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SU(2) magnetic monopole solutions are considered in the Prasad-Sommerfield hmit. It is shown that any
solution with n units of magnetic charge belongs to a (4n —1)-parameter family of solutions. It is

conjectured that these parameters correspond to the positions and relative U(1) orientations of n

noninteracting unit monopoles.

I. INTRODUCTION

It has been known for some time that certain
spontaneously broken gauge theories possess
classical solutions which may be interpreted as
magnetic monopoles. " However, only a rather
limited number of such solutions have been found;
in the SU(2) theory which we consider in this
paper, only the spherically symmetric 't Hooft-
Polyakov monopole and its dyon generalization'
are known. It is not known whether the theory
has any other classical solutions. In this paper
we attempt to gain some insight into this question
by determining some of the properties which such
solutions would possess.

Throughout we restrict ourselves to the Prasad-
Sommerfield' limit of vanishing scalar field po-
tential. Bogomol'nyi' and Coleman, Parke, Neveu,
and Sommerfield' have shown that for this case
the energy of a static configuration with electric
charge Q and magnetic charge g is bounded from
below by

E) (Q2 2) j.i2

where v is the vacuum expectation value of the
Higgs field. This bound is achieved by fields
which satisfy a set of first-order differential
equations; such fields, being minima of the en-
ergy, will also be solutions of the Euler-Lagrange
equations of the theory. Equation (1.1) implies
that a solution with Q = 0 and n units of magnetic
charge will have exactly n times the energy of a
unit monopole. This suggests that such solutions
correspond to n noninteracting uni. t monopoles.
Since there is a long-range magnetic force be-
tween monopoles, this would at first sight seem
unlikely. However, in the Prasad-Sommerfield
limit the scalar field becomes massless and can
mediate a long-range force; Manton' has shown
that at lea.st to order 1/x' this cancels the mag-
netic repulsion. It is tempting to conjecture that
this cancellation is exact.

One way to test this conjecture is to count the
parameters entering an arbi. trary solution with n

units of magnetic charge. If the conjecture is
true, these should include the 3n needed to specify
the positions of n independent monopoles. In this
paper we perform this parameter count by study-
ing infinitesimal perturbations about an arbitrary
solution and find that there are 4n —1 physical
parameters. %e conjecture that 3n of these are
position parameters while the remaining n —1

specify relative orientations in the space corres-
ponding to the unbroken U(1) subgroup.

The remainder of this paper is organized as
follows: In Sec. II we review some properties of
the theory and of the Prasad-Sommerfield limit.
Section III contains our calculation of the number.
of parameters. Our results are an extension of
an index theorem due to Callias, ' whose methods
we follow. Section IV contains a discussion of our
results. There are three appendices. In the first
we discuss some questions raised by the com-
parison between our methods and those used in
some previous index calculations. The second
appendix contains some results concerning the
continuum spectra of certain operators which are
needed in Sec. III. The third appendix contains a
discussion of the normalizability of rotational
zero modes.

II. REVIEW OF THE THEORY

and

I'q, =8pA, —g,Ap+Ap xA,

D„(f) = a p + A„x Q .

(2.2)

(2.3)

Vector notation refers to SU(2) indices, and the
scale of the gauge field has been chosen so that
the gauge coupling constant is unity. Two isospin
components of the gauge field acquire a mass via

We consider an SU(2) gauge theory containing
an isotriplet of Higgs scalars, with Lagrangian
density'

& = - -.' F„.~ F'"+ -.'D„4 D"0 - l (4'- ~')', (2 1)

where
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20 PARAMETER COUNTING FOR MULTIMONOPOLE SOLUTIONS 937

the Higgs mechanism, while the third, corres-
ponding to the unbroken U(1) subgroup, remains
massless. Electric and magnetic charges coupled
to this massless field may be defined by

q= fasjE,. , ,

(2.4)
A

g=

be other solutions of the second-order field equa-
tions, which do not satisfy these first-order equa-
tions, but these will be of higher energy. Such
solutions will not be considered in this paper.

