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Model for the generation of leptonic mass
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A self-consistent model for the generation of leptonic mass is developed. In this model it is assumed that
bare masses are zero, all of the (charged) leptonic masses being generated by the QED self-interaction. A
perturbation expansion for the QED self-mass is formulated, and contact is made between this expansion and
the work of Landau and his collaborators. In order to achieve a finite result using this expansion, it is

assumed that there is a cutoff at the Landau singularity and that the functional form of the (self-tiaass)
integrand is the same beyond that singularity as it is below. Physical interpretations of these assumptions are
discussed. Self-consistency equations are obtained which show that the Landau singularity is in the
neighborhood of the Planck mass. This result implies that, as originally suggested by Landau, gravitation

may play a role in an ultraviolet cutoff for QED. These equations also yield estimates for the (effective)
number of additional pointlike particles that electromagnetically couple to the photon. This latter quantity is
consistent with present data from e+e storage rings.

I. INTRODUCTION

Some time ago it was pointed out' that owing to
the nonlinear nature of quantum field theory the
symmetries which are manifest in the Lagrangian
ma, y not be present in solutions which satisfy the
field equations obtained from that Lagrangian.
Developing this idea along different lines, it has
been proposed' tha, t a dynamical symmetry break-
ing could lead to self-consistent solutions yield-
ing a nonzero fermion mass. Following these
ideas, Baker and Glashow' suggested that just
such a mechanism might be responsible for the
generation of the p-e mass. splitting. In second
order they note that the self-mass integrals for
the muon and the electron are independent of each
other and, consequently, in this order one would
not expect to obtain a,symmetric solutions. They
point out, however, that in fourth order the mass
equations would be coupled through the fermion
loop in the vacuum polarization graph, enabling
the possibility of (self-consistent) asymmetric
solutions, i.e. , a mass splitting. Unfortunately,
they did not actually detail the fourth- (or higher-)
order equations nor determine if they actually
admitted such asymmetric solutions.

The purpose of this paper is to develop a model
for the generation of leptonic mass by the QED
self-interaction. Only (self-consistent) sym-
metric solutions will be considered here; a study
of possible asymmetric solutions, following the
suggestion of Baker and Glashow, will be covered
in a. later paper.

It is assumed here that the bare, or mechanical,
charged-lepton mass is zero, all of the mass being
dynamically generated by the electromagnetic
self-interaction. The assumption of a fermion

with a null ba.re mass and dynamically generated
physical mass follows Baker and Johnson, ' who
found in their model for the dynamical generation
of fermion mass that consistency required a null
bare mass. Now this scheme for the generation
of fermion mass breaks the formal y, invariance
which obtains in a QED having fermions described
by the ma, ssless Dira. c equation. However, it ha, s
been shown' that the breaking of this y, symmetry
is immune to the Goldstone-boson dilemma, .'

It is well known that QED, in general, and the
self-mass, in particular, a,re divergent in the
ultraviolet region. While Baker and Johnson ob-
ta. in an eigenvalue equation, the postulated solu-
tion of which would solve this problem, ' it is as-
sumed here that there is a physical ultraviolet
cutoff.

There is precedence for this assumption. Lan-
dau and his collaborators' have shown tha, t the
polarization of the vacuum will lead to a diver-
gence of QED and serious difficulty for the theory
beyond a certain point at very high energy, which
we shall ca,ll the "Landau singularity. " And con-
sequently they suggested that cutting QED off at
the Planck mass' might "save" QED from this
"crisis." The Planck mass is so large (-10"
GeV) that it is well beyond any possible conflict
with experiment. " Unfortunately, by the same
token direct detection of effects at this energy
likewise appear to be precluded from future ex-
periments. That gravitation might furnish a. cut-
off for QED has also been investigatedby others. ""

More recently it has been shown by Lautrup"
that this difficulty is present as well in QED
phenomena not normally considered to be diver-
gent (after renormalization). Specifically, he
ha, s shown that there are gauge-invariant sets of
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graphs for the anomalous magnetic moment of
the electron that are not Borel summable, and
that this difficulty is associated with the Landau

singularity.
%'e see no reason- to reject the evidence that

there is such a singularity in renormalized QED.
For example, to assume that the existence of a
convergent renormalized QED theory (if the ultra-
violet limit goes to infinity) depends upon fortui-
tous cancellations between gauge-invariant sets
of graphs at and beyond the Landau singularity
seems much too tenuous. (Of course, the grand
unification schemes offer another possible reso-
lution of this difficulty, but, as mentioned below,
we do not pursue that avenue here. )

Thus, the existence of a physical cutoff actually
would serve functions beyond those served in the
renormalization procedure. First, it would save
QED from the crisis pointed out by Landau' and
further illuminated by Lautrup. " At the same
time it would furnish a mass scale for QED,"
which otherwise does not have one. In addition,
if the QED ultraviolet cutoff were found to be
near the Planck mass, this would imply a connec-
tion between the gravitational interaction and
other forces of elementary particles, a notion
offering some philosophical satisfaction and a
possible avenue for an eventual unification of
these interactions.

It is appropriate to remark here that it is con-
ceivable that other interactions could be a source
for leptonic mass. For example, the Baker-
Glashow idea has been applied to gauge theories
containing chiral SU(n) @ SU(n) groups. " Along
similar lines the recently developed unified gauge
theories obtain lepton masses through a coupling
of the lepton multiplets to various postulated Higgs.
fields. " . This latter approach is subject to the
criticism that the coupling constants are arbitrary
and as yet there is no experimental evidence in-
dicating the existence of Higgs particles. Or, in
a more mundane approach, one might consider
weak-interaction self-mass diagrams involving
the intermediate vector bosons. One should note,
however, that if in order to treat leptons and
quarks on a similar footing one assumes that the
neutrinos are four-component Dirac spinors, "
then one has a framework in which to argue that
the weak-interaction contribution to the charged-
lepton self-mass must be small; the neutrinos,
which are assumed to participate in the weak in-
teractions equally with the charged leptons, are
observed to be massless, or nearly so.

These considerations and a general desire to
avoid undue complications furnish motivation to
keep this model (to the extent possible) within
the confines of QED. Consequently, the possibility

of non-QED interactions contributing to leptonic
masses (aside from a hadronic component of
vacuum polarization) is not considered in this
paper.

As a basis for this study we assume (as did
Baker and Glashow) that the Lagrangianand Hamil-
tonian are of the standard QED form and are
symmetric in the bare muon and electron wave
functions. (The only known physical difference
between muon and electron is their rest mass. )
Then a standard perturbation expansion for the
self-mass is developed. As is well known, there
are both infrared and ultraviolet divergence prob-
lems associated with this expansion. Of these,
the former is less serious. In second order, the
self-mass is not infrared divergent. " In fourth
order there are infrared divergences in two
graphs, but they have been shown to cancel, "
leaving the fourth-order self-mass calculation
without any infrared divergence. A similar result
has been found in a careful study of the fourth-
order calculations" for the Lamb shift. These
cancellations are, in fact, special cases of the
general statement by Gell-Marin and Low" that
such cancellations must alwa, ys appear in the self-
energy problem. They reason that a perturbation
expansion about a null bare mass using the bare
charge cannot be infrared divergent; the physical
momentum in the problem will furnish an ap-
propriate infrared cutoff. And since the renorma-
lization program does not change this aspect of
the solution, the dressed fermion propagator is
also not infrared divergent. Therefore, the self-
mass cannot be infrared divergent. Thus, in the
self-mass problem the renormalizatiori program
introduces the infrared divergences in the sepa-
rate graphs and a.t the very same time the elabo-
rate and complicated relationships between graphs
which serve to just cancel out these divergences
in the final result. This result has subsequently
been demonstrated in general. "

Following this logic, in evaluating the contribu-
tions of the various graphs, infrared problems are
ignored; for each graph, only the leading terms
as a function of the ultraviolet cutoff are kept.
As will be seen, dropping the nonleading terms

' leads to numerical errors of no more than a few
percent.

The use of an ultraviolet cutoff ensures con-
vergence of the perturbation expansion (for the
sets of graphs summed here). '~ By symmetry,
this expansion is the same function for both muon
and electron. The possibility of other pointlike
pa. rticles electromagnetically coupling to the pho-
ton is also taken into account. From this ex-
pansion a,re obtained equations of self-consistency
for the relationship between the lepton mass scale
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and a "hard" ultraviolet cutoff, which is a sharp
upper limit to the momentum integration, arbi-
trarily put in by hand.

