change in the renormalization point

This renormalization invariance at once tells
us, via the renormalization-group equation, ' the
general condition under which a CCR may exist.

. The. CCR discovered in Ref. 1 is explicitly depen-
dent on the renormalization point, and as such lies
outside the scope of our present investigation.

A constraint arises because when two coupling
constants are related they must separately be able

to absorb divergences in renormalization. A CCR
must therefore be compatible with perturbation-
theoretic renormalization, and this is guaranteed
by the general condition arising from the renor-
m alization- group equations.

The general condition takes the form of a differ-
ential equation, which for two coupling constants
looks like

dg
dg

= B(g,g')

Since a differential equation of this type, in gener-
al, specifies the solution up to an arbitrary inte-
gration constant, there is no useful relation result-
ing from the equation per se.

We have attempted to solve the differential equa-
tion (1.1) by (1) inserting the perturbation theory
result for B(g, g'), and (2) assuming a pogeer
series -type solution:

g'=g K„g". (1.2)

We concede that there need be no intrinsic special
significance for a power-series solution, except
for the following considerations. We found that
certain mell-defined conditions have to be satisfied
by the theory for a power-series solution to exist,
and these conditions single out those particular
theories to form a special class. Furthermore, we
can then essentially determine the integration con-
stant of the power-series solution in some cases,
thus giving us a definite power-series-type rela-
tionship between coupling constants. Lastly, we
suspect that CCR's arising from symmetry or dy-
namics are probably all of the power-series type,
and thus power-series relations allowed by the dif-
ferential equation may correspond to a symmetry/
dynamical mechanism as yet undiscovered. We
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thus feel that such power-series CCR's can be
significant and may everi be utilized in the con-
struction of nature.

An attempt to discover supersymmetric relations
by using the requirement of renormalization com-
patibility was in fact made by one of the authors. '
The Wess-Zumino4 Lagrangian for the fundamental
supermultiplet containing a Majorana spinor field

P, a scalar field P, and a pseudoscalar field P'
was derived dynamically starting with the most
general renormalizable Lagrangian for these
fields, satisfying parity conservation. The as-
sumption underlying the proof was that there exist
relations among the bare couplings and that these
relations remain preserved after renormalization.
The result is that the only theory in which the as-
sumed CCR is sustained to all orders in perturba-
tion theory is precisely the Wess- Zumino super-
symmetric Lagrangian. We shall rederive this re-
sult in Sec. III in example 5, within the framework
of our present general approach.

At this point we have no reason to believe that
power-series relations among couplings actually
hold in nature. We can only appeal to the philo-
sophical preference among physicists of taking the
simplest case whenever a choice is to be made. A

similar precedent may be the hope that the physical
coupling constant is precisely that value deter-
mined from the nontrivial fixed point of the P func-
tion. If we make the assumption that such relations
are indeed true in nature, then we can make cer-
tain speculative predictions of measurable quanti-
ties. In the standard Weinberg-Salam model there
exist the couplings g and g', and when Higgs bo-
sons are introduced there also exist the scalar
self-coupling constant ~. We shall be able to make
speculative predictions of the values of g' and A. in
terms of g for a certain range of group-theoretic
choices in terms of group-theoretic parameters of
the model. In other words, the Weinberg angle

g~, the scalar coupling X, and hence the mass of
the yet to be discovered Higgs particle are deter-
minable, if the power-series CCR's we discover
are indeed valid.

In Sec. II we write down the differential equation
relating coupling constants and discuss them, in a
general context for several field-theoretic exam-
ples in Sec. III. In Sec. IV we assume a power-
series solution for. the differential equation in these
examples and obtain the respective criteria for
their existence. In Sec. V we discuss some pheno-
menological implications of our speculative power-
series CCR. For the Weinberg-Salam-type theo-
ries of flavor dynamics we calculate the value of
the Weinberg angle, the magnitude of the X scalar
self-coupling, and hence the mass of the Higgs
boson. Section VI concludes the paper.

II. DIFFERENTIAL EQUATION RELATING COUPLING

CONSTANTS

We consider a field theory with n (& Pn&&& un-
related) coupling constants g„.. . , g„determined
by renormalization conditions at a common renor-
malization point p, . Then if one varies the renor-
malization point, the change in the g's is given by
the renormalization- group equation

where

t =lng . (2.2)

Since p, functions are cutoff independent, they
have no explicit dependence on t when we are deal-
ing with a massless theory. When there are mass-
ive fields, then we must use the mass-indePendent
approach to renormaliz ation- group equations,
where P functions are always t (and mass) inde-
pendent. We can eliminate the parametric depen-
dence of the system of Eqs. (2.1) on t by forming
quotients with the jth component (j can be chosen
arbitrarily):

that has the same form under a change in I;, that
relation must be a solution trajectory of (2.3).
Thus, by investigating (2.3) we shall find af/ possi-
ble functional relations among coupling constants
if these relations are to be invariant under the re-
normalization group.