Finally, we point out a very simple relationship
between the dyon solutions, with both electric and
magnetic charge, and those with only magnetic
charge Given any solution with @=0, the sub-
stitution

where

= F

(2.5)

P(x) = Q(x),

A, (x) = cosuA, (x),

A, (x) = sinu&(x),
(2.10)

'cosa

and the integration is over a surface at spatial
infinity. While Q may take on any value, g must
be of the form 4mn for some integer n. In fact,
the magnetic charge is a topological invariant —it
is unchanged by continuous variations of the fields
which preserve the boundary conditions imposed
by the requirement of finite energy.

The Prasad-Sommerfield limit is obtained by
setting A. = 0 in the Lagrangian (2.1), but retaining
the boundary condition that ~g ~

approach v at spa-
tial infinity. In this limit the' energy of a static
configuration of fields may be written as",

gives a solution with the same magnetic charge
but with electric charge

Q=gtanu. (2.11)

(2.12)

III. COUNTING ZERO MODES

Furthermore, it is clear that all solutions with
nonzero Q can be obtained in this manner. Thus,
to determine the number of parameters entering
an arbitrary solution, it is sufficient to consider
solutions with Q = 0, satisfying

B» =D« ~

E=2 d3x Eia+Bia+ Di 2+ Do
2

d x E; —sinaD;

+ (B, —cosuD;Q)'+ (Dog)']

+ vg cosu + v Q sinu ~ v (g '+ Q')'~', (2.6)

where a is an arbitrary angle. In obtaining the
second equality we have used the Bianchi identity

We now wish to determine the number of physi-
cal zero modes about an arbitrary Prasad-
Sommerfield solution with magnetic charge 4mn,
i.e., the number of infinitesimal perturbations
which leave the energy unchanged. In view of the
remarks at the end of Sec. II, we need only con-
sider solutions with @=0, Expanding E»l. (2.12)
about such a solution and keeping terms linear in
the perturbation, we obtain

O=D. Bi, (2.7)
O=D 6»t —$5A —e»»»D;5A», (3 1)

(2.8)

For fixed Q and g the lower bound on the energy
will be achieved if

8,- = cosuD;P,

and have assumed that the fields are constrained
by Gauss's law

O=D»E —Doux Q .

where

D; =6i+Ai. (3.2)

Here we have adopted a notation in which 5»t and
5A» are vectors, while Q and A, are 3x 3 ma-
trices

E; = sinuD;Q,

D,Q=O

with

u= tan '(Q/g) .

(2 9)
A;=hi T,

where the T' are anti-Hermitia, n and satisfy

(3.4)

Fields satisfying these conditions will be solutions
of the equations of motion. There may of course We will later make use of the fact that for any
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unit vector n,

(n ~ T)' = —(n T) . (3.5)

0 =D, 5A, +.Q6Q. . (3.6)

Our problem then is to count the number of
linearly independent solutions of Eqs. (3.1) and
(3.6).

The algebraic manipulations are considerably
simplified if these equations are replaced by an
equivalent Dirac equation. "" If

g =I5$+io, 5A, ,

then Eqs. (3.1) and (3.6) are equivalent to

(3 7)

= ( &&gDg+ 4')0 ~ (3.8)

Note, however, that the 6A; and P corresponding
to a given tjI are linearly independent of those cor-
responding to i&; the desired number of zero
modes is thus twice the number of normalizable
zero eigenmodes of S.

Callias' has derived an index theorem for Dirac
operators of this type. However, his results are
derived only for the case where P has no zero
eigenvalues at spatial infinity (or, equivalently,
for the case where there is a nonzero mass term).
In the present case, this condition does not hold,
but as we will show, it is still possible to derive
an expression for the number of normalizable
zero modes in terms of the magnetic charge. Ex-
cept for the complications introduced by the ab-
sence of a mass term, we follow the methods of
Callias.