Since the above formulation manifests a (Landau)
singularity in the photon propagator at some large
but finite energy, i.e., before the point of infinite
energy is reached, the hard ultraviolet cutoff
must always be maintained below this singularity.
In order to eliminate this artifice and to extend
the range of integration to infinity, it is naively
assumed that by analytic continuation beyond the
Landau singularity the integrand of the self-mass
integral has the same functional form as it does
below. At the same time, the hard ultraviolet
cutoff, which ensured convergence of the pertur-
bation expansion, is replaced by a Lorentz-in-
variant cutoff acting at the point of ultraviolet
divergence, i.e., at the Landau singularity. One
assumes this latter cutoff is due to physical
causes. This leads to self-consistency equations
relating the location of the singularity to the lep-
ton masses with no free parameters (only mathe-
matical uncertainties). These self-consistency
equations also enable one to estimate the (ef-
fective) number of pointlike particles which elec-
tromagnetically couple to the photon. This quan-
tity is experimentally accessible with e'e stor-
age rings.

II. PERTURBATION EXPANSION FOR THE SELF-MASS

Although the use of perturbation expansions is
a standard technique in QED, for the sake of com-
pleteness and because the expansion for the (di-
vergent). self-mass is less familiar, a brief de-
velopment of that expansion is included here.
Following the pioneering papers of Dyson" and
Schwinger" the complete electron propagator
S„'(p) is given by"

where the proper self-energy

and

, =Z Z ~Z -~~2e
0 1 2 3

s.'(p) =z8.'(p),
D~(k)„„=z,D ~(k)„„

r„(p',p) =z,-'r„(p', p),

(3)

where the tilde indicates the renormalized func-
tions. The boundary condition"

r„(p,p)
P=m

is also understood. Substituting Eqs. (3) into
Eq. (4) yields

I'(P) =~(P) = fe
44k

( )4 D„(k)„,

xr (p, p —k)s' (p —k)y', (5)

where the Ward identity" Z, =Z, has been used.
Using Eqs. (1), (3), and (5), one may now write
the renormalized electron propagator as

1/Z,
S~(P) =

~ '~(~) .

To proceed, we note that Z(P) has a Taylor's
series expansion about the point P =m:

~(p')=~.(P) (P- )r.,(P) (P-m)'~. (P), (7)

where Z0 and 2, are coefficients which diverge
as a function of an ultraviolet cutoff while Z2 is
"finite" (i.e. , not divergent) and also is to include
all the higher-order terms. Employing the well-
known Feynman rules, " the expression Z(p) may
be expanded in a standard perturbation series
about the observed or physical mass in powers
of the renormalized charge e. This expansion
for Z and Eq. (7) will then yield, order by order,
expressions for Z„Z„and Z2.

The r equir ement that S~ be a suitable pr opa-
gator puts certain conditions upon Z„Z„and
Z, . Sz must have a pole" atP =m which requires

Z(P') =ie,
d4u

)4 D~(k)„„
=0. (8)

"(p,p —k) '(p- ) " (2)

Throughout this paper the notation of Bjorken and
Drell will be used. The quantities in Eqs. (1) and

(2) a,re the usual renormalized quantities, eo being
the bare coupling constant.

At this point one makes the standard substitu-
tions, taking one to the renormalized quantities
via the undetermined renormalization parameters,
Z jl ~

In the perturbation expansion, this is achieved
by appropriately choosing the mass counterterm

6m =6m ' +6m' +&m' +

z,(l-Z, ) =1 (10)

or

order by order; the superscripts indicate the
order of e. The second condition, that the residue
of the pole at P =m must equal unity, requires
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a condition which can also be satisfied order by
order. " It is welcome that we need concern our-
selves here only with Eqs. (8) and (9), for this
enables us to ignore the infrared problems as-
sociated with Z, .

It is simplest to display graphically the per-
turbation expansion derived from Eq. (8). The
second-order equation is depicted in Fig. 1. Us-
ing the Feynman rules to evaluate (in Feynman
gauge) the graphs in Fig. 1 yields"

A2(,) 3nmz
(13)

where A is the ultraviolet cutoff mass and u
= e'/4m= ~», is the fine-structure constant.

%e now observe that for A=M~, the Planck
mass (1.22x 10"GeV/c'), the logarithm in Eq.
(13) will dominate the factor —,

'
by a factor of -100.

Similarly, in calculations of higher-order graphs
(2n, say), terms having In(A'/m') to a power less
than n will be dominated by the leading [u In(A '/m ')]"
term. Thus, to simplify the calculation, one need
keep only the leading terms of the divergent in-
tegrals. That the resultant numerical uncertain-
ties are small can be verified subsequent to the
analysis. This step permits an enormous simpli-
fication in the evaluation of the 'various Feynman
graphs. (See the appendices for details of these
calculations. )

At this point it is assumed that all of the elec-

(12)

where A. is a small photon mass to allow for
proper handling of the infrared divergences and
c is a small positive quantity defining the proper
contour for the integral in the complex k, plane.
In accordance with Eq. (8), P will be set equal
to m after the integration and 5m ' will then be
defined by Zi') (m) = 0. While at P = m, Zi'1 is not
infrared divergent, it is ultraviolet divergent.
Equation (12) has been shown" to yield

tron mass is due to QED and is dynamically
generated. Thus, in this second-order calcula-
tion, one sets 6mi') =m and extracts from Eq. (13)
the self-consistency condition relating m to A.
Neglecting the —,

' relative to the logarithm, this
relationship is

m =A exp— (14)
a

where A is seen to furnish a mass scale for the
lepton mass. Owing to the exponential factor,
however, m/A is a very small number. In fact,
setting A =M~ = (kc/G)'~', where G is the gravita-
tional constant, yields rn = 3 x 10 "eV/c'.

At first glance this extremely small mass value
might lead one to conclude that this mechanism
is far too feeble for the generation of a significant
quantity of lepton mass (unless one contemplates
an extremely high cutoff mass, well beyond the
Planck mass). However, this is not necessarily
the case. This calculation is extremely sensitive
to the argument of the exponential. Recognizing
the existence of higher-order terms, one can in-
qui. re what fraction of the total mass shift will
6m ' account for, given that other contributions
will self-consistently make up the rest of the
mass.

This question can be quantified by changing Eq.
(14) to

2tt (2)m =A exp—
3Q

(14')

III. SELF-CONSISTENCY EQUATIONS FOR THE
SYMMETRIC SOLUTION

where f(') is the fraction of the mass (self-con-
sistently) furnished by the second-order di'agram
in Fig. 1. Self-consistency then yields fi'i
=0.1795 and fi„') = 0.1610, for electron and muon,
respectively. Thus, if the total of the contribu-
tions of the higher-order terms is only about five
times that of the initial term, then a self-con-
sistent formulation for the dynamic generation of
the charged lepton mass becomes quite plausible.
Furthermore, it is evident that the observed
p-e mass splitting would obtain when these higher-
order contributions differ from each other by only
a few percent.

FIG. 1. The diagrammatic form of the equation vrhich
specifies the second-order quantity 6m . In accordance
with Eq. (8), P=m is understood. The signs of the math-
ematical expressions represented by the graphs are de-
termined by the Feynman ru1es.

By letting 6m =m in several more detailed ap-
proximntions, we now study self-consistency equa-
tions for the leptonic self-mass. This is a useful
prelude to an investigation of asymmetric solu-
tions, because associated with asymmetric solu-
tions, one also expects symmetric solutions. "
And one can determine appropriate mass scale
relationships already from these symmetric so-
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lutions.
In this section the ultraviolet cutoff is set at

the Planck mass. This step enables contact be-
tween the analysis of Landau and his collaborators
and that of this work; the former uses direct
functional analysis to find (approximate)solutions
to the integral equations, while a standard per-
turbation approach is employed here. This con-
tact is useful because it gives additional confi-
dence in the application of the perturbation ex-
pansion to the self-mass problem. From both
these approaches, one sees that vacuum polariza-
tion causes a divergence in the ultraviolet region
before one reaches an infinite momentum. And

the location of this divergent point, the Landau
singularity, is found to be the same in both of
these approaches.

In second order, the self-consistency equation
for the mass is

bmI" 3o. ,
A'ln, = —,' =1, (15)

where the definition

A2
$ =—ln

37 m' (16)

FIG. 2. The diagrammatic form of the equation which
specifies the fourth-order quantity 6m 4 . As in Fig. 1,
p=m is understood.

has been introduced to replace m by the more
convenient mass parameter $. When one uses
the (dimen'ionless) $ parameter, the explicit
value of the cutoff need not be specified. Equation
(15) has the solution $ = 0.4444, the equivalent
of Eq. (14).