We emphasize right away that these differential
equations in general do not imply that coupling con-
stants can no longer be chosen with complete arbi-
trariness. Let us take the fictitious example

dg2

de
where C is a constant. Then the solution is

2 =CÃi+I

(2 5)

(2.6)

where K is the arbitrary integration constant.
Thus, g, and g, can be chosen completely at will at
any point t. Now suppose we wish to investigate
whether a functional relation

(2.7)

. (2.3)

The solution of the ordinary differential Eqs. (2.3)
gives a solution trajectory passing through any ini-
tial point (g,' ', . . . , g'„o').' lf there is to be any
functional relation

(2.4)
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g, (f) =cg, (f) . (2.8)

HI. SOME FIELD-THEORETIC EXAMPLES-

We shall consider some examples of the differ-
ential equations for theories with two or more cou-
pling constants. Clearly, the differential equations
are simplest in the case with exactly two coupling
constants, since then there is only. one differential
equation to solve. In theori. es with three or more
coupling constants, there is in general a system of
coupled differential equations which are rather
more difficult to analyze.

ExamPle 1. The theory consists of two scalar
fields p, and &l&2 with an interaction A, &t&,

'+ A.,p,4.

We have then the differential equation

is a1.lowed by the renormalization invariance. Then
we find that it is indeed allowed, since we can take
& = 0, but only if y = C. Thus, the only allowable
CCB is

P, (g g') =bg'+b og +bo g'g" +"
p (g g)=ag +a gV+ag +'''

(3.9)

(3.1O)

where the a's and b's are constant coefficients de-
pendent on the groups and representations chosen.
It is noteworthy that there are no g'g' and gg"
terms present. If we take just the lowest order,
the differential equation becomes

theory for p(A) and comparing coefficients term by
term, as we shall see in Sec. IV.

Example Z. 'This is a non-Abelian gauge theory
with a direct-product gauge group 6 (36', and there
are thus two coupling constants g and g'. The
gauge fields can also be coupled to fermion matter
fields, but w'e do not include scalar fields, since
they always need their own AP' self-coupling to be
renormalizable and would necessitate a third cou-
pling constant. The P functions are, in a perturba-
tion expansion,

dq P, (Z„g)
dX, P, (X„g) (3.1)

dg Qg (3.11)

Since there is no interaction whereby p, goes into

P„ the P functions are in fact functions of only
their respective coupling constants and the func-
tional forms are identical:

p, (z„z,) = p(z, ),
P, (x„x,) =P(x, ) = bZ, '+ b, Z, '+ ~ ~ ~ .

Therefore, we have

p(q)
p(&, )

'

(3.2a)

(3.2b)

(3.3)

d&&, "& dX,

,&o& p(g), «& p(&&, )
' (3.4)

where (X&& ', X& ') is the initial point. Clearly, the
CCR

which equation is separable, and we get the solution

and can be integrated to give

2
r2

a/b+ Kg
(3.12)

(3.13)

This is, in general, false because of higher-order
terms in perturbation theory, as we shall discuss
fully in Sec. IV.

Example 3. Next we consider a sirnpIe gauge
group G, but we allow scalar fields also. 'Thus the
coupling constants are g (the gauge coupling) and A,

(the scalar self-coupling). The differential equa-
tion is

where K is an arbitrary integration constant. It
would seem that by setting K =0, it would be possi-
ble to have a CCB:

will satisfy the equation, as is to be expected.
Suppose we try to impose a CCB

(3.5)

(3.6)

'with ce1. This means, by Eq. (3.3), that for a
fixed c

d&& P&, (l&, g)
dg P, (&&, g)

where the P functions have the expansion

p~(g, &&)
= AA. + Bh.g +Cg +

P,(g, x) =bg'+

(3.14)

(3.15)

(3.16)

(3.7)p(c~) =cp(&).

Note that this behavjpr is a possible one; witness
the model function

With the lowest-order expression the equation can .

be solved exactly by the substitution

2m 1
p(A. ) = p b„exp 1+in in&&

ff= ~ 00 inc

But it can be excluded by appealing to perturbation

x=g

A. =ux

to give

(3.17)
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(Bt2 4AC)1/2B-'+ (B"—4AC)'/' tanh— (Inx+K) for B"&4AC

1(, 4y
u=g

2A ( lnx+K for B'~ =4Ag

1 (4AC —B~ 2 )1/2
B'-+ (4AC —B")' tan ' (Inx+ K), for B"& 4AC

(3.18a)

(3.18b)

(3.18c)

where B' —= B—2b and K is an integration constant.
The guess for an implementable CCR is only

slightly less obvious. Choose K =+~, -~, and
when (3.18a) holds, a possible CCR is

r 1
I Bl (BI2 4AC)1/2] for Q —+Qo

2A.

(3.19a)

I

approach. 'The case we consider is the fundamental
supermultiplet of Wess and Zumino containing a.