We begin by defining"

Among the solutions to Eq. (3.1) will be many
which simply correspond to gauge transformations
and are of no physical interest. These are most
conveniently excluded by imposing the background
gauge condition

operators. The normalizable zero eigenfunctions
of S*S (which are the same as those of S) each
contribute 1. Similarly, there would be a con-
tribution of -1 from each normalizable zero mode
of SS*, but it is evident from Eq. (3.12) that SD*
is positive and has no such modes. (Note that g
is anti-Hermitian, so the eigenvalues of g' are
negative semidefinite. ) Finally, since the con-
tinuum portions of the spectra extend down to
zero, we must consider the possibility of a con-
tribution from this source of the form

d'k'""' = liin M', ,», [p~~~ (p')
N2 O Ikt&q ~ Ti

—pz, 55~(&')j .

(3.13)

Here po(k') is the density of continuum eigen-
values of 0 and e is an arbitrary positive number.
Clearly S'""' will vanish unless the Po(k') are quite
singular at k'= 0. In Appendix B we argue that in
fact these behave like the density of states for a
nenrelativistic particle in an exponentially de-
creasing potential, and are thus nonsj. ngular, so

= 0. Thus, taking into account the factor of 2
introduced by converting to a spinor problem, we
conclude that there are 2 0 normalizable zero
modes about the given monopole solution.

We now wish to express 8 in terms of the mag-
netic charge. We begin by defining a set of
Euclidean Dirac matrices

(3.14)

Y5 rgr2r3r4
Io

obeying

s= iim s(iaaf'),

where

(3.9) (3.15)

It is also convenient to define a fictitious gauge
field

V M2
S(M') = Tr, , —Tr, ,) . (3.1O)~*~+M' ~ ~*+M'j

Here

W, =A, , W =P

with a corresponding field strength

(3.16)

&* = —io)Dg —f (3.11)

(3.12)

is the adjoint of S. Making use of Eq. (2.12), we
find that

(3.17)G;) = E;g, G)5=D(f .
Note that Eq. (2.12) is equivalent to requiring
G„„to be self-dual. Although ~& has four com-
ponents, it must be remembered that we are
considering a three-dimensional problem, so the
fourth component of the covariant derivative is
simply

Clearly counts the zero eigenvalues of these two D =W =Q. (3.18)
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In this notation,

k-&* oj
(3.19)

%e now let y approach x; in three dimensions
the y, 's are sufficient to render all the Qreen's
functions finite in this limit. In particular, the
second term on the right-hand side vanishes,
rather than giving an anomaly as it would in four
dimensions. Thus

M'
8 (M ) Tl 'ys

Afd'xtr x y. . .x, 3.20

where tr indicates a trace over only SU(2) and
spinor indices. -

We now define a nonlocal current

1
yt(«, y)=tr(«r r, y)

. (3.21)

A straightforward calculation using the cyclic
property of the trace and the identities

8 1(t(«-y)= y, +yrtyr(x)+M x y)ex, & . y'D+X

1 8
x y — y, + y„W„(y)+M

y &+M
(3.22)

yi;elds

(
a s'(

+ JZ, (x, y)= —2Mtr x y, y)ex 'y 8+m,

a, y, (x, x)= t.tttr x„.)1
'y D+m

( ( )

It then follows from Eq. (3.20) that

M=-2tr xy. . . x . 324

t(tt')=-,' f rt «ted, '(,x )x

=
& lim dS& J& x,x, (3.25)

where the surface of integration is a sphere of
radius R.

To evaluate this expression we note that J, (x, x)
may be rewritten as

1
&;(x,x)=-t»y, yi(r o) (,O)*„~.«),

(3.26)

and that

—(y D)'+M = —D, ' —4'+M —~[y)t, y„]GII„~

(3..23)

(3.27)

We now insert into Eq. (3.26) the expansion, valid
for any M'WO,

1 1 1 1 1
-( D)'+M -D '-y'+M -D '-y'+M (»"''"] "")-D '-y'+M' (3.28)

Since G&„ falls like 1/x, only the first two terms in this expansion can give nonzero contributions when
8-~ in Eq (3.25).. Taking the trace over the spinor indices, we find that the first term in J, vanishes,
while the second leads to