In fourth order, the self-consistency condition
for the electron mass is derived from the equation
shown in Fig. 2 (plus the second-order equation
shown in Fig. 1). Here, the first vacuum polariza-
tion graph is introduced. If one assumes that
there is only the electron, then the vacuum pola-
rization graph only appears once in the equation.
U one assumes that there is only a pair of charged
leptons, then it appears twice, once with an elec-
tron loop and once with a muon loop.

Now it is quite possible, even probable, con-
sidering the colliding beam results, "that there
are other pointlike objects which electromag-
netically couple to the photon. In this paper these
objects will be taken into account by assuming
that there is an effective number 8 of them. This
contribution will be termed "hadronic, " although
it is recognized that it includes some heavy lep-

tonic pa, rt."
Using Eqs. (B5), (A9), (C8), and (D12), the

equation in Fig. 2 (at/ =m) yields

(4) 27m, 9(R+ 2)m

81m, 27m
32 16 (17)

81 ]2+ 27 ]2 j32 16

Equation (18) leads to the quadratic equation

(368 —9)$'+ 72) —32 =0.

(18)

(19)

The appropriate positive root of Eq. (19) is plotted
versus the (phenomenological) parameter A in
Fig. 3.

One sees that in fourth order self-consistency
requires an (fr+2) of -115 to obtain the correct
electron mass parameter (( = (, = 0.0798 for A

=M~), in contrast to the value of -12 implied by
the analysis of Landau and his collaborators. '
The reason for this disparity, of course, is that
only a single loop of vacuum polarization has been
taken into account. The self-consistency equation
for the self-mass which one would associate with
the Landau calculation would be one using a photon
on which all concatenations of the proper photon
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FIG. 3. Plot of the (appropriate positive) root of Eq.
(19), the second-order approximation, and of the $ of
Eq. (21), the 1y approximation, versus the parameter
A. For orientation the value of $, is shown when A is
assumed to equal the Planck mass 1.22 &10'~ QeV/c .

where we have assumed that all mass parameters
are equal. Using Eqs. (15) and (17), the fourth-
order self-consistency condition on the self-mass
becomes

~m'" + ~m'"
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9 1I 4(((+ 2) ( —((( ~ 2)()
=1= ln

The solution to Eq. (20),

[1 e-4R+ 2}/s]1
R+2

(20)

(21)

is also plotted in Fig. 3. It can be seen that in
this case the self-consistent relationship between
the electron mass and an ultraviolet cutoff at the
Planck mass is achieved when R + 2 = 12, in accord
with the results of Landau.

From these results one sees that in the self-

(b)

Sm "(I )
Sm,

(2)
ly

(4)
m,

(6)
Sm

(8)
ml„

self-mass blobs are summed. Since that calcu-
lation is a "zero approximation, " the appropriate
(proper) blob approximation to use here would be
the single fermion loop. This calculation entails
the sum of (gauge-invariant) graphs shown in
Fig. 4(a). Since there is a contribution to 5m

for each Feynman graph, one employs the set of
counterterm graphs shown in Fig. 4(b), which
formally sum to (and define) &mi')'), the one-
photon estimate of the leptonic self-mass including
vacuum polarization to all orders. [Each 5m(2")

/

counterterm is tacitly partitioned into its
ny, (n —1)y, . . . , and 1y pieces according to the
topologies of its associated graphs. 5m~'», then,
is only part of the full ~m summation. This ex-
pansion will be described in more detail below. ]

These expressions lead to the (one-photon) self-
consistency equation shown in Fig. 4(c). An esti-
mate using this set of graphs has been obtained
in Appendix A. Using Eq. (A13) the self-consis-
tency equation for this case becomes

mass problem the high-order vacuum polarization
graphs are quite significant and, in fact, cannot
be ignored. Consequently, in further analysis
of the self-mass, the photons will include esti-
mates of the vacuum polarization to all orders;
the perturbation expansion, then, will be in the
number of photons rather than in powers of the
renormalized electric charge. In following the
topologies of the usual perturbation expansion,
not including the vacuum polarization, one can
see that this new expansion will proceed by gauge-
invariant sets of graphs, as does the usual per-
turbation theory, order by order, where order
now denotes the number of photons. It is evident
that this new expansion (recalling that the photon
lines implicitly include their vacuum polariza-
tion) will include all of the graphs employed in
the usual perturbation expansion. Therefore, the
full summations of these two expansions are
equivalent. As with usual perturbation calcula-
tions, we shall use low-order (gauge-invariant)
summations to approximate the full expansion.

It is assumed here that the perturbation ex-
pansion, whether expanded using renormalized
charge or the bare charge, is convergent. As
pointed out by Bjorken and Drell, " it is conven-
tional to make such an assumption for QED ca.l-
culations even though convergence of either ex-
pansion has never been demonstrated. One notes
that the expansion here (by the number of photons,
each one including its own vacuum polarization)
is akin to a perturbation expansion in the bare
electric charge, for as is well known (since Z,
= Z,), only the renormalization constant for the
photon propagator Z, (i.e., the vacuum polariza-
tion) enters into renormalization of the electric
charge.

Having found the parameters of the self-consis-
tent solution for the one-photon case, the next
step is to investigate the two-photon case. How-

ever, at this point one finds an ambiguity on how

to proceed. One approach is to evaluate

(c) m = Sn '» + pm&'" + gm '& + ~ ~, (22)

(iy) + =O

am
(I )

FIG. 4. (a) The diagrammatic form of the equation de-
fining a leading approximation for the photon propagator
including (the one-loop estimate for) vacuum polariza-
tion to a11 orders. The summation loop is hatched. (b)
The appropriate fermion self-mass counterterm asso-
ciated with (a). On the right-hand side the superscripts
denote the order of e and the subscripts indicate that the
counterter'm is in the 1y expansion. (c) The diagram-
matic form of the equation which specifies (5@i ", the
one-photon approximation for the fermion self-mass.
As with the equations depicted in Figs. 1 and 2, p =m is
understood.

where Eq. (22) is constructed analogously to Eq.
(9) and includes all contributions to 5m. The
equation from which 6m '& derives is depicted
in Fig. 5, and the higher-order terms follow in
the usual way. This approach leads to the ex-
pansion depicted in Fig. 6. For a two-photon cal-
culation, one could then approximate 6m by
6m~ & +6m '& and derive the self-consistency
equation from

em&'»+ ~m"»
m

This formulation, using Eqs. (B8), (C25), and
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~(2y) -0 + w + ~ ~ ~ rx
(2y) () y) ()y)

Srn " Sm
(2 ) (3 )

Sm

FIG. 5. The diagrammatic form of the equation which
specifies 5m, the two-photon contribution to the fer-
mion self-mass. As before, P =m is understood.

(D18), leads to

4 A~m"&'
=A —— + +

3 M

A'
=1, (24)

where the quantity A is defined by Eq. (A14).
Equation (24) is dominated by the counterterm
graph (second graph, Fig. 5). And since it has
a large negative coefficient, one sees that there
is no real value of A which will yield a solution.

Another approach might be called a topology
summation. First, note that any graph containing
more than one 5m'"&~ cross (e.g. , the last graph
in Fig. 6) will have an m, where j & 1, coefficient
to the integral and hence will be negligible. This
result may be obtained by a simple dimensional
argument: One m factor sets the scale, but the
additional factors of m are divided by factors
proportional to A, rendering the graph negligible.
As a consequence, all graphs containing more
than one factor of 6m "& on the right-hand side
of the equation depicted in Fig. 6 may be ne-
glected. One can then sum over n, topology by
topology, all of the graphs containing a 6m "&

to yield single graphs of each topology, each with
its (now summed) 5m counterterm. See, for ex-
ample, Fig. 7. Transferring these sum graphs
to the left-hand side of the equation and then fac-
toring out the 6m leads to the equation depicted
in Fig. 8.

Looking at Fig. 8, one can formulate a two-

FIG. 7. Summation of the graphs of simplest topology
which contain counterterm factors. This subset of
graphs has been extracted from the general summation
shown in Fig. 6. The sum graph on the right-hand side
of this equation corresponds to the first graph in the
denominator of the expression in Fig. 8.

&m A+ —,'A'
1+—A (25)

which has the solution A = (1+ v 31)/5. The positive
solution is A = 1.3136, not too different from the
one-photon solution A = 1. One expects higher-
order approximations to &m, in essence, to yield
higher-order polynomial equations in A, specify-
ing other values for A, which would still be on
the order of unity.