Majorana spinor field g, a scalar field p, and a
pseudoscalar field P'. The most general Lorentz-
invariant and renormalizable Lagrangian with these
fields satisfying parity conservation is given by

& (Q 0' 4) =a44Q+Z. 712 r'04 '+ m(r, g'+Z, PP")
1g' -B'+ (B"—4AC)~2), for K =-~

2A
+rod'+a'ol'0" +g10", (3.25)

When (3.18b) holds, a possible relation is

(3.19b) where m is the common mass of these fields. The
We ss- Z umino super sym metric Lagrangian corre s-
ponds to

-B'
'=2A g. (3.20) gx =Ra =g'3 =g4 ~ (3.26)

P1(g, g', A.) = AA,'+ BAg'

+ B'Ag" +Cg'+C'g" + (3.21)

P2(t Ã ~) =5g +~1oog

+ ~oxoR~g + ~oo18 ~+ ' ' '
~

P (g 8 ~)=&K +&

+Qpgpg +Qppgg A, +' ' '
~

(3.22)

(3,23)

If we choose g as the independent variable, the dif-
ferential equations are

dA. P),
dg Pg (3.24)

with the P given by Eq. (3.21)-(3.23). We have not
been able to find any exact solution to this system
of equations, even when only the lowest-order ex-
pressions for the P are used.

Example 5. In this example we rederive the
supersymmetric result of Ref. 3 using our general

When (3.18c) holds, no useful result emerges.
Again, we defer to Sec. IV the modification re-
quired by going to higher orders in perturbation
theory.

Example 4. Lastly, we consider a more realistic
gauge model with G G' as gauge group, and scalar
Higgs fields are also included. The P functions in
perturbation theory take the form

For the seven coupling constants we have six dif-
ferential equations corresponding to Eq. (2.3). In
the lowest nontrivial order (one-loop approxima-
tion) the differential equation for g, and g2 is

dg, 8, (8g,' —2Z,')
dg1 Z, (8g, —2g,') ' (3.27)

Using the same technique as in our previous ex-
amples, one finds that a power-series CCR can be
obtained for Eq. (3.27) with the result

(3.28)

—,m(t) =-[1+~,(g(f))] m(f), (3.29)

where the notation of Ref. 6 has been used. To

where K, =1 and K„=O for n1.
Similarly, analyzing the differential equations for

the other coupling constants, one obtains the result
(3.26). When we go to the higher loops, it turns
out that the result (3.26) is not modified. This is,
of course, due to the fact that the Lagrangian
(3.25) possesses a global supersymmetry when the
relations (3.26) are satisfied.

Finally, we mention some additional features
when we are dealing with massive fields. There we
must use a mass-independent' renormalization
procedure, and besides Eq. (2.1) there also exists
an equation for the mass parameter (s):
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dm

dg

1+ y, (g),
I3(g)

(3.30)

simplify the discussion let us assume there is only
one coupling constant g, and then we get the dif-
ferential equation

We expect these power-series CCR's to be at
best asymptotic series valid for small values of the
coupling constants involved, as perturbation theory
itself is in a similar situation. Power-series rela-
tions are at least formally invertible in terms of
power series. Let y be expandable as

This separable equation can be immediately inte-
grated to give

y=a, x+a,2+a,x'+ (4.1)

m ' 1+ y(g)
m, , g P(g)

For an asymptotically free theory with

(i(g) =-bg'+ ~ ~ ~

we find

(3.31)

(3.32)

We write the inverse

x = b, y+ b2y2+ b3y'+ '

and we can determine

b= — b=—1 & 2 3
1 1

(4.2)

(4.3)

and hence as g-0,

(3.33}
Thus, it is irrelevant which particular variable is
chosen as the independent one in the power-series
CCR's we investigate.

We now discuss the examples of Sec. III in turn.
Example 2. The differential equation is

~g-2/2

mo g ~p
(3,34}

mg

me
(3.35)

giving (K = integration constant)

m„(i) = Zm, (t). (3.36)

Thus, (3.36} is an allowable relation between
masses.

IV. POWER-SERIES SOLUTIONS

which agrees with the conclusion of Ref. 6.
In any theory in which the electron and muon

fields, say, appear symmetrically, their ye are
identical functions of g. Thus, the masses must
satisfy the equation

dm„m„1+ ye~ (g)
dm, m, 1+ ye(g)

dz, bX,'+ b, Z, '+ ~ ~

dh. i bh. i + bi A.i +

~' b+bz, +

b+b, ~, +' ' (4.4)

'This equation, just like the differential equations
in our other examples, is characterized by the fact
that the point X, -0, I -0 is a singular one, in that
the right-hand side of the equation takes on the in-
determinate form 0j0. A long-known procedure of
finding power-series solutions to such equations
exists, ' and we shall follow it in our investigation
of the examples.

It is clear that in order for the equation not to
become singular, A., must approach zero as ~, -0.
So w'e make the substitution

= u(A. i) X|

and we get

We investigate these differential equations re-
stricting possible CCR's in greater detail in this
section. We shall assume a perturbative expansion
for the P functions, and we shall investigate wheth-
er a CCR in the form of an infinite power series
is compatible with perturbation theory order by
order.