1 1 1
i «JI(xy+) ~i~i)t)t ttt + D)t D 2 «. 2 MS G)It( D 2 «. 2 M2 I IS-D) -y +M (3.29)

(3.30)

where tr now indicates a trace only over SU(2) indices. The leading asymptotic behavior of G„„is deter-
mined by the magnetic charge [see Eq. (87)] to be

22)I„-
G„()I)=e.;,» Q ~ T+01(

~s tx (~x

If we substitute these expressions into Eq. (3.29), we see that the leading terms are those with A. =4;
asymptotically, D, = p = vp T. Next, we substitute for the propagators the asymptotic form

, = (to i) . . . (tt( ~ i ) + (t - (tt x') I ~ (t - (tt) ~ i')'I + o
(( (

I

. (3.31)
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Because of the identity (3.5) and the fact that
asymptotically G„„is parallel to Q, only the first
term in the propagator contributes to Eq. (3.29).
We obtain

4nu
x; J';(x, ) = —--, tr(g T)'

@(o) ~ Q ) n5y(n)
n= 1

(4.1)

+ 0
3c

Beg 4 jg 1 1
x' (2~)' (k + U'+re')' ~x2~

(4.2)

~g(1) 0

g(n) 15y(n) + 5A(n)

where A(2) and &t&(0) satisfy Eq. (2.12), then the
conditions that A,. and (I) satisfy this equation to
all orders in ~ may be written in the form

n
x't) (v'+.)f')"' ~x'~

(3.32)
D (,(n) f g(1) ((2) q(n-1)) ( ) 1)

(4.3)

The surface integral in Eq. (3.25) is now trivial,
leading to

(3.33)

We nom ta,ke the limit iV'= 0 and find the number of
normalizable zero modes to be

(3.34)

For the case n = 1, this result is verified by the
work of Motto"a" and Adler, "who have obtained
explicit expressions for the zero modes about the
I'rasad-Sommerf ield monopole. They f ind four
normalizable modes, of which three correspond
to transla, tions of the original solution. The fourth-
is a, ga,uge mode which is not eliminated by the
background gauge condition (3.6); it corresponds
to an infinitesimal transformation generated by the
electric charge. Such a mode mill occur about any
solution, and mill be given by

(3.35)

5 (t) = g x g= 0 .

Since an overall charge rotation is of no physical
significance, me subtract this mode from our
total, and conclude that there are 4n —1 physical
normalizable zero modes.

IVn DISCUSSION

We have considered infinitesimal perturbations
about an arbitrary Prasad-Sommerfield solution
with magnetic cha, rge 4vn and have shown that
there are 4g —1 nongauge zero modes. Although
the existence of a zero mode only requires tha. t
the energy be stationary to first order in the per-
turbation, the positivity of BS* Isee Eq (3.12)].
allows us to extend this result to all orders. If

Thus once a zero mode g") is given, all higher
g(") can be constructed successively according to

~(n) ~n(~~n)-lf (q(l) q(2) y(n-1)) (4 4)

The positivity of 2Q* ensures the existence of
its inverse. We therefore conclude that every
solution with magnetic charge 4mn belongs to a
(4n —1)-parameter family of solutions.
This number has a simple interpretation for so-

lutions corresponding to n noninteracting mono-
poles. Each monopole, viewed in isolation, would
be specified by four parameters —three to specify
its position and one to specify its orientation with
respect to the unbroken U(1) gauge group. Be-
cause the background gauge condition allows an
overall charge rotation, the orientation parameters
have no absolute significance; only the n —1 rela-
tive orientations are physically significant. (The
situation is analogous to that of the group orien-
tation parameters which appear in multi-instanton
solutions. )

Although our calculations have been done in
terms of Q = 0 solutions, the results apply equally
mell to electrically charged solutions, with a
similar interpretation of the parameters for a
multidyon solution. It should be noted that the
electric charges of the individual dyons in such a
solution would not be independent parameters;
Eq. (2.10) requires that each dyon have the same
ratio of electric to magnetic charge. Indeed, only
if this is the case can the repulsive electric and
magnetic forces between each pair of dyons be
canceled by the attractive scalar force.