Looking more closely at the difference between
these two formulations, one sees that in this
second case the approximation

5m = 5m "& + 5m '~ /(1+ —', A)

has been ma, de. Now the factor multiplying 5m '&

is just what one would get for the geometric sum
of a series whose recursion relation is given by
Eq. (B8). Thus, the sum of the higher-order con-
tributions of 5rni'&~ implied by Eq. (B8) leads to
an effective reduction of the initial (or direct)
contribution. (All graphs involved in this summa-
tion are of the same topology; each order of 6m~"

feeds into Gm "" via this counterterm graph,
and then into 5m'"'4i again by this graph, etc.)

One notes that the condition for convergence of
the geometric series

~

—', A
~

& 1 is not met by the
solution to Eq. (25). However, it is easy to see
that since ——', A &0, it is an alternating series
which is Borel summable"; the sum is just the

photon approximation to the self-consistency equa-
tion by

+ +
'LQr'

Sm( y'

+ ~ ~ ~

(ly)
+ + ~ + ~ ~ ~

Sm " Sm
(~ ) (~ )

FIG. 6. First terms of a general expansion for 5m,
where the expansion is by the number of photons. As
before, P =m is understood. (Note that the sign of the
5m standing alone will be properly determined by the
Feynman rules. )

FIG. 8. Graphical expression for 5m in which all non-
negligible graphs containing t5m counterterms have been
transferred to the left-hand side of the equation, com-
bined by factoring the t5m out, and then divided out, be-
coming the denominator on the right-hand side. The
small open circles in the fermion lines indicate the
prior location of the 6m factors.
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same as that given by the formula for the geo-
metric series ignoring the above restriction.
This difficulty appears similar to other questions
about the convergence of the perturbation series,
and is thought to stem from the use of the per-
turbation expansion to solve the field equation
problem. That is, the true solution is some func-
tion, and the series is only a representation of
that function, entailing certain limitations. Such
difficulties were recognized very early, "but
they are not yet fully resolved. Here we Shall
employ Eq, (25) for the two-photon approximation
and make the assumption that the use of the Borel
summation technique is valid.

The solution to Eq. (25), given by

(1 4(R+2)A/9)1
R+2 (2V)

called the 2y solution, where A is set to 1.3136,
is plotted in Fig. 9 near 8 = 10. For comparison,
the 1y solution, Eq. (21), is also plotted. It is
evident from Fig. 9 that variations in the value of
A in the neighborhood of unity do not cause major
excursions in the value of A required to derive
the observed lepton mass scale from the ultra-
violet cutoff mass.

Figure 9 is evidence that a reasonable estimate
of the location of this divergence may be deter-
mined analytically by the summation of one-
fermion loop graphs, the simplest graphs of vac-
uum polarization, on but a single photon; the
two-photon calculation is not too different from
the one-photon calculation. One expects that in-

O. I I

0. I 0

0.09

0.08
6 =0.0757

g =0.07l 6

0.07

0.06
8 IO l2

FIG. 9. Plots of the one-photon, Eq. (21), and two-
photon, Eq. (27), approximations for mass parameter
( as a function of the parameter R. The electron mass
parameter $„muon mass parameter ]„,and mean lep-
ton mass parameter ( (assuming that A =M&) are indica-
ted.

creasingly more accurate approximations will in
effect specify different values of A, and hence
different values of 8 (if one knows the cutoff).
However, a glance at Eq. (27) shows that as
A-~, $- (R+2) ', independent of A. Thus, the
specific value of 2 does not influence the self-
consistent value of $ very much, unless higher-
order approximations somehow conspire in such
a way to require that A be small, which seems
unlikely.

On this point it is relevant to recall that the 1y
perturbation summation used here (Fig. 4) is al-
ready in good agreement with the work of Landau
and his collaborators. ' In the latter analysis,
which used functional representations for
Dz(k)„„, I'", and S~(P), the singularity was shown
to be in the photon propagator; the renormalization
effects in I"" and S~(P) canceled, as one would
expect from the Ward identity. In the perturbation
expansion developed here (as well as the one de-
veloped by Lautrup), this singularity is also mani-
fest in the photon propagator. However, it does
not originate in any one graph, all of which di-
verge at infinite momentum, but rather in a sum
of (a subset of the) graphs comprising D~». An
analogous sum of such graphs in the construction
of S~ does not exhibit such a singularity [see Eq.
(C12)]. Each term alternates in sign with suc-
cessive iterations of the proper fermion. self-en-
ergy contribution on the internal fermion line,
and hence the ser'ies is Borel summable. (The
Borel sum, of course, still has a divergence at
infinite momentum. ) This implies that an exact
expression for S~ cannot eliminate the presence
of the Landau singularity. The Ward identity then
implies that a similar conclusion also applies to
an exact expression for I'&.

If we look to a more complex internal structure
of the proper fermion self-energy contribution
for relief from the Landau singularity, we should
bear in mind that the self-mass integral always
remains of a logarithmically divergent form.
Additional (internal) photons each add two vertices
and two fermion propagators, which because of
the Ward identity tend to cancel, leaving the vac-
uum polarization on the new photon as the major
additional contribution. The effect of each ad-
ditional photon diminishes the contribution of the
associated parts of the graph by the additional flow
of its momentum (owing to the additional integral)
in the denominators of the neighboring propaga-
tors. Likewise, the contribution of this additional
photon is attenuated by the flow of momentum from
other closed loop integrations. As pointed out by
Landau, ' this statement is particularly relevant
to nonplanar graphs. The initial divergence, that
associated with the first photon [Fig. 4(c)], then
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appears to rema, in the controlling quantity in the
self-mass expansion. The additional photons, in

.the formulation of this model, just serve to enable
a better calculation of the quantity A. from the
self-consistency relationship bm/m = 1; their
Landau singularity is already under control by the
cutoff, assumptions.

Similarly, to the extent that the proper self-
energy insertion of the photon is known, "one sees
no hint that higher-order effects here will make
a qualitative modification of the result deriving
fromm the simple one-fermion loop of vacuum po-
larization; the (known) higher-order components
have the ln(Q'/m') factor to a power lower than
that of the associated n. One also notes that the
coefficients diminish in magnitude with increasing
powers of z, and that they are all of the same
sign as the initial a ln(Q'/m') term, which would
only serve to shift the location of the Landau
singularity, not to eliminate it. These results
on the higher-order structure of the proper pho-
ton self-energy graphs also serve to substantiate
the above remarks on the higher-order structure
of the proper fermion self-energy graphs.

In this section we have made contact between a
perturbation expansion and the work of Landau,
which sought solutions to the integral equations
more directly. In both approaches, one sees
that due to vacuum polarization, a divergence of
the theory or Landau singularity will occur before
the upper limit of momentum goes to infinity.
And no obvious source of relief from this difficulty
is in evidence.

In this regard, it is frequently stated that per-
turbation theory cannot be trusted because the
quantity (n/m)ln(Q'/m') [in this analysis the ap-
propriate quantity is (8+2)(u/ )lv(Qn'/m'j is
getting too large. While it is true that the latter
quantity does indeed become large, it is worth-
while to point out that it has been argued that in
QED even a, non-perturbative solution for the self-
mass will diverge. " We observe that. this non-
perturbative divergence is of the same nature as
that obtained here by a self-consistent solution
using the perturbation expansion (linear in the
cutoff momentum).

These results are strong evidence (although ad-
mittedly not a proof) that the problem of the Lan-
dau singularity is an enduring feature of QED
which is not to be solved by going to higher order,
employing Borel summations, or even by some-
how obtaining an exact, nonperturbative solution.
We see no reason to reject this evidence. Con-
sequently, the simple straightforward application
of a physical ultraviolet cutoff to solve this prob-
lem has been incorporated into this model. Some
aspects of this cutoff are covered in the Sec. IV.

IV. DERIVATION OF A SELF-CONSISTENT

VALUE FOR A

—(e & —e ") = ln —,dY $a fb

y a' (28)

where y is an inverse four-momentum squared
parameter and a and 5 are the lower and upper
cutoffs, respectively. The lower cutoff, while
nominally at the photon mass, is effectively at
the fermion mass (as discussed above, the self-

The results of Sec. III were obtained using a hard
cutoff on the self-mass integrals. That is, the
upper limit to the divergent integrals was just
put in by hand at A (just below the Landau singu-
larity). This approach implies that there are two
significant mass values in the ultraviolet region,
the cutoff point and the location of the Landau
singularity. Furthermore, they must be close to
each other in just the right relationship to achieve
the self-consistent value for the self-mass inte-
gral.

