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Diagrammatic approach to pair production in slowly varying and constant fields
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%e consider the problem of pair creation in slowly varying and essentially constant fields using directly
momentum-space Feynman diagrams for the pair production amplitude. %'hen the production occurs via
many interactions with small energy transfer, the problem can be viewed as an integration on paths in energy
space. An estimate via the integral over the optimal path given by Hamilton s principle, a fuller Lagrangian
equation, is introduced and discussed. The existence of such a classical path reAects in an asymptotic
behavior such as n!c" of high-order Feynman diagrams, which in a formal Borel-type summation yields the
essentially singular tunneling behavior in constant fields.

I. INTRODUCTION

The problems of charged-particle motion in
constant, plane-wave, and space-constant, but
time-periodic, electric (and magnetic) fields have
been solved exactly. ' In particular, these solu-
tions were used to deduce the rate of electron-
(with mass I and coupling g) positron pair crea-
tion

—=(g8)* azp(-" )++exp(--" )—,

in a constant field S.'
It is conceivable that a quantum-chromodynamic

(QCD) analog of Eq. (I) may be relevant for mul-
tihadron production. ' On the more theoretical
side the exact solutions can find application in con-
nection with the large-order behavior of (field-
theory) perturbation series. ' Previous approaches
to the problem involve the equation of motion in
configuration space where operator techniques
could be used to reduce —the constant-S problem
say —to harmonic motion.

In the following we address the general problem
of pair creation in a, slowly switched-on and -off
field using the essentially different technique of
direct study of momentum-space Feynman dia-
grams. The problem of finding the most likely
path (in every space) via which a negative-energy
particle (-E,p) "moves" (due to many small energy
transfers a&,.) to become the positive-ener~r parti-
cle (E,p) is solved by classical-mechanics Lagran-
gian methods.

Two types of field-switching procedures should

be clearly distinguished:
(a) There is a real precribed slow-switching-on

procedure which generates real photons with a,

fixed and small average energy co.

(b) The switching on and off is a formal device
which allows us to approach the singular limit of
"constant fields, " since in strictly constant fields
no nonzero frequencies exist and real pair creation
vanishes identically to any finite order in pertur-
bation theory.

In case (b) we have to make the frequency spread
of the field ~„, used for nth-order diagram esti-
mates, vanish like I/n. The pair-production dia-
grams have then the characteristic behavior

&„-n!e" —,

where c is proportional to the action integral of
the energy-space Lagrangian and a formal Borel
sum' yields

&=+ A„-exp( cm'/gg),

with the correct feature of the essentially non-
perturbative tunneling-type behavior.

In general, pairs may emerge from both sources,
owing to (a) real radiation converting into pairs
and (b) tunneling.

The plan of this paper is as follows. In the next
section we describe the nth-order diagrams and in
Sec. III the optimal path (Lagrangian) approach to
large-order diagrams. An exact [for case (b)]
recipe involving quadratures only is given. Special
cases of interest are then treated in various ap-
proximation in Sec. IV and, finally, we speculate
on the possible applications of the method intro-
ducedo
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II. THE isth-ORDER DIAGRAM FOR PAIR CREATION

For simplicity let us consider production of a
pair of charged scalar particles.

The four-vector potential representing an E field
along the three axes will be chosen as

A„=(0,0, 0,A, = a(t)),
(4)

(-E, p)

((u2, 0)

(E, p)

(+p, 0)

The interaction of a scalar particle with A„ is

V= -2gp, a(t) +g'a'(t),

or in momentum space

(6)

where f(&o) is used for Fourier transforms. The
pair-production diagram is indicated in Fig. 1.
It represents scattering from a negative-energy
state (-E,p} to (E,p) via n interactions with the
field. At each such interaction a negative or posi-
tive energy or, is transferred. Since the ~, are
taken from narrow distributions [a((0}or a'((0)]
many such transfers with Z &o, = 2E are needed
for on-shell (p'+ m' = E') pair creation. The pro-
pagator structure of the diagram is rather simple:

FIG. 1. A pair-production diagram.