Power series are certainly not the only kind of
CCR's allowed by the differential equations. To
demand a power-series solution to the differential
equations is in effect to pick out a certain subclass
of solutions. But it is the only class in which de-
finitive statements can be made in conjunction with
perturbation theory. Also, power-series CCR's
would encompass those CCR's arising from a sym-
metry, and they are generally linear or quadratic
in form.

du 2 b+bu~ + ~ ~

Q+ gi =Q
dpi b+b, A,, + ' ' '

Writing

u=u, +O(Z, ),
we have

Q =Qo

and so

or

Q =0.
Let

u=u, +v(X,),

(4.6)

(4.7)

(4.8)

(4.9a)

(4.9b)

(4.10)
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and consider first Qp 1 If we exPand the right-hand side uP to order A.,' we get

1+v+ A., =(1+2v+v )
dv 2

dX,

1+ ' (1+v)A. + ~(1+v)'Z'+ ~ ~ ~
b, b

1 b j.

b, b1+ A. + A. +'''
b ' b

b=1+2V+V + VA, +' ' '
1 (4.11)

and so

dv 2 b-v+ A. =v'+ ~ VA. +
dA., b

Now we .assume a power-series solution

v = K,Xi + K2A,, + K3A., + ~

and the left-hand side is

(4.12)

(4.13)

-v+ ~, = g(n-1)K„~,".dv

dA.~

(4.14)

It is crucial to note that since the coefficient of-v
is -1 in this case K, is multiplied by zero and
drops ogt of the left-hand side. So comparingcoef-
ficients order by order, we have

dy ay +a„xy +a,y + ~ ~ ~

dx bx +bxox +bp~x y+'' ' (4.17}

In particular, the obvious discrete symmetry
A., =A, is a special case of Eq. (4.16) if we set the
arbitrary K, equal to zero. In the expansion (4.11)
all higher terms must contain at least one v fac-
tor, from the requirement that the right-hand side
must be unity when v =o. Thus, the equation for
K„ in the system (4.15) must have a right-hand side
in terms of K„» K„».. . only, without any con-
stant term independent of K's. When K, is set
equal to zero, all higher K„must then also vanish.

ExarnPle ~. We rewrite the differential equation
in terms of y =g'', x =g', and so

0= (1 —1)K, =0,

(2 —1)K, =K, + ' K, ,
b,

~ ~ 0

(4.15a)

(4.15b)

We use the same technique as in example 1 to ana-
lyze this equation: Let

(4.18)

and

The right-hand side of (4.15a) ltappens to be zero,
and so K, can be any arbitrary number and the
equations will still be consistent. This corres-
ponds to an arbitrary integration constant of the
differential equation. K, is, however, no longer
arbitrary once the choice for K, is made, and
since (n —1) vanishes only for n = 1, all subsequent
equations in (4.15) are well defined and should
yields (K„] in terms of one arbitrary constant K,.
There is the other possibility (4.96), but that is the
trivial case leading to A =0.

Thus, we obtain the most general power-series
CCR possible to be

g =X,[1+K,g+ K, (K,}Z'+K, (K, ) g'+ ],

dQ 2 a+aypx+apy@x+'''Q+x =Q
dx b+ b,px+ bpyQx+ ~ ~ ~

'

T aking

u=u, +0(x),

we determine u, by

a
Q =Q0 0

and so

or

Q =0.

(4.19)

(4.20)

(4.21)

(4.22a)

(4.22b)
(4.16)

where K„(K,) indicates that all higher K„are de-
termined in terms of an arbitrary K, , 'The initial-
term is not arbitrary and the only consistent pos-
sibility is the coefficient 1.

u=u, + v(x),

to be

(4.23)

Only (4.22a) is interesting [(4.22b) is the trivial
case] and we get the equation for v, where

dv, , a 1+ (a,o/a)x+ (a»/a) (u0+ v')x+ ~ ~ ~

1+b„/bx+ b»/b(u, + v)x+ ~ ~ ~

a, 1+ (a»/a)x+ (a»/a)(uo+ v)x+ ~ ~ ~

1+ (b,o/b)x+ (bo, /b)(uo+ v)x+ ~ ~ ~ ' (4.24)
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v=Z, x+Z x'+ ~ ~ ~ (4.25)

and compute coefficients up to O(x'). We obtain

dV b b1p

b bo1 b a+ 2 a01 +D +E vx+ 'U

a b

where

+ (E+ GRO + HBO )x + ' ' ' (4.26)

D 2 10

where in the last equality we have used Eq. (4.22a).
We again try

groups satisfying (4.29) (several G, G' pairs were
found by Levin) is it possible to have a power-
series CCR between g" and g2. But it is clearly
not enough to look at two loops. Suppose l=0, then
as before we conclude from (4.28a) that K, is an

arbitrary (integration) constant. However, even if
K, =0, K, from Eq. (4.28b) is not automatically
zero, and so on, for the higher {K„}.Thus, it is
not sufficient to demand l =0 if one wants to have
an exact relation g" = (b/a) g' T.he groups G and
G' must conspire in such a way that K„E3,. . .
all vanish if K, is set equal to zero.