We shall see below that this criticism, which
stems from the use of a hard cutoff, can be
averted. To do this, we shall merge the above
two mass values into one by the use of a proper
Lorentz-invariant cutoff at the Landau singularity.
Motivated by the results of Sec. III, thi. s cutoff
is assumed to be physical; it is not later to be
taken to infinity but remains at the Landau singu-
larity. (The integration still ranges to infinity,
however). We note that the form employed below
for this cutoff is, of course, to be taken as a
phenomonological representation of the physical
processes which the model assumes to be operat-
ing in the neighborhood of the Landau singularity.
The results of this section are (essentially) in-
dependent of the details of the form of this cutoff
(which are a function of the specific processes
involved), other than that it cuts off over a finite
range of momentum, which would be a general
feature of any physical process. (The problem
with the hard cutoff stemmed from its "abrupt"
character. )

This step leads to a self-consistency equation
for the (effective) number A of hadronic objects
which couple to the photon. From this equation
one derives the ratio between the lepton mass
and the requisite ultraviolet cutoff mass. Within
the errors inherent in this analysis, the value
of this cutoff is found to be consistent with the
Planck mass.

From the analysis of Bjorken and Drell" one
sees that the lower and upper. cutoffs on the
(logarithmically divergent) Lorentz-invariant
self-mass integral can be cast into the form of
the identity
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mass is not infrared divergent). In Euclidean
four-space, an appropriate form of the identity"
is

8

—(e ~ —e ") = ln —;f dy -, ~ b

y a' (29)

convergence is ensured by the Euclidean relation
K'= 1/y&0. [K' is defined by Eq. (A3).]

Including the vacuum polarization factor, i.e.,
the denominator,

A. ' =
- F2 —e

471 m2
K'

1 D(R + 2)
3m

(3o)

where the prime denotes the physical cutoff modi-
fications are employed in this calculation of A .
Setting

~(R+ 2) K'
ln (31)

obtains

9 "
gy -A~

4(~ 2) t- P ' '""'"'"*")

(32)

Now to merge the divergence at y = 1 (the Landau
singularity) and the cutoff at K'=A', one may set

A2 2 3m/o. (a+2)
7

eliminating A' from Eq. (32). Thus,

(33)

A. ' = d
[1 —exp(-e"' " "+"

)] (34)4(R+ 2), 1-y
Now the value A. ' of the self-consistency integral
is a function of R (and a) alone.

Equation (34) has been numerically integrated
and the principal value of A'(R) is plotted in Fig.
10. One observes that these calculations for A'
are not particularly sensitive to the value of
o, (R+2) in the cutoff factor; the major functional
dependence of A' upon R derives from the de-
nominator of the fraction in front of the integral.

We note here that whereas the principal value
prescription would solve the problem pointed out
by Lautrup in connection with "convergent" quan-
tities (it would furnish a, definition of the other-
wise improper integral), the self-mass integral,
which is logarithmically divergent, needs more.

1 ——(R+ 2)ln(K'/m') ',
3'

and setting the lower limit equal to m' (the use of
the exponential form for the lower limit is not es-
sential) in a logarithmic integral which is equiva-
lent to that employed in the calculation of Eq.
(A14) yields

I I I I I I I I I I I

0 2 4 6 8 I 0 12 I4
R

FIG. 10. Plot of A', the value of the one-gamma self-
consistency integral, Eq. (34), cutoff by a (phenomeno-
logical) Lorentz-invariant cutoff located at the Landau
singularity (at y =1) as a function of the parameter R.

Without a cutoff the negative integrand above y = 1
would lead to a divergent, but negative self-mass.
One possible approach, that of subtracting away
the pole" at the Landau singularity, would still
leave a logarithmically divergent self-mass.
Thus, in this model the use of a physical cutoff
at the Landau singularity is necessary to render
the self-mass integral finite.

From the prior sections we suppose the ap-
propriate self-consistent value of A' to be in the
neighborhood of unity. From Fig. 10 it can be
seen that A. ' = 1, as given by the one-photon self-
consistency relation, calls for B=9.5, while A. '
= 1.31, the 2y value, yields R = 7.1. From Eq. (33),
then (using m =m, and A ' = 1) one deduces the re-
quired QED cutoff mass to be at 1.24x 10" GeV/
c, quite close, considering the sensitivity of ex-
ponential functions to their arguments, to the
planck mass of 1.22x 10'~ GeV/c'. It should be
noted that Eq. (33) is to some extent arbitrary.
While variations in the details of Eq. (33) will not
affect the deduced value of R very much because
of its exponential form, the deduced value of A

is affected by the form of Eq. (33). Thus, until
one has a better understanding of the physics as-
sociated with the Landau singularity, the analysis
of this model can only indicate that the Landau
singularity is in the neighborhood of M~ (probably
on the high side).

Aside from questions of the details of Eq. (33),
a discrepancy between M~ and the self-consistent
solution for A is not a philosophical problem. It
should be kept i.n mind that while these two mass
values may be associated (and hence forming a
link between QED and gravitation), they need not
actually be identical; the QED cutoff mass [which-
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we shall denote as the "Landau mass" (Mz, )] could
entail factors in addition to the quantity defined
as the Planck mass. In fact, in studying the re-
lationship between the self-mass problem in QED
and in classical mechanics, it has been suggested
that gravitation will furnish a QED cutoff" at &
= 2M~/a'~', which we note is in better agreement
with the results of this section than is M~.

It should be pointed out that in this derivation,
the functional form 1/(1 —y) of the integrand in
Eq. (32), which was obtained from perturbation
theory and which is valid below y=1, is naively
assumed (by analytic continuation) to be the ap-
propriate functional form to use throughout the
range of integration, including the region beyond
y=1. While not explicitly noted, this-step is
tacitly taken by other authors as well. "'"

This functional form for the self-mass integrand
dictates that for K' & M~', the contr ibution to the
lepton mass by the (renormalized) photon depicted
in Fig. 4(a) is negative, which in turn implies that
there is a reversal in the sign of the effective
coupling constant associated with photons having
K'&M~'. It thus follows that the assumption con-
cerning the functional form of self-mass integrand
entails a novel physical consequence; at distances
less than the "Landau length, " like charges would
attract and unlike charges would repel. Some
comments on possible physical aspects of this
notion will be made in Sec. V.

V. SUMMARY AND DISCUSSION

This piper has studied a model based upon the
idea that all of the (charged) leptonic mass is due
to QED self-interactions. A perturbation ex-
pansion for the electron QED self-mass is de-
veloped, and it is shown that this expansion gives
results in agreement with the functional analysis
of Landau and his collaborators. To obtain this
agreement, the key feature which must be con-
tained in the perturbation expansion is the one-
loop vacuum polarization graph summed to all
orders.

The fact that inclusion of higher-order proper
vacuum polarization graphs, vertex insertions,
or fermion propagator corrections does not appear
to be essential or to significantly alter the simple
one-photon results is taken as an argument in
favor of the premise that —as originally suggested
by Landau —there exists a divergence of the pho-
ton propagator (the Landau singularity) before
the upper limit of photon momentum is taken to
infinity. It is also noted that Lautrup has recently
shown that this divergence at the Landausingularity
is manifest in the anomalous magnetic moment
as a non-Borel summable set of graphs. Lau-

trup's result is significant because it shows that
the question of the Landau singularity is found
also in "convergent" QED quantities as well as the
divergent self-mass.

It is relevant to observe here that the perturba-
tion sums obtained in the appendices offer a pos-
sible resolution to the conflict between the ap-
parent Borel summability" of the general high-
order QED term in the perturbation series (the
general term evidently alternates in sign with
increasing order) and the non-Borel-summability
of the graphs of concatenations of vacuum po-
larization loops. It is simply that the Borel-sum-
mable components of the QED series [e.g. , Eqs.
(B8) and (C10)] have larger "recursion coef-
ficients" than does the non-Borel-summable
vacuum polarization component. Thus, with in-
creasing order, the Borel-summable terms will
exceed the non-Borel-summable terms by an ever
increasing amount. This being the case, it is not
surprising if the approximation methods now used
to derive the general term in the QED series
would miss this (smaller) non-Borel-summable
component residing in the general higher-order
perturbation term. Of course, a non-Borel-
summable component, even if small, must still
be reckoned with.

In this model the resultant singularity (in the
photon propagator) is controlled by employing a
physical cutoff at the Landau singularity p.nd the
assumption that, by analytic continuation, the
mathematical form of the self-mass integrand
above this singularity is the same as that below. '4

A principal-value prescription is then employed
to evaluate the self-mass integral. These as-
sumptions will not affect the perturbation theory
calculation of "convergent" quantities. If the
other divergences of the perturbatien series are
Borel summable, as may well be the case, then
indeed, this model yields a convergent self-con-
sistent formulation for the QED self-mass.