The number of zero modes about a multidyon
solution may also be understood by considering
the configurations obtained by letting the corres-
ponding collective coordinates vary with time.
These configurations:may be characterized by the
momenta and electric charges of the n dyons.
Imposing the constraint that the total electric
charge be Q leaves 4n —1 independent variables.

We should note that our results have a further
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implication for the case n = 1. Adler'4 has sug-
gested that there may be n = 1 solutions other than
the Prasad-Sommerfield solution. These new
solutions would not be spherically symmetric,
so there would be rotational zero modes in addi-
tion to the three translational modes. Since we
have shown that there are only three normalizable
nongauge zero modes about an n = 1 solution, the
conjectured solutions can only exist if they are
sufficiently singular such that the rotational modes
are non-normalizable when put into the background
gauge. We show in Appendix C that continuity of
the field strengths is sufficient to guarantee that
these modes are normalizable in the background
gauge.

Aided note. Adler has pointed out that, since
the proof of the positivity of $$~ requires an in-
tegration by parts, , nonspherically symmetric n = 1
solutions might exist if the rotational modes do not
belong to the class of functions for which the sur-
face term vanishes. This can occur if the deriva-
tives of the field strength are discontinuous on a
surface or if they diverge sufficiently rapidly at
a line or point singularity.

Finally, we should stress that while we have
shown that any solution with magnetic charge 4mn

must belong to a (4n -1)-parameter family, we
have not demonstrated that any such solution ex-
ists for n & 1. Whether there are in fact any multi-
monopole solutions remain an unsolved prob-
lem"

APPENDIX A

Those familiar with the use of methods similar
to those of this paper to count parameters in
multi-instanton"'" and multivortex solutions will
recall that in those applications it is shown that
S(M') is independent of M'. In this appendix we
show why these arguments fail in the case at
hand.

We begin by recalling the argument of Brown,
Carlitz, and Lee. ' If

(Al)

and

(A2)

then

(A3)

and

ds(M') 1, 1
dM2 y5 K2 M2 K 2+ M2

1 1= »y5K K2 M2 K K2 M2

1—TrK 2 2 y5K
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(A4)
1=- Try5K 2 2 K

In the third equality we have assumed the cyclic
property of the trace; we must examine matters
more closely to see whether this assumption is
justified. In terms of S and I)*we have

ds(M') 1 1

dM
"y K +M2 K +M2

d'xd'ytr — xn * 2 y ys' 2x + xs* * 2 y ysM 2x A5

where tr indicates a trace over internal indices only. If the integral is sufficiently convergent, we may
interchange the order of integration in the second term and conclude that dS(M')/dM' vanishes. Because
of the nonzero mass in the Green's functions, the integrand falls exponentially as ~x -y~ increases; we
must investigate the behavior as x and y approach infinity with, x —y fixed.

From Eqs. (3.8), (3.11), and (3.12) we have

S = —$0'g Dg + Q,
&*=—ice D) —Q,
&&++M =- 6 = D)- (A6)

S*S=b, —2ig)D)$.
Since DzP falls like 1/r', terms of second or higher order in an expansion of (&*X)+M') ~ about b ~ will

be convergent. Furthermore, the zeroth-order term in such an expansion vanishes, as the two terms in
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the integrand are identical once the trace over internal indices is taken. There remains only the term
linear in D, p; after taking the trace over spinor indices, we obtain

de M = —4 d'«'ytr[~, ~&xlD & 'D~4& 'ly&& yl4& 'I x&+& xlD;n "D;0& 'ly&&ylk& 'lx&

&xll—r 'D;0& 'I y&&ylD;& 'lx& —(x-y)] (A7)

Since each term in the integrand falls only like 1/x' for x,y-~, (x —y) fixed, we cannot interchange the
order of integration in the second term and cannot conclude that & is independent of M'.