If, furthermore, we choose p, =0, i.e., p=(pr, 0)
then p A = 0 and only the seagull term is main-
tained. In this case we have exactly one diagram
in ecch even order of perturbation:

(8)

In general for p, 40,

An g Z A%, 2n-2k &

k

5(Z(d( —2E}
A((, ~ „=(-2P,) " d(o, ~ a'((o„) ~ ~ ~ a'((d, ~) a'(u„) ~ ~ ~ a'((o~,„„) (,'„„

Y~' sean

where the summation goes over the ('"~') ways of distributing k seagull vertices.

III. THE OPTIMAI PATH (LAGRANGIAN) METHOD FOR
ESTIMATING A„

Let us denote E& e, =q,. Focusing first on E(I.
(8) we can view it as an integration over all possi-
ble paths describing the evolution of q(k) from
q(0}=0 to q(n) =2E (Fig. 2). The weight W„~„
associated with each path consists of a product of
two terms:

W~~&((=-(-g ) n&$D»

2E~ 2m), either because we have a really slow
switching procedure with zv, ~ &, and & small
[case (a}], or because we:are interested in ap-
proaching an essentially constant limit with
&o, -&„, &„-1/n [case (b)]. %e will also shrink
the interaction number k axis by using a "time"
variable

2K

,=, .;, [q (2E-q)]', (10)

n'2=, „.a (qa-qa~) ~
( j

n 0

with zv, depending only on q, 's, and m, only on the
increments of q~'s. These increments q, —q~, = ~~
are supposed to be very small (as compared to

FIG. 2. The transition from a typical discrete path
from q(0) = 0 to q(n) = 28 in the q vs 0 plot to a continuous
path in the q vs ~ plot.
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&=kg, 0 «& &, f =nq ~

In particular, we will choose

&/&= $ [ease (a)], &„/z„= ( [case (b)],
'

(l2)

with $ a constant of O(1). For small e and & the
paths of Fig. 2 will be mapped into almost con-
tinuous trajectories with

Comparing T and V [Eq. (17)] to common me-
chanics problems, we notice an interesting'inver-
sion of the complexities of T and V. Bather tha, n
the simple q'/2, here we have a general kinetic
term T(q) related to the variety of slow perturba-
tive interactions a(t). However, we have a stan-
dard potential

q(~) = q(k) (13)
V(q) = ln[q(2E —q)],

and

. d
(~) qe —qa-x a ~ g O(1)

d&

satisfying the boundary conditions

q(0) =0, q(v') =2E. (ls)

The transition to a continuous curve will. be exact
in the large-n limit of case (b), when the q and ~
grid sizes &„and Q simultaneously go to zero.
Writing the product [Eq. (10)] in exponential form
we have

which reflects indeed the original purely kinematic
propagators of the diagram. The explicit form of
V(q) allows us to express q [=Ex (E' —e")'~2] and

dq/du in terms of u, since V is given via energy
conservation V =c+ T(u) —K(u) as a function of u.
The (charge-conjugation) symmetry of the q(v)
curve with respect to T= v'/2, where in particular
q = E, allows us to write the line integral [Eq. (20)]
[which because of the symmetry u(0) =u(t) de-
scribes a closed path] as twice the integral to the
symmetry point u*=u(7'/2). As always in situa-
tions where b'oundary conditions (q(0), q(f')) are
given, rather than initial conditions (q(0), q{0)) the
determination of the energy has to be done via an
implicit integral condition such as

—in[q(7)(2E —q(7.))]) (16)

T(q) = in[-g'a2(&q)], V(q) = in[q(2E —q)]. (17)

The optimal stationary trajectory maximizing Eq.
(18) or f L(q, q) d& is then given by the Euler-
Lagrange equation

for each trajectory satisfying Eq. (15).
At this point it is very convenient to introduce

a Lagrangian I.(q, q) in our fictitious energy space
q, L= T(q) —V(q),

(21)

Some of the more technical aspects associated
with the determination of u(0), u', and the energy
constant c are dealt with in the Appendix.