This model also leads to a self-consistency
prediction with no free parameters that the Lan-
dau singularity is in the neighborhood of the
Planck mass. From this, one may infer, as sug-
gested by Landau, that gravitation plays 'some
role in furnishing a cutoff for QED.

There are additional physical interpretations
which one may associate with the assumptions
used in this model. For example, one supposes
that the assumption of a physical cutoff implies
that the pointlike electronic charge would be
actually characterized by the Landau length, an
idea also explored by Landau, ' while the analytic
continuation of the self-mass integrand implies
a reversal of electromagnetic coupling at the
Landau singularity. This reversal of the electro-
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. magnetic coupling might be ascribed to the finite
size of the pointlike electronic charge as follows.
We first note that the vacuum polarization com-
ponent of the renormalized electromagnetic cou-
pling exceeds that of the Coulomb part when y & —,',
and completely dominates it as one approaches
the Landau singularity. Keeping in mind a finite
sized electronic charge, one imagines that the
vacuum polarization cloud would form "around"
a pair of (test) charges (i.e. , the interaction points
of the photon propagator) which are closer than
the Landau length, rather than "between" them as
one normally expects for larger separations.
Since this change or "reversal" in the geometrical
distribution of the vacuum polarization cloud rela-
tive to two interaction points will take place on a
scale characterized by the Landau length, one is
furnished with a physical rationale for the reversal
in the electromagnetic coupling.

If the ideas explored in this model are relevant
to the physical description of leptons, then it is
appropriate to point out thatsome other approaches
cannot be employed to investigate the question of
leptonic self-mass —at least in their present form.
In particular, the use of the renormalization
group for this purpose is precluded because a
basic assumption of that approach, that the lep-
tonic masses may be neglected in the functional
form of the propagators in the ultraviolet region, "
is not fulfilled. In the perturbation theory result,
the location of the Landau singularity is a direct
function of the (mean) leptonic mass. Similarly,
analyses of this question using the spectral repre-
sentation are cast into doubt. If the leptonic charge
has a structure characterized by the Landau
length, then the notion of the light cone on this
scale is undefined until that structure is better
understood. As a consequence, a crucial step
in the derivation of the spectral weight function"
for this region is on uncertain ground.

The perturbation theory results obtained with
this model, therefore, cannot be obtained (or
refuted) by derivations based upon the renorma-
lization group or the spectral function. A selec-
tion among them must be made on the basis of
external criteria. While one may favor one or
another of these approaches based upon one's view
of "reasonable" physical assumptions, ultimately
the decision must be made by experiment+1 test.

Unfortunately, the prospects of direct tests of
elementary particle theory at the Planck mass are
very remote; we shall have to be content with
other less direct predictions of the models or
theories in question.

We have seen that vacuum polarization, includ-
ing hadronic contributions, plays a crucial role
in this model. The amount of vacuum polarization

is described by a phenomenological parameter R
which sets the scale of the mean lepton maSs rela-
tive to cutoff mass. R is the (effective) number
of pointlike objects which electromagnetically
couple to the photon, and is essentially the same
R as characterizes the e'e hadronic cross sec-
tion. R is determined by a self-consistency equa-
tion with no free parameters. A calculation using
a one-photon approximation for the fermion self-
mass indicates that R is on the order of ten while
the two-photon approximation yields an R of about
seven.

The error in these numbers due to variations
in the form of the assumed physical cutoff should
be no more than a few percent. This is because
there are -20 orders of magnitude between the
leptonic mass scale and M~, while on physical
grounds one expects the cutoff to become effective
in one order of magnitude of momentum range or
less. However, since one is uncertain of the ulti-
mate value of A' which a full perturbation sum
will prescribe (higher-order estimates of the
value of A' are well defined in this model, but
tedious to calculate), one cannot yet estimate the
error resulting from the truncation of the per-
turbation series. But the fact that the value of A'
changes by only 30% in going from the ly to the
2y solution is cause for optimism.

The experimental value of R is on the order of
five at 10 QeV in the center of mass" and will
soon be extended to higher energies by PE P and
PETRA. Thus, at the present time, the self-
consistency evaluation of R by this model does
not conflict with experiment. In fact, it predicts
the existence of (a limited number of) additional
pointlike objects beyond those now indicated by
the experimentally determined e'e hadronic
cross sections.
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APPENDIX A: LEADING CONTRIBUTIONS TO THE
VACUUM POLARIZATION GRAPHS

In this appendix estimates of the vacuum polariza-
tion contributions (fermion loops) to the one-pho-
ton fermion self-mass graph are made, These
estimates are relatively simple once one exploits
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the simplifying assumptions: (1) Only the leading
terms, i.e., those proportional to

(." )
are required for order 2n, and (2) the infrared
problem may be ignored. (The rationale for the
latter is discussed in Sec. I.) The approach is
simply to effect a Wick rotation" on the energy
variable of integration, converting the Minkowski
space to a Euclidean space where, using sym-
metry, the integrals are simple to estimate.

To show the details of this approach we start
with the second-order self-mass integral [ob-
tained from Eq. (12)]

real-axis, while in the left half they are above.
The k, integrals over the range —~ & k, - ~ may
be evaluated by means of a contour integration.
For large k„ the k, integrand goes like dk, /k"„
where n = 3 or 4, which means that the hemispheri-
cal contour (closing either above or below the real
axis) can be added at infinity making no contribu-
tion to the integral. A contour closing below the
real axis is also shown in Fig. 11(a). One now

sees that the contour of this integral may be ro-
tated counterclockwise 90' as shown in Fig. 11(b)
without changing the value of the integral (no
poles are crossed) T.hus, one effects the Wick
rotation and converts Eq. (Al) to a Euclidean in-
tegral over d'K with the substitutions

(,), d'k 1 P' —P+ m
i(2v)' k'+ie " (P —k)'-m'+is'

d'k 1 —2P'+ 2/+ 4m

1(271) , k + 2E' (p —k) —tlat + iE
~ ~ ~

where the first two of the identities"

r„d~" = —2d,

yq if''y" = 4a k,
(A2)

ko= iK4, k, = K, , and O'= —K', (A2)

(A4)

where j = 1, 2, 3. It is now easy to evaluate these
integrals in (the symmetric) Euclidean space;
the contour integration and the ie in the denomi-
nators are no longer required.

Now using P =m and P' =m', the integrals pro-
portional to (the numerical factors) —2P and 4m

may be combined to yield
2

2cnn A dX 2am
4~ ., I 4~ m

ln

have been employed to eliminate the y matrices.
In accordance with Eq. (8) the value of 5m'" will
be determined when P =m.

In order to understand the effects of the Wick
rotation, one must know the disposition of the
poles of the integrand in the complex A, plane.
For convenience we shall locate them in the rest
frame in which P, =m. One now sees that the
poles of the integrand are distributed in the com-
plex ko plane as shown in Fig. 11(a). That is, in
the right half of the plane the poles are below the

Complex

kO Plane
+ +

+ +
I

0'

(a)

+ +
Rotate

Contour 90

(b)

.+ +
/

FIG. 11. (a) Disposition of the poles in the complex
ko plane due to the z'eros in the denominator of the inte-
grand in Eq. (A1). The integral along real axis over
—~~ho~ ~ may be calculated using a contour integral as
shown. (b) The contour of (a) may be rotated counter-
clockwise by 90', converting the Minkowski space for
the integral in Eq. (A1) to a four-dimensional Euclidean
space in which the integrals are easy to evaluate; e.g. ,
Eqs. (A4), (A5), and (A9).

amf dX
(A5)

and the final result for the three integrals is

been employed.
pote that since we are ignoring the infrared

problem, the lower limit has simply been set
equal to m'. Stopping the integrations at a spe-
cific value of A' is called in the text the use of a
"hard" cutoff. (The upper limit is discussed in
more detail in Sec. IV.) These approximations
will lead to no errors to the accuracy to which
we are working. Further, one notes that the term
2P ~ k in the denominator of the fermion propagator
has been dropped because by symmetry it aver-

'
ages out (to the accuracy of this estimation) to
zero.