l,et us now compare the analogous argument for the instanton case. The equations are similar to those
given above, except that space is now four dimensional and one must make the replacements

Q-D„D,Q-+
Equation (A7) is then replaced by

d8 M'
4 d'x d'y tr[q'„, (x(D, r 'E~n '~ y&(y(D, Z '~x& —(x —y)] . (A8)

Here g~&, is the usual anti-self-dual symbol. E&,
falls like 1/x', so the two halves of the integral
might appear to be logarithmically divergent.
However, the antisymmetry of g, causes the 1/x'
term to vanish, so the integrand falls at least
as fast as 1/x' and is convergent.

An alternative argument"'" that e(M') is inde-
pendent of ~ begins by noting that if f is an eigen-
function of S*X) with nonzero eigenvalue, then X)g

is an eigenfunction of SS"with the same eigen-
value. Because of this correspondence between
ihe nonzero eigenvalues of +*X) and SX)", the only
contribution to e(AY') is from the zero eigenvalues,
and is manifestly independent of M'. , On a compact
space the eigenvalues are discrete arid there is no
difficulty with this argument; in an open space
the spectrum becomes continuous and one might
worry about making a point-by-point correspon-
dence between the spectra. The most natural way
of proceeding would be to put the system in a box
with periodic boundary conditions and then to take
the size of the box to infinity. Since the functions
appearing in f)~$ and X)$* are not periodic, this
can be done only if these operators are modified
slightly near the edge of the box. A simple per-
turbation theory argument shows that this pro-
cedure will be valid only if the physically mean-
ingful fields fall sufficiently rapidly at large dis-
tances; in particular, it fails for the monopole
case with its 1/r' magnetic field. In contrast,
the long-range fields in the instanton and vortex
problems are pure gauge transformations, and
this method may be applied.

APPENDIX B

In Sec. III it was necessary to show that the con-
tinuum portions of the spectra of G* and I)* did
not contribute to &. This result followed from the
assertion that the density of continuum eigenvalues
was nonsingular at zero. In this appendix we

justify this assertion.
We must first establish some results concern-

ing the asymptotic behavior of solutions of Eq.
(2.12). We begin by considering

D, /=8;/+A;xQ ~ (B1)

This is most easily studied in a gauge in which Q

is constant. " In such a gauge, the components of
A; orthogonal to Q correspond to a particle of
mass v and therefore vanish asymptotically as
e "". Since the first term in Eq. (Bl) is identically
zero in this gauge, we obtain the gauge-invariant
result

D;Q =O(e "").

It follows immediately that

D, ~=A, I~I (D, ~)lel

=Is;14I+O(e "")

(B2)

(BS)

D 4 =Ps 14I+O(e "") (B4)

e/r + O(1/r')—
for some constant c. Consequently

(B6)

D, P = B; =(j&,' +O(1/r') +O(e "") . (B

If the magnetic charge is 4mn, then clearly c =n.
We now consider the spectra of D~S and X)$*.

The eigenfunctions of. these operators satisfy

[ D&' —Q' —2iso, -(D; p)] g = k'p, (B8)

where s is one for X)*X) and zero for X)Q*. Here
Q and D&Q are 3x 3 matrices defined as in Eq.

Combining Eqs. (2.7) and (2.12) we obtain

O=D (»)
The last two equations and the boundary condition
on ~g~ imply that
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o = 0'x'.
It follows from Eq. (B2) tha, t

(D;q)'=i's, n (D,X)"o(.""),-

and that

(D, 'q)' = 4's, 'q+ (D, 'X)'+ O(e-"") .

From Eq. (B3) we see that

D, 4 = (D, 4)'T'

~ (~;Iel) o( .,
)

Finally

(ev)'= ~'(T')..~' = o,

(B10)

(Bl1)

(B12)

(B13)

(B14)

where (T')„ is given by Eq. (3.4). Thus Eq. (B8)
may be rewritten as

—
&f& S q+ D —g ——2ispo —

X + (e )
a 2 2 z ~ sglAI -ur

(3.3), and D, is given by Eq. (3.2). The continuum
spectra correspond to eigenfunctions with oscil-
latory behavior at infinity.