Finally, let us notice that the inclusion of a
linear term -2gp, a [and going over from Eq. (8)
to Eq. (9) above] is fairly straightforward. We
need only modify the kinetic part of the Lagrangian
into

T(u) = ln[g'a'(eq{7')) —2~, a(cq{v))] .
d dT(q) dV

d7 dq dq.
(18)

—T(q) + V(q) = c.. dT(q)
(19)

Thus we can write

I= dwTp —Vq

rOnce q(7') is known, I= f, LdT can be computed
Since L is not (explicitly) time dependent we have
the energy integral

IV. SOME SIMPLE APPROXIMATIONS AND EXAMPLES

To elucidate our general development it is in-
structive to consider some simple cases. The
most drastic approximation to our analog me-
chanical problem' is to compute the trajectory
by altogether neglecting the effect of the poten-
tial. We then have [cf. Eq. (19)] q=u =const and
a simple straight-line trajectory

q(~) = 2E7/v. ' (23)

Q - —C

"(~du dq——[K(u) —c]
g (p) Q dD

(along trajectory)

with u=q and K=udT/du.

(20)

Coming back to our original discrete problem
Eq. (8) [or (9)] this amounts to evaluating the in-
tegrand at the symmetry point ~, = &u=2E/n.
Clearly this is an extremum of the numerator
function in Eq. (8) all by itself, since the numera-
tor is a product of n identical functions with a
symmetrical constraint 5(g e, -2E). We now
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evaluate the denominator (7) a,t the symmetry
point

2E 2" 1D(n) ( 1)n-1
8 8 (24)

where we used Stirling's approximation (or,
equivalently, integrated the potential ln[q(2E —ttI)]

a,long the straight line (23) as is done in deriving
this approximation). The integral of the numera-
tor part of Eq. (8) by itself can be evaluated in
many cases of interest. This is most conveniently
done in Fourier transform (original t) space
where

is required so that it exists only over a finite
domain —T & t & T. We can use

a(t) = tee(Z'+ t)e(r t)—,, (27)

2 sincoTtt'(~) = ——
2

— —= —~"(~) .
dh) (d T ~

It should be noted that there are many ways of
smearing the 5"(tsi) in &d space corresponding,
e.g. , to Lorentzian

~Z(~) = &/(&'+ tO'),

(28)

or some other more smooth 0-like function. In
momentum space we have

Ã= dt 2itt[tg a2(2t)]n
m OO

(26) Gaussian

For the case of a, constant field 8, a, (t) = th, and

pOO

dt e-2t St(& 2t2 @2)n

T

dte " ' gth '".
T~~ ~T

(26)

As indicated, a switching procedure for the field

5~(td) = [(27iz)'~2] 'exp(- (u2/2Z2),

etc. 5-function versions. All of these can be
treated by our general method. However, only
the version of Eq. (28) corresponds to a time pro-
file with really constant field.

Returning to Eqs. (26) and (24) we have for
g2)) gg

2E 2 I g2t 2t2 " T e-2 tttEt[g2gt/(2E/ )]2 En 4E2
(29)

The pair-production rate will then be proportional to

(30)

since the lower limit of E(p) is Z(0) =m. [For simplicity, we assumed that Eq. (29) applies also to P, c 0,
an issue which will be taken up shortly. ] We observe that Eq (30) ha.s the correct functional behavior of
the leading term in the exact formula, Eq. (1). The straight-line approximation to the action integral
amounts to replacing the tt in the exponential of Eq. (1) by 8/e in Eq. (30) which is roughly 10% accura. te.
Equation (29) involves some delicate point of intercha, nging summation, integration, and the T-~ limit.
In fact, the various A„'s behave like

I

A„- (2n)!c'", (31

and picking the complex-pole residue in the t plane [Eq. (29)] constitutes a Borel-type ansatz for the sum-
mation over n. For a simple asymptotic estimate of A.„ let us return to the vt = 2= 2E/n approximation and
apply it to the numerator of Eq. (8) as well. For variety (and simplicity) let us consider instead of a2(cu)
of Eq. (28),