Our conclusion is that if (4.29) is satisfied, the
most general power-series CCR for example 2 is
of the form

b,

2
2p alp bio b2 0 blp

a a ah b b' (4.27)

g g +g g +g g g +g g g + ~ ~ ~

(4.31)
a1pbp1 b11 b1obp1+2 2ab b b

2
ap1bp1 bp2 + bp1

ab b b'

a, b,
ab

(2 —1)K2 =K~ —2ao, — ' +D+E—b bp, b

(4.28a)

a b'
+ —K, + E+G —+II

b a a' (4.28b)

We then deduce by comparing coefficients that

where K, is arbitrary (can be zero), while all other
K„are determined in terms of K, . Even if K, is
chosen to vanish, the higher Z„ in general do not
vanish, and so there are always higher-order cor-
rections to the conjectured relation (3.13).

For group pairs G, G in which (4.29) is not satis-
fied, there is no possible power-series CCR can-
sistent with perturbation theory. It is interesting
to see the nature of the solution of the differential
Eq. (4.26) in that case. On the right-hand side of
(4.26) there is only one term of O(x), and we may
in some mathematical sense regard the higher-
order terms as a "small" perturbation. Thus,
we write

In this case the right-hand side of (4.28a) is no

longer automatically zero, but is determined by
group-theoretic parameters. Consistency of the
power-series solution demands, of course, that it
vanish. 'Thus, it is a well-defined group-theoretic
exercise to search for pairs of groups G and t"' in
which

dv—8+x = lx+ ~ c~jx 'v

dx g j

and when we substitute

we have

(4.32)

(4.33)

b1ol=——a — ' + —a ——b =0.10 3 01 2 01 (4.29)
x =l+. ci x 5

d5
dx f j fj

This has in fact been done by Levin, ' who was in-
terested in seeing whether it is consistent with
perturbation theory up to two loops to impose the
CCR

j+ j&2

= I+C (x, v).

This is equivalent to the integral equation

(4.34)

b (4.30) v(x) —v(x, ) = [l+C (x, v)] .dx

x x
0

(4.35)

Our results (4.28) show that indeed only for the We can then iterate by
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v' "(x) = v'"(x, ) + I ln
0

(2Au, + B'), (4.47)

dxv'"(x) —v'"(x, ) = [1+4 ( x, v("(x))],
Xp

xx'(x) —xx'(x, ) = f —[(x4( x, i'"(x))),
Xp

~ ~ ~

(4.36)

Since v'"(x) is only a logarithm, clearly the itera;
tion using 4 as a double power series will only
yield powers of x and lnx. Thus, the solution is a
power series in x modified by powers of lnx. If
I =0 [(4.29) holds] then by our previous result there
are only powers of x.

Even in the case Ec0 we have

'Q (A2() + Ao~u() + ~uo

+ Aoouo bzouo bozuo ) x (4.48)

(P+2}K,=
2 K,'+RK, +S, (4.49)

and g and S are given in the appendix and are un-
interesting. [S involves coefficients such as
A„, which corresponds to an O(g') in PX.]

Thus, the solution is given by

(P+1}K,= q,

g g +g Vg (4.37) and so

where v(g') begins with O(lng'), and so the coef-
ficient of g' is always b/a and never arbitrary.

ExgmPle 3. 'The equation takes the form K2 2 2 ) A ) 8

(4.50)

dA. AX +BR.x+Cx + Q;~,~A„x'((.~
dx 2bx + x Q )~~~~ b(jx g

which the usual substitution

converts to

du0+x

T aking

u=u, +O(x)

we determine up by

Aup +Bup+C0=-~+
2$

ol

u" & = Bx + (Bx 2 4AC )1/2

2A

B'=B—2b.

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

The allowable power-series CCR is thus given by

A(" =g'(u'"+K g'+K g'+ ~ ~ ) (4.51)

where uo" is given by the two solutions (4.43) of
This is by far the most esthetically appealing

case investigated so far. In (4.51) all K„are
determined solely by group theory. There is
no arbitrary integration constant involved. This
arises because of an O(v) contribution with co-
efficient P. P is precisely the negative of the
derivative of the quadratic form in (4.42) at
the point u„where the quadratic vanishes. If
(4.42) has two real roots, the two derivatives
have opposite signs and one of them must be posi-
tive. Thus P+n in (4.49) can be made nonzero for
all n, and there is then always a solution for K„
Vn, and no arbitrariness. There is also no
group-theoretic constraint such a,s (4.29) to be sat-
isfied for the existence of a power-series solution.
The higher-order corrections tothe low-order re-
lation (3.19) exist and are completely comjutable.

In practice one would like to have up real and

preferably positive. The reality condition means

u=up+V~

and up to O(x2) the differential equation is

Pv+x =Qx+
2

v +Rvx+Sxdv A 2

(4.45)

(4.46)

where

Note that this exactly corresponds to the solution
(3.19).