To evaluate the remaining integral, the one
proportional to 2P, one symmetrizes the denomi-
nator by the substitution k= k'+P/2. This yields
a new denominator (k'+P/2)'(O' -P/2)', which
—k" within the accuracy to which we are working.
The effect of this substitution is felt in the nu-
merator in which 2P= 2(k'+P'/2). One now drops
the integral proportional to P' as averaging to
zero, and we have the effective substitution 2P
-P =m in the numerator. Thus, the integral de-
riving from the 2P term is
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(,) 3am
4

n 2 p
'jr m

(A6)

in agreement with Eq. (18).
In order to determine the contribution of the

single loop of vacuum polarization, one can simply
make the appropriate changes in the photon propa-
gator 4'

It is straightforward to include in this estimate
the loops due to muons and other pointlike parti-
cles. We shali assume that there are (an effec-
tive number} A other pointlike particles, in ad-
dition to the two leptons. Taking all masses (the
two leptons and others) to be equal, Eq. (A12)
generalizes to

P'

2
Z 2 —k1+—ln

k k 37t m

in Minkowski space, or equivalently

1 1 ~ X1+ —lnX X 3m m

in Euclidean space. Using Eq. (A8) to modify
the integrals in Eqs. (A4) and (A5) yields

(A7)

(A8)

(A13)

(A14)

9m
2

ln
1 (~.2)

37T m
For the purposes of subsequent analysis, it is
useful to define the dimensionless quantity

9 1
A =- ln

4(Jt+ 2) o A'
1 —R+2 ln2 l

1+

+ ——ln (A9)

This expression evidently is appropriate for the
sum of the first two graphs shown on the right-
hand side of the equation in Fig. 4(a). The second
term clearly is due to the single-fermion-loop
graph and is in agreement with the leading term
of a more detailed calculation. " Using Eq. (16),
the one-fermion-loop contribution may be written
as

9m $'/8 (A 10)

for each fermion.
It is now a simple matter to extend this estima-

tion, summed to all orders, using the substitu-
tion"

g ~ g 1
k2 k2 ~ k2 2 k2

1 ——ln — ln + ~ ~

3n m' 4m' m'
(All)

A~
1 — In

m

One now notes that the n' term in the-denominator
(associated with the vertex and fermion self-mass
insertions in a single-fermion loop) has a loga-
rithm to a power less than the power of n and
hence will not contribute to the leading terms.
Thus, the leading terms to all orders are evi-
dently associated with concatenations of single
loops rather than more complicated structure in
the single loop itself. The graphical summation is
shown in Fig. 4(a). Again, using the Euclidean
space equivalent of Eq. (All) the integration is
easy, yielding"

ln
4

(A12)

APPENDIX B: THE LEADING CONTRIBUTION TO THE
COUNTERTERM GRAPHS

N= y„(P —k+m)(P —P+m)y

In the single-photon graph, we have seen that a
linear factor k in the numerator (the denominator
is even) upon integration gives a contribution pro-
portional to m. Hence only the Pk= k' term in Eq.
(B2) need be kept; the k' term goes like A' upon
integration and hence will dominate any term
proportional to m. Thus, .

N=y k'y" =4k',

where -= is used to mean "equivalent to." Now,
since the distribution of singularities for the in-
tegrand of Eq. (Bl) is the. same as it was for that
in Eq. (Al), a Wick rotation in the complex ko

plane may again be performed rsee Eqs. (A3)].
As with the second-order integral, only the K'
factors in the denominator need be kept, dropping
the P and m factors. With these simplifications,
the leading counterterm contr ibution becomes

A2

g(4) Q tm
g (2)

CT 77 2 X

= ——ln, 6m
A (2)
m' (B4)

where X = K'. As with the second-order integral

After the single-photon graph, the next simplest
graph is the (fourth-order) counterterm graph
(second graph, Fig. 2}. The contribution of this
graph is

(g)(g) d k 2

(22()' k'+is

(- ie)'i'N . (,)x
(( k), , ),26m ', (Bl)

where
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the upper limit was set equal to A' and the lower
to m'. (We have argued that the infrared con-
tribution will cancel in the total of all of the
graphs and hence may safely be ignored in the
individual graphs. ) Using Eq. (13) for the leading
term of 5m yields

-(,) Sm o. A' ' 27m(,
'cT 4

(B5)

which is in agreement with Frank. " g is defined
by Eq. (16).

It is now a simple matter to include the effect
of vacuum polarization to all orders to obtain the
appropriate contribution to 6m '& . The first step
is to note in Eq. (B4) that one makes the substitu-
tion

5m ' —5m ')', (B6)

where the equations yielding 5m '~, the one-pho-
ton self-mass contribution, are depicted in Fig. 4.
Then by making use of the similarity in the form
of the integrand in Eq. (B4) and that in Eqs. (A4)
and (A5), one can make the substitution

omitted, as the resolution of the 0, contour of in-
tegration and the photon mass is the same as in

Appendices A and B. The integration of this
graph" depends upon knowing the function 2',',p off
the mass shell, which is"

A'
ZI.' (p' —p) = [4m —(p' —p)] ln (C4)

P y 2 m2 y2 s (C5)

where terms proportional toP', pm, or m' in the
numerator of the fraction in the square brackets
have been dropped as insignificant relative to
mP. (That P must combine with the P in the nu-
merator of the first fermion propagator to be
significant. ) Zi„') may now be evaluated in the
same way as Z(') in Appendix A.

The first term in Eq. (C5) leads to the integral

3' ln = ———ln (C6)

where the region —k'+&m' is assumed. Using Eq.
(C4) in Eq. (C2) yields

—ln, = 5m ——,A,(y A 4 (2) 4
m' 3m

(B7) The second term leads to

where A is defined by Eq. (A14). Combining the
substitutions in Eqs. (B6) and (B7), one has the
result

~('y) = —4 gym(')')
CT

(B8)

The result, given in Eq. (B8), is now in a form
amenable to the factoring out of 5m factor as is
employed in Fig. 8.

APPENDIX C: THE LEADING CONTRIBUTIONS TO THE
RAINBOW GRAPHS

The contribution of the fourth-order rainbow
graph (fourth graph, Fig. 2) is

Z'" (P') =e' —",™,y~, (Cl)f(2v)' u' (P —u)'-m'

Combining Eqs. (C6) and (C7) gives the result

A2

RG 32 m m' 32 (C8)

(C9)

where Eq. (16) has been used to introduce the pa-
rameter g.

It is of some interest to extend this result to
include the more general diagram shown in Fig.
12 with n photons on the fermion propagator. To
do this one simply makes the substitution ()-]}"
in Eq. (Cl). This step leads to

where

+84
Fp (p —0)' —m' (C2)

in place of Eq. (C5); terms with more than one
factor of m have been dropped (see Sec. III). Equa-
tion (C9) in Eq. (Cl) yields

is a dimensionless factor,
j-(2) —j-(2) + gm(2) (CS)FP

and the function Zi') is defined by Eq. (12). As
indicated by Eq. (C3), Z~„'~~ is just the second-order
fermion propagator graph without the 5m ' term,
which is accounted for separately. [Recall that
Z includes the graph for 5m . Therefore,
Zi2i as defined by Eq. (CS) does not include the
5mi' graph. ] The e and A factors have been

E"*"'(m)=(-()""
)RG n+1

xm
4

ln (C10)

A2
Y=——ln = —'$ &1.4 (C»)

which for n = 0 can be seen to equal Z ' (m). The
(-1)""factor will ensure convergencF of the sum
over n of these graphs provided
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approximated in the region A')- k')-P'=rn' by

Zi„'i(P'- P) = —[4m —(P'- P)]
' dxI (C14)

FIG. 12. Fermion self-mass graph containing a se-
quence of m internal one-photon subgraphs on the fer-
mion propagator.

where a =m'/A' and b =m'/ —O'. For the equal-
mass case, the substitution of Eq. (C13) into Eq.
(C14) leads to

2",&'(P'- P) = —[4m —(P'- u)]

Equation (Cll) shows that the "recursion coef-
ficient" of the series associated with the diagrams
of Fig. 12 is less than those in Fig. 4. Thus, in
some sense a summation of these graphs is less
divergent than the photon propagator summation;
the criterion for summation of the former re-
mains valid to momenta above the Landau singu-
larity. And further, as remarked in the text,
the Borel summation technique may be applied
(the terms of the series alternate in sign) relaxing
the requirement imposed by Eq. (Cll). It is
straightforward to sum over 0 (n « the graphs
represented by Eq. (C10). This sum is simply'4

1
X

1 —(R + 2) —lnX3r
Setting y = lnX and dy = dX/X yields

(C15)

~'g (P 0) =,—-[4m —(P - P)]

1 —(R+ 2) —y37

(C16)

where a' = lna and b' = lnb. Equation (C16) may be
integrated" to yield

+ 151n(1+ Y) .12m
(C12)

Z'„'~'(P —P) = [4m {P' P)]—1. , - (C17)

Because of the alternating sign with each itera-
tion, there is no analog to the Landau singularity
in Eq. (C12).