It is convenient to decompose the isovector g
according to

0'+ 4"1+x'

with

densities of continuum eigenvalues of X)~+ and
+S*are nonsingular at zero.

APPENDIX C

0,
)=

1, x &2A'

with R chosen to be sufficiently large that f(r)
vanish at all the zeros of Q, and A is given by

(C2)

d'~' &rl(D, '+0') 'lr') &(r'),

In Sec. IV it was pointed out that nonspherically
symmetric n= 1 solutions could exist only if the
zero modes corresponding to rotation were non-
normalizable when put into the background gauge.
In this appendix we show that continuity of the
field strengths is sufficient to guarantee that these
modes are square-integrable ~ (In Ref. 13 it ls
shown that normalizability of the translation modes
follows from the weaker condition that the energy
be finite. )

The desired mode corresponding to rotation
about the ith axis is given by

~Ay ---~„e,F,p+Dp [x,. (4 —~f4)]+D„A

where A, = &f&, f is a smooth function satisfying

= y'( j'q+ x') . (BI5) &(r) =~[~;D,'(f 0)+2D;(f4)] .
(C3)

We now note that

0'(D, X)' = s, (O'X') —(D, 4)'X'

=O(e '"),

and consequently that

0'(D, 'X)' = s; [0'(D,X)'] —(D, &)'(D&X)'

=O(e ""):

(B16)

(B17)

Equation (BI5) can now be separated into com-
ponents parallel to and orthogonal to Q, yielding

and

—V'q+O(e-"") = u'q

[-D,' —y' —2iso, (D, &)]X+0(e "') = A.'X.

(B18)

(B19)

The latter equation may be written as

(B20)[—v'+v'+o(1/r)]x = k'x,
so X must vanish exponentially at infinity if 4'
& v'. In contrast, g will have oscillatory behavior
at infinity for all k'&0. We now note that Eq.
(B18) is similar to the Schrodinger equation for
a nonrelativistic particle in an exponentially
vanishing potential. Since such a potential leads
to a nonsingular phase shift and thus a nonsingular
density of scattering states, we conclude that the

[Note that A(r) vanishes for i &R and decreases
as e "" at spatial infinity. ] This is indeed a, ro-
tation mode, i.e., it corresponds to a naive ro- .

tation combined with a gauge transformation.
Furthermore, it is easy to verify, using Eq.
(2.12), that the background gauge condition, Eq.
(3.6), is satisfied. It only remains to demonstrate
that the mode is square-integrable.

In doing so we will find it; convenient to apply
gauge transformations to the unperturbed solution.
(Note that this is quite different from adding to
6A& a term corresponding to an infinitesimal
gauge transformation. ) Under such transforma-
tions 5A& transforms as an isotopic vector, as
may be readily verified from Eq. (Cl), so (5A~)'
is invariant. Therefore we may first choose a
gauge in which it is manifest that (Gik„)' is every-
where integrable and then choose another in which
it is clear that (5A„)' falls sufficiently rapidly at
spatial inf inity.

We begin by transforming the solution so that
it satisfies the axial gauge conditions

AB=O,

&,=0, z=zo,

P&=0 y=yo, z =zo
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which imply thatA; and &f& are given by line in-
tegrals of the field strength and are thus continu-
ous. Since A is now the solution of an elliptic
differential equation with continuous coefficients,
it and its first derivative are continuous, "as is
D„A. The first two terms in 5A„are also con-
tinuous, since the field strengths are, so we con-
clude that (5A„)' is everywhere integrable.

Next we transform the solution so that it behaves
asymptotically like the Prasad-Sommerfield so-
lution, i.e. , so that P' =r"' and A; falls like l/r.
In this gauge it is clear that D„A decreases asymp-
totically like 1/r', as does the sum of the first
two terms in 6A&. Therefore 6A& will be square-
integrable.
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