As before we have

B"&4AC, (4.52)

precisely the condition (3.18a) to give an interest-
ing linear CCR in lowest order. The relation
(4.51), of course, simply includes the higher-or-
der corrections to the low-order CCR (3.19).

The reason that there is no arbitrary (integra-
tion) constant in our solution (4.51) can be seen
from (3.18a). That low-order solution already is
never analytic in g2 unless the choice K =+~ for
the integration constant is made. Thus, the re-
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quirement that the solution be a power series es-
sentially forces us to choose a particular integra-
tion constant already.

ExarnPle 4. We call g" = y and use g' = x as the
independent variable, and we have

dX AA.'+ Bxh+B'A.y. + Cx' + C'y'+ ~

dx bx + byppx + bpypx y + bppyx A. +

2 2 3 2ay +ayppxy . +ap)py +app, y A. + ' ' '
(4 54)

bx + byppx + bpmx y + bppyx X +

y(x) = w (x)x,

w(x) = wp+x(x),

z(x)=+K„&.
gg= 1

Then we determine that

1
up= [Aup +.(B+B wp)up+(C+C wp )]0

(4.57)

(4.58)

dg dgg =~g'+" g =ag"+ ~ ~ ~ .
dt ' dt

As usual, we let

(4.55)
=- —(Aup + Bup+C),

b

where up once again has two nontrivial solutions
and

Z(x) =u(x)x,

u(x) =u, +v(x),

v(v)= J))„v'
n=1

(4.56)
20 ZUp

M)p =
~

As usual we have then

(4.59)

dv
u +v+x = [A(u +2upv+v )+ B(u + v) +B( up+v)( wp+ )x +C+C( wp+z) + ~ ]

and

[b'+bmpx+bpyp(wp+a)x+bppy(up+ v)x+ ] (4.60)

dz
u), +z+x = [a(w, +x)'+a„,(w, +z)'x+ a„,(w, +z)'x+ a„,(w, +z)'(up+ v) x+ ~ ~ ]dx

&& [b+b~ppx+bpzp(wp+z) x+ bpp~(up+ v) x+ ' ' ' ] (4.61)

Thus, (4.60) bears some resemblance to the equa-
tion of example 2, and (4.61) to that of example 3.
Clearly, by construction the constant zvp and up

terms cancel on both sides. From previous exper-
ience we need only investigate the O(x) terms in
order to determine the feasibility of a power-series
solution.

Thus, we get the equations

v+ =Tv+ Ux,
dv

(4.62)dx

I

The constants T, U, and V are

(4.66)

(4.67)

1 3 2
QZP0 260 + OPZP 280 + QPPZ Q)P Qp

2 100 3 010 2 001
0 y 0 y 0

T =2gup+ B,
)

1U= ——p(Aup+Bu C+)(b, ppb +, ppwpb +~ pp)u, p

dzz+ =&z+ Vx,dx
and so the coefficients are determined by

[(1—T)+1]H, = U,

[(1 —T)+2]H, = ~ ~ ~,

0 =(-1+1)Ki= V)

(-1+2)Kp =

(4.63)

(4.64)

(4.65)

(4.68)

To the lowest order in the x expansion those two
sets of Eqs. (4.64) and (4.65) are uncoupled. Each
displays (by now) familiar features: In (4.64), FI,
is determinable and II„ is iteratively determined;
in (4.65), the solution can be a power series only
if

(4.69)

In that case, Kz is arbitrary, while K„can be iter-
atively determined in terms of Kz. To higher or-
ders in x, the two sets of equations become
coupled, and so the arbitrariness in Kz will also
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Z =g'[uo+g'v(g')]

g" =g'[w. +g'a(g')]
(4.72)

(4.73)

where v and g will be double powers series in g2
as well as lng2.

The validity of (4.69) is thus seen to be of crucial
importance to the type of allowable CCR in example
4. Most of the required coefficients are not known
now and so we cannot yet settle the question of
whether V=O for a given model.

V. PHENOMENOLOGICAL APPLICATIONS

In this section we shall discuss some phenomen-
ological applications of our ideas. We consider
only the unified theories of weak and electromag-
netic interactions based on a simple gauge group
C or on a semisimple group Qy +Q2 Except for the
confusing status of parity violation in atomic phy-
sics, the simple SU(2) &U(1) Sa.1am-Weinberg mod-
el has demonstrated a phenomenal success. How-

ever, a few fundamental questions remain unans-
wered: (A) How many leptons and quark flavors
exist'? (B) What is the mass of the Higgs boson
which one needs to introduce in all such theories
to break the symmetry spontaneously?

According to our power-series CCR approach,
the gauge coupling constants g, g' and the Higgs
Q'-self-coupling A, are related by Eqs. (4.70)-
(4.73). Since b is [defined by dg/dt= &bg ] a func-
tion of the number of leptons and quark flavors
only, the experimental measurement of the Wein-
berg angle, within our approach, determines this
number. Also, the mass of the Higgs boson is
given by

be "transmitted" to the higher JI„as well as K„.
Thus, the allowable CCR, when V=O, is

X=g'[u, + H,g'+ H, (K,)g + ~ ~ ~ ), (4.70)

g" =g'[w +K g'+K (K )g'+ ~ ~ ~ ) (4.71)

where the dependence of H„,K„on g, is shown. If
V~O, then the nonanalyticity in g2 will be "trans-
mitted" also to ~, and we get

quark flavor singlets of charge —', (-—,'), respective-
ly.