To enable an estimation of &m '~ and hence ob-
tain the two-y self-consistency equation, it is
also of interest to obtain the appropriate expres-
sion for Z„'&, which would be associated with the
third graph in Fig. 5. As in Appendices A and B,
this is effected by using the substitution

(C13)

where

ln
1

u(R+2) A'
3m

'"
m

1

o(R+ 2)
3

(C18)

One verifies that as o.-0, one retrieves Eq. (C4)
from Eqs. (C17) and (C18).

Using Eqs. (C17) and (C18) in place of Eq. (C4),
i.e. , making the substitution

which for equal-mass fermions is
-1

n(R+ 2)
2 1— ln

k . 3w m'
~

A2 3—ln k' A 2
L,

converts Eq. (C5) to

(C19)

for the photon propagators. This step has the ef-
fect of modifying the logarithm factors in a way
analogous to Appendices A and B.

Looking first at 2 i„'pi(P —P), we see that the in-
tegral from which Eq. (C4) is derived" may be

(C20)

In place of Eqs. (C6) and (C7) we must now evalu-
ate

A2 ~ 1
ln

2 X i o.(R+ 2)
ln —,

3m m'. .
1

&2

ot(R+ 2) A2
ln1

The fi.rst term integrates as before yielding

8'
16(R+2)'

1 1
~(R+ 2) A' ~(R+ 2) X

1 — ln 2 1— ln3. ~ 1 3.
(C21)

(C22)
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Using the substitution

~(R+ 2) X
ln

enables an elementary integra, tion of the second
term:

terms in the summa. tion of these graphs alternate
in sign and the (Borel) summation converges.
Again, there is no Landau singularity associated
with this sum other than the original singularity
associa, ted with the photons themselves.

81m
32(ft+ 2)2

The final result is

1

o (P+2) A'
1— ln3r m'.

t 2

(C23) APPENDIX D: LEADING CONTRIBUTIONS TO THE
VERTEX INSERTION GRAPHS

The contribution of the fourth-order vertex in-
sertion graph (fifth graph, Fig. 2) is

—i,~)
81m

R' 32(A+ 2)'
1

o.(B+2) A'1— ln3r m'.
(C24)

(y) . 4 d k g—2Z y~ (P) (—28)
(2 )4

-2
(2m)' q'

which as o.- 0 retrieves Eq. (C8).
One may write this result as where

(Dl)

(C25)2'~'(m) =-'mA'
RB

where A is defined by Eq. (A14).
Although we do not do it here, this result may

be extended in a straightforward way to describe
the graph analogous to that in Fig. 12 but with all
photons dressed. As with the "bare" photons, the

2
X ='Y"(P' —0-m) "(P' —4 —q —m) (P' —q' m)—Yp y"

(D2)

As in Appendix C, the photon mass and the ie
factors in the propagators have been omitted.
Equations (Dl) and (D2) simplify at once to

g.(4) —8VI'

d'k
i(2m)'k' i(2w)'q' [(p —k)'-m'] [(p —k —q)'-m'] [(p —q)'-m'] '

N= r„(P' k'+m)r. (-P' 4 q+m-)r" —(P' q+m)r'—

I

r„(A+a)r, (8+b)r" (6+c)r"
= —8A CP+ 4agg + 4b fg + 4cgA + 4ab g
+ 4acgt + 4b cg —8ab c, (D5)

While the point of view of this paper is that in-
frared divergences may safely be ignored, it is
relatively easy to see by power counting that Eq.
(D3) has no infrared divergences, even in the
term going like m' in the numerator. First con-
sider q large. Then for small k the integral over
d'k becomes (for p on the mass shell) propor-
tional to Jd'k(k'p k) ' which converges for small
k. By symmetry the same result for large k but
small q obtains. Now if we imagine that both k
and q get small together, we will have an integral
proportional to

d'kd'q[k'p ~ kp ~ (k+ q)p ~ q q'] '

This form still has one more power of the mo-
mentum variables in the numerator than in the
denominator, and therefore also converges in the
infrared region, as was found by Frank. "

We now return to the region of interest, the
ultraviolet. The relation"

is useful. We shall employ

g =b =c =m and

g=p —k,

8=p —k —q,

C=p-q

(D6)

Equations (D6) may be substituted into Eq. (D7)
a,nd multiplied out to give a sum of simple poly-
nomials. Of these polynomials, those containing
a, p', mp, mqk, or pqk may also be neglected.
This leaves

N-- 8[p qq+ p kk —k ~ q(k+ 4I)]

+ 4m (q'+ k'), (D8)

which can be seen to be symmetric in k and q.
Employing P'-m and anticipating the use of the

The last four terms of Eq. (D5) (proportional to
m' and m') may be neglected, yielding

N= —8A Cp+4mgg—+4mgA+4mgA. (D7)
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N= 8k ~ q(k+q')+2m(q'+ k') . (D8)

Wick rotation into a Euclidean four-space, and
noting that (Q, ) = 4 (Q ) by symmetry in Euclidean
four-space (this result, while not intuitively ob-
vious, also obtains in Minkowski space) reduces
E&l. (D8) to

and consequently more subject to mathematical
error. One obtains further confidence in the above
result by noting that if one discards the infrared
divergent part of the vertex insertion calculated
by Bjorken and Drell, "replacing y" in the second-
order graph Z ' by its one-photon approximation

The integral associated with the first term may
be evaluated by the change of variables k= k'

+P/2, q = q'+P/2 which eliminates the linear terms
such as P ~ q from the denominator. We then may
drop all terms odd in q' and k' after this change
of variable and obtain (dropping the primes)

A2
A" = —y" ln

4m m

one obtains for the ln' contribution

3am A' n
ln ~

—ln4. . 4. )

(D18)

(D14)

N =+4P (—kg+ qg) + 2m (q'+ k'), (D10)
3m a

whi. ch in the rest frame is equivalent to
+3m(q'+k'). Thus the integral of E&l. (DS) may
now be written simply as

i(27&)'i(2v)'k'(k + q)'q' ' (D11)

As with the rainbow graph we know that we can
perform a Wick rotation on both d'k = id K and
d'q=id'Q and perform a symmetric Euclidean
integration. Since we have seen that the graph
associated with 2 ~, has no infrared divergence,
it is legitimate to employ a lower cutoff at the
fermion mass m for the Euclidean integration.
To the accuracy of this analysis, the term (k+ q)'
in the denominator may be replaced simply by
—(K'+ Q'), the effect of the product 2K Q averag-
ing to zero. " The symmetric Euclidean integral
then reduces to

and

Z&;& (m) - Z&„'~& (m),

may also be effected by the substitution

7r m' (~+2) ~(@+2), A'
ln

(D16)

the same result as E&l. (D12).
At this point we note that the photon propagator

modification, E&l. (A11), which applied prior to
the integration converts

27m)2
16 (D12)

after the integration. Contact between these two
forms was seen to exist by letting a-o, which
eliminates the higher-order effects of the vacuum
polarization. Using this same rule obtains

~2

» ' l6 (Z+ 2) o.(Z+ 2) A'
m

where $ is defined by E&l. (16).
While this leading term disagrees with that of

Frank, "this analysis has the advantage of being
simple and straightforward; his analysis, while
intrinsically more accurate, was long and arduous

Equation (D17) may be written simply as

Z&;~'(m) —le',
where Eq. (A14) defines A.

(D17)

(D18)
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&& (P —l'f+m)y~, and then dealt with each (polynomial)
term separately, as was done for Z' in Appendix A.
In examining this latter approach, after some algebra,
one finds that N reduces to (8m~+ 8m~/+ 8mkt —4mglf
-4m@+ 4@)f—4k2k —4@k), which agrees with Frank
except for the last term, which he lists as 4 g+,
clearly in error since the original expressions for N
have no quadratic term in g. This error evidently leads
to the disagreement in the leading term of Frank's re-
sult and the one found in Appendix C.
Cf. , Ref. 30, Sec. 8.4.
Reference 41, formulas 9.04 and 601.1.
Reference 30, p. 162.

6Reference 41, formula 90,1.
57This assertion is easily verified by expanding the fac-

tor (K+ Q) in terms of Gegenbauer polynomials,
P. M. Morse and H. Feshbach, Methods in Theoretica~
Physics, Pa& I (McGraw-Hill, New York, 1953), p.
782. Such an expansion also enables an evaluation of
the next leading term, going like (e/x) (, which in this
analysis is being neglected.
Reference 30, Sec. 8.6.