2 2)
tt2(+) 6nGaussian (~) —

eXp
~2tt &'

We then have

A„-—" tttst d&u„5 2E — &O
= [acr'(1 —a') exp(--2'a')]" 2 (2n)!,

N„' 2ll

Dn i(ttt]=g~

(32)

(33)

with 2=2/ts =2E/ntt. and a is a numerical con-
stant. The important points, which should be
noted, are the following:

(i) The expression in square brackets attains

f

its maximum at ~ = (3+&6) ~'= 2.3, which is n
independent so that A„- C"2n!. We also find that
the width 6„ introduced should be smaller for
larger n,
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1 2E
n

(34)

Ã & &z(&)-g ~ &z(&)+2&g&P,&z(&),

which, at the symmetry point, simply modifies
the result of Eq. (33) by

As mentioned already in the Introduction, this is
appropriate for the case at hand [case (b)] where
the smearing 6„ is just a theoretical device and
not controlled by any experimental setup. Only by
using an increasingly finer mesh can we make the
estimate of the high terms in the series asymp-
totically exact and thus capture the singular tun-
neling behavior.

(ii) The value K is larger than 1, i.e., u oc-
curs to the right of n„ the location of the first
zero in a'(e), so a' is positive there, and there
are no sign oscillations between the contributions
of successive A„[examples of a' are discussed in
the Appendix after Eq. (A2)]. In the Appendix we
shall show that a larger-n behavior of (31) can be
obtained under quite general considerations.

Finally we can try to see the effect of the linear
(P,) term in this case. This amounts, in this
case, to the replacement

found via the classical Hamilton principle and the
Euler-Lagrange equation. The final result has
certain similarity to the large-order behavior
in field theory found via essentially a similar
method, except that classical solutions in con-
figuration space have been investigated.

It has been suggested on many occasions that
classical solutions (or dual amplitudes) may arise
by considering dense Feynman diagrams. It is
conceivable that the quark-duality diagram model
should be considered as planar QCD diagrams
which are dense in momentum space —with only
the quarks being allowed finite changes of their
momenta. via interaction with (or rather exchange
of) many soft gluons. Such a case has some ana-

logy to the case considered here. Our approa. ch
might therefore be useful in its study.
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APPENDIX: MORE DETAILS ON THE ACTION INTEGRAL

, -exp[-wQr'+P, ')/gS].
cia

(36)

V. SUMMARY AND CONCLUSIONS

In this work we have addressed the question of
pair creation in slowly varying or essentially con-
stant electric field, using Feynman diagrams in
momentum space. Rather than attempt a direct
exact evaluation of finite-order diagrams we ob-
served that in very large orders n of perturba-
tion, which are essentially forced upon us by the
boundary conditions of the problem, a consider-
able simplification arises. In fact, we can mimic
in momentum space the classical tunneling pro-
cess by following the increase of energy of the
pair as they are accelerated by the field via the
absorption of many soft photons. Feynman dia-
grams reduce in this limit to path integrals in
momentum space and the dominant path can be

(35)
ng 8 (o. —1) gh (a' —1)

t

i.e., to a common phase factor which is clearly
irrelevant for the asymptotic part of the series-,
the part responsible for tunneling. The trans-
verse-momentum spectrum of Ref. 3

dv/dd '-exP(- dd, .')

can therefore be generalized to

e =fe'e '~~ = 1 ——, with f =— (Al)2E 2F. '
&go

The monotonicity ansatz requires f&0. At this
point q = &@, so q/2E= n/gn. For very large N
we have

fee &Rf~ jf (( 1
$n

(A2)

In this appendix we consider in some detail the
evaluation of the a,ction integral along the cia,ssi-
cal trajectory. Technically speaking we should
confine ourselves to the general case where the
classical trajectory q is a monotonic function of 7

(i.e., q &0 or o. &0). We shall refer to this as the
monotonicity ansatz. No explicit restriction on
the sign of 'q (or n) is needed below.