We also restrict ourselves to only left-handed
doublets. Then n, =n, and n2 =n4=ri5; Also, in or-
der that the model be triangle-anomaly-free, one
must have n, =n, = n (say).

In this case, one has

1 22 4n
2 16% 3 3

(5 2)

(5.3)

+

If there is only the Higgs doublet (m=1), then
from (5.4) one obtains

n)~8 or no 6, (5 5)

since n is an integer.
We emphasize that the lower bound on n (n = 6

quark flavor doublets means 12 quark flavors) is
independent of any experimental number. This fol-
lows purely from our philosophy of power-series
CCR's and from the SU(2) &&U(1) Salam-Weinberg
model.

The relation between g and g' in lowest order is
given by

(5.6)

For g and g' both ultraviolet- or infrared-free,
the solutions of the renormalization-group equa-
tions yield

where m is the number of complex Higgs doublets.
In order for the relation between g and g' to make

sense, it must be satisfied for all t. So both cou-
plings must be either asymptotically free or non-
free. Since g' is always asymptotically nonfree, g
must also be so. From Eq. (5.2) this then gives
the restri, ction

—n+ —pl& ~4 1
3 6 3

(5 4)

m„=2v Z (5.1) (5.7)

So, using Eqs. (4.70)-(4.73) to lowest olde& in g,
we can calculate the Higgs boson mass from the
experimental values of m~~ and sin'g~.

in the ultraviolet and infrared limit, respectively.
Thus, we can deduce directly the validity of (5.6)
in such limits. ' The Weinberg angle 9~ is given by

A. Number of leptons and quark flavors
12

~ 2 g
Sing~= 2 t2

g +g
(5.8)

For simplicity, we consider the SU(2) &&U(1)

Salam-Weinberg model, extended only to include
more quarks and leptons. Let n, (n, ) be the number
of lepton (quark flavor) doublets, n, be the number
of lepton singlets, and n, (n, ) be the number of

~ 2 =3sin 0o' 8
(5.9)

Then, using (5.6) and the expression for b and g as
given by (5.2) and (5.3), we get"
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Note that d sin'g~/dn is positive, and for I=1 one
obtains the bounds

0.06 & sin20~ (0.38. (5.10)

he lower bound is obtained for n=6 and the upper
bound for n =~.

If we use the experimental value of the Weinberg
angle sin'g~=0. 24, then for m=1 we obtain from
Eq. (5.9)

large, so that the term K,g' could be equal to or
even larger than 5/a for the experimental value of
g. We emphasize, however, that in that case, the
ratio g"/g' would be substantially t dependent.
Since the measurement of the Weinberg angle does
not show any detectable Q' dependence over the
measured range of Q' = 5 to 50 GeV', we conclude
that g" =g'b/a is a good approximation to Eq.
(5.13).

n =11. (5.11) B. Higgs boson mass

This wouldmeanthat there are about 22 leptons and
22 quark flavors, so that counting colors, the total
number-of elementary fermions is about 88. It is
amusing to note that this is about equal to the num-
ber of elements in the periodic table. The asymp-
totically free color SU(3) gauge theory of strong in-
teractions restricts n to be less than or equal to 8.
We emphasize that the present experimental un-

certainty in the measurement of the Weinberg angle
and also the uncertainty in our lowest-order ap-
proximation do not exclude the value n =8. Also,

.if there are more than one Higgs doublet, the value
of n will be reduced.

If the SU(2) &&U(1) turns out to be a subgroup of a
grand simple group G unifying other interactions,
then it is possible to obtain a group-theoretic value
C relating g and g':

(5.12)

It is generally believed that Q is strongly broken
down to SU(2) &&U(I), and so there exist superheavy
particles which do not participate in giving rise to
phenomena observed today. For present-day ener-
gies it suffices to use only the "observed" part of
the group, presumably SU(2) &&U(1), as input to cal-
culate the P functions. The result we obtain for the
Weinberg angle would therefore correspond to the
value observed at present-day energies. The val-
ue of C imposed by the unifying group Q can be
"discovered" by our approach, but only by including
the full set of superheavy particles in the input
from P, and we have no idea what sort of such ex-
tra particles is to be included.