First consider the initial conditions of the clas-
sical trajectory. Since the differential of q is
involved in specifying initial conditions, q(0), q(0)
(or o,), we shall evaluate them immediately after
the first step, i.e., a.t k = 1 or 7 = 1/n. Denote

T(q) = In(g'f/A3) —= In(g'/6') + T',

V(q) =ln (2E)' 1 ——=In(2E)'+ V',
2E 2E

and the reduced Hamiltonian H'= V'+ 7'= g'.
From Eqs. (17) and (19) we get
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1 (n) 8f ) + ln(n/1nn)
(A3)

Before proceeding to solve for cy, we first dis-
cuss briefly the profile function f, which we re-
call is a function of n only, its behavior dependent
upon the switching-on and -off procedure assumed.
To extract the general features of f we shall use
the step-function cutoff and the Gaussian cutoff as
a guide. The qualitative common features of these
two profiles are shown in Fig. 3, in particular
f(0) &0. The first simple zero occurs at n = ~,
which is of the order of unity. Beyond this point

f rises to a. maximum and then falls. As o. fur-
ther increases, f may or may not have further
oscillations. We shall not be concerned with this
large-n behavior.

Substituting (A2) into (Al) for large n one gets an
initial value of n to occur at

where e* is the velocity at the symmetry point.
Here n* satisfies

8 f8 (A6)

(A7)

with g= sign(f f ~), . N—ow Eq. (A5), together
with (A6) and (A7) specifies completely the trans-
cendental equation for the determination of cy*.

Finally, the reduced action evaluated along the
cia,ssical path is

The derivative dq/do. in (A5) may be obtained from
(Al) together with the condition that the initial
point is at n = n„dq/do. &0, as implied by the
monotonicity ansatz. In particular,

df=2E „(f„-f) 1 4 v tt2-, where f dQ '

In terms of the q variables, our initial conditions
are

I,'=— dT
&

2Eo. . 2Ecvq= — ' and q=-
$n

A glance at (A3) reveals that the initial velocity,
depends on the energy constant e', which has al-
ready been alluded to the text, and is implicitly
given via the relation

(A5)

=2 dn fq g(fd, 22 f~ ')
(1 4 2. -))2 —8'.
1 —48 )

(A8)

The important point to note here is that 1,' is inde-
pendent of n.

To exhibit explicitly the normalization involved,
let us backtrack one step. For large n, the nth-
order amplitude of Eq. (8) is now given by

gg 2& ~ I ~@el@/2 ) 2'
do, ~ ~ .do.„6 nn —Z o.'; 8"- da, ' ' 'da„il na —Qa)2FA 2++ ) KE cutoff

g 2n 2'—exp!2+(,'/2) 2n! f da, da„e na —Pa,.) .E2 g8 KE cutof f
(A9)

In the second step we have explicitly factored out
the term involving the action integral evaluated
along the classical trajectory. As usual in the
evaluation of the multiplicative normalization fac-
tor associated with the spread around the classi-
cal trajectory, strong damping is expected to come
from the kinetic term. This is indicated by the
label "KE cutoff. " Using Eg. (34) for the defini-
tion of the quantity A and the Stirling approxima-
tion which converts the most dominant large-n
dependence into the vectorial form, one arrives at
the last expression. This is an asymptotic ex-
pression for large n. Notice that the multiplica-

& (a)

dd

FIG. 3. An illustration of the function f (+), where eo
denotes the & value of the first zero and n& the initial
value of &.
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tive factor outside of the integral has the large-n
dependence precisely of the form of Eq. (31). One

expects that the dominant large-n dependence of
the integral is at most of the power form: (const)".
This can easily be checked at least for the two
extremes, where one either ignores the kinetic

cutoff effect or the 5-function constraint. Since
the inclusion of the extra power term is still
compatible with Eq. (31), we see that the asymp-
totic behavior specified by Eq. (31) is indeed gen-
eral, although the specific coefficient of the power
is more sensitive to the approximations involved.
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