Finally, we mention that, as shown in Sec. IV,
since we have not computed the value of V in (4.68),
strictly speaking, power-series CCH's do not exist
for the SU(2) &&U(1) g, g' case. The approximate
solution at the two-loop level is given by [see Eqs.
(4.72) and (4.73)]

We consider again the simplest possibility, i.e.,
SU(2) &&U(1) Salam-Weinberg model with only one
complex Higgs doublet. In this case there is only
one Higgs self-coupling ~, and after spontaneous
symmetry breaking there remains only one scalar
field (the Higgs boson) whose mass" is given by

(5.12)

and thus the Higgs boson mass

m„= 2/uo"' m„,
where u,'" are the two solutions of (4.58):

(5.13)

(5.14)

u,'"= 2- (-(B—b)+ [(B-b)' 4AC]'i') .- (5.15)

We emphasize that our approach predicts that the
Higgs boson mass is of the same order as the in-
termediate vector bosons' ma, sses.

The constants A, B, C, and 5 are completely
fixed by the group [&n this case SU(2) &&U(1)] and by
the representations (in this case only left-handed
doublets and right-handed singlets) and the number
(n) of leptons or quark doublets. For the case un-
der consideration they are

where (po) is the vacuum expectation value of the
neutral member of the Higgs doublet. There have
been some attempts"'" to estimate the Higgs mass
or to give bounds on it. We emphasize that our ap-
proach is completely different from these.

As we have seen in Sec. IV, in this case it is
possible to implement a power-series CCR between
~ and the gauge coupling. In the lozeest order the
relation is

g" =g' —+ Z,'g' Ing'+ K, g' I, (5.13)
B= 8, (—,

' +6tan'g~),
8

(5.16)

where K, is an arbitrary integration constant.
Though the second and the third terms a,re higher-
order terms in perturbation series, the arbitrary
integration constant K, can, in principle, be very

C=, (-;+6tan'g ),8~' '
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Using the experimental value of sin 0~= 0.24 and
hence the value of n= 11 [as determined from Eq.
(5.8)], we predict

mz-56 or 224 GeV. (5.17)

As already noted in Ref. 13, it will be extremely
difficult to detect the Higgs boson of such a high
mass with the present generation experimental
facility.

VI. CONCLUSION

Because of our heavy dependence on perturbation
theory, the possible CCR we established can only
be expected to have validity when all coupling con-
stants concerned are sufficiently small. 'Thus, if
both g and g' are infrared and ultraviolet free, re-
spectively, then both are expected to be small in
the infrared and ultraviolet regions, respectively,
and one might expect the existence of power-series
CCR's we envisage. If g is ultraviolet-free and g'
is infrared-free, then in the infrared region when
g' is small, g may be very large, and so we cannot
expect any CCR as we propose. The same consid-
eration applies to the (A, , g) case. If (3.18a) holds
(tanh function), then X and g can be simultaneously
small in the asymptotic domain, whereas if (3.18c)
holds (tan function), then A, is violently oscillatory
if g is only slightly changed, and indeed, in this
case we find no possible power-series CCR.

Coleman and Weinberg, ' using completely differ-
ent dynamical assumptions, found that A. is of order
g' in the one-loop approximation. We emphasized
in the Introduction that their result is outside our
scope because the functional form they obtained is
explicitly dependent on the renormalization point.
They investigated also a possible improvement of
their result by the renormalization group, and ob-
tained for their theory with g and g a relation of the
tangent type, which, being oscillatory, enables
them to choose their renormalization point judic-
iously to make A. be of order g4. With. our ap-

proach, the tangent case forbids the emergence of
any power-series CCR. We thus consider that our
results are complementary, rather than contradic-
tory to theirs.

Our phenomenological application in Sec. V is
necessarily speculative, because, among other
things, we have little control over the higher-order
(in g) coefficients, being dependent on an arbitrary
integration constant. If one can mea. sure experi-
mentally the variation of the (effective) coupling
constants over a range of momentum where they
are all small, then we may able to disentangle
from Eq. (4.37) relating g and g' the coefficient b/a
of g'. This would be a direct measurement of the
ratio b/a. Equation (4.37) is independent of any
power-series assumptions and is valid for a Wein-
berg-Salam-type theory.

Our method can be applied to groups other than
SU(2) SU(1) and more complicated representations
for the Higgs particle. There might be more cou-
pli. ng constants encountered, but the lowest-order
coefficients in the CCR obtained should still be in-
dependent of arbitrariness. We did not illustrate
these more complicated cases in view of a lack of
consensus on which group-theoretic structure
should be employed.

The feasibility of power-series CCR's should be
connected to some special feature of the theory,
perhaps a symmetry of some kind. Supersymmetry
normally imposes a CCR of the monomial type.
When infinite power series are involved, we might
attribute it to the existence of perhaps a "hyper-
symmetry" in the theory. This may be connected
to a mathematical criterion of the existence of
power-series solutions of our differential equa-
tions. A discovery of this type would shed more
light on power-series CCR's.
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APPENDIX

R and S of Eq. (4.48) are given by

2b

18-
2b A40+A318o+A22uo +A12R +A04uo —

2 A30- 2 A2luo- .- A12uo

&10 A 3 &01 „A &01 2A &01

2b 039 2b "0 30 2b% 21- 2b
~b

0 +12 25 43 0

&20 &11 &20 2+25QO
2

+
2

Qo+
2 uo +

4 g (5~0
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