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There are formal proofs that S-matrix elements are gauge invariant in gauge field theories. These proofs
break down unless infrared singularities of the S matrix are handled with care. In-a similar fashion, formal
on-shell Ward identities can break down. Dimensional regularization of infrared singularities seems to
preserve all formal relations.

I. INTRODUCTION

In gauge field theories, a gauge-fixing term
——,E,(A)' must be added to the I agrange density
before one can calculate amplitudes. This term
spoils the gauge invariance of the action, and
Green's functions and proper vertices depend upon
the I", one chooses; they are gauge dependent. In
contrast to this, one expects rates for physical
processes to be independent of E,. A number of
authors' ' have solved this problem by showing that
gauge-theory S-matrix elements are gauge inde-
pendent, even though Green's functions are not.

The proofs of the gauge independence of S-matrix
elements are forrnal proofs that require qualifica-
ti.ons which I discuss in this paper. Gauge theories
without spontaneous breakdown contain massless
particles, and the usual S matrix does not exist
because of the resulting infrared singularities.
This has two consequences. First, one must show
that rates for physical processes are infrared
finite when the possibility of the radiation of soft
quanta is taken into account. This result has been
fully established for QED (Abelian gauge theories), '
but not for Yang-Mills (non-Abelian) gauge
theories. ' I shall have little to say about this
subject.

The second eonsequenee of massless particles
is that if one wants to discuss the gauge dependence
of S-matrix elements individually, one must some-
how regulate their infrared singularities. In this
paper I show that the proofs of Refs. 1-6 break
down for some methods of regularization, including
a method (called S, below) which is similar to that
often used in QED, ' and sometimes used in Yang-
Mills theories. " It happens that in QED S, is gauge
invariant despite the breakdown of the proofs of
Ref. 1-6. In fact, for QED there are textbook
algebraic proofs (which should. be distinguished
from Refs. 1—6) showing that S, is gauge indepen-
dent. " Howevers Sy is gauge dependent in Yang-
Mills theories. For another method of regulation
(called S, below) the proofs of Refs. 1-6 are valid,
and S, is gauge invariant in both QED and Yang-
Mills theories. I show in detail how the formal.

proofs of Refs. 1-6 break down for S,. Finally, I
show that the method of regulating infrared singu-
larities also determines whether or not formal
consequences of "on-shell" Ward-Takahashi iden-
tities hold. Contradictory results in the litera-
ture apparently are due to different treatments of
i:nfrared singularities. ' '"

Let us consider how infrared singularities of S-
matrix elements might be regulated. Denote the
unrenormalized one-particle-irreducible (1PI)
proper vertex function for the process of interest
by I"(p, ~ ~ p„}, and let Z,. be the wave-function re-
normalization constant for the ith particle, nor-
malized at mass k,.'. Then the renormali"ed pro-
per vertex functions

S = lim I'„~ (1.2)

where m,.' is the mass squared of particle i.
When there are massless particles, the limit in

Eq. (1.2) does not exist. I will discuss two alter-
native S matrices which differ in their methods of
dealing with infrared singularities. Perhaps it is
worth emphasizing that the two S matrices are
equivalent to Eq. (1.2) in theories with no mass-
less particles.

(1) S,. S, is defined by holding m,.' —k,.' small
but positive in Eq. (1.2}, and retaining all terms
which are nonvanishing as m,.2- k,.' approaches
zero. (It may be possible and desirable to let
some subset of legs go on-shell without develop-
ing singularities. ) Note that in S, only the exter-
nal legs are held off-shell because a gauge-meson
mass term in. the Lagrangian would destroy any
prospect of gauge independence. Typical singular
factors in S, have the form In"(m,.'-A, 2), where
n increases with the order of perturbation theory.

are free of ultraviolet singularities when expressed
in terms of some off-shell renormalized coupling
constant. Also, if there were no massless parti-
cles, the S-matrix elements would be a certain on-
shell limit of this vertex function,

20 1979 The American Physical Society



922 J. B. BRON ZAN 20

Because these singularities are so mild, the stand-
ard algebraic proof for spinor QED shows that S,
is the same in the Coulomb, Landau, Feynman,
and general 8, gauges. " However, I will show
that S, is gauge dependent in Yang-Mills theo'. ies.

(2) S,. With the invention of dimensional regu
larization in 1971,"it became possible to use the
space-time dimension D to regulate infrared' '"
as well as ultraviolet divergences. For dimen-
sions D&4, the limit in Eg. (1.2) can be taken,
and the infrared divergence of S, presents itself
as a singularity in D at the physical dimensions
D= 4. (Note that this singularity arises solely
from going on-shell because the renormalized off-
shell vertices I'~ are analytic at D=4 in every
finite order or perturbation theory }S., satisfies
the assumptions underlying Refs. 1-6 and is
gauge independent in all gauge theories.

The difference between S, and S, lies in the or-
der in which one approaches D = 4 and the mass
shell

S, = [liml's lb '-b. ']b b &- b

S, and S, should be equally good for calculating
physical rates. With S„bremsstrahlung contribu-
tions are calculated in D dimensions, and are sup-
posed to have a singularity at D = 4 which cancels
that of the primary process. ' With S„ I presume
that the infrared logarithms and gauge dependence
are both canceled by bremsstrahlung contributions.
This conjecture is based on the belief that physical
rates ought not to depend on the method of regulat-
ing infrared singularities. (If they do, we are in
trouble. ') Since rates are gauge independent using
S„ they must be using S,. In this sense the gauge
dependence of S, is harmless.

Let us nexl: review the proofs that 8-matrix ele-
ments are gauge invariant, to see how they break
down for S,. As an example of these proofs I take
the demonstration in the review paper of Abers
and Lee." Consider a gauge theory generating
functional in which gauge fields, scalar fields, ... are
coupledtosourcesbyaddingterms J'aAa, japa, ... ,
to the Lagrange density. Connected Green's func-
tion are appropriate functional derivatives of the
generating functional, evaluated at 0= 4'„=j'= ~ ~ ~ .
Now suppose I change the gauge-fixing term from
E,(A) to E,(A) + 4 E,(A) ~ Abers and Lee show that
one can calculate Green's functions in the new
(E+ n.E) gauge using old (E) gauge Feynman rules
provided the source currents couple to additional,
higher powers of the field. The modified couplings
are

I

( q = kp-k)
I

k, (r}

FIG. 1. Gauge-meson —scalar —scalar vertex func-
tion 6„.Dashed lines represent external currents.
Indices in parentheses are group indices for the Yang-
Mills case. The gauge-fixing term is I'.

a Aa —J'(A'+ a' ' A A't ~ ~ ). VVO V g

jaya ja(pa+ pabaybAa + ~ ~ ~ )
a

(i.4)

- j~l i i

where q „is the gauge-meson polarization vector.
To first order in 4F, the response of S, to the
gauge change F-F+&F is

FIG, 2. Diagrams vrhich must be added to Fig. 1 when
the gauge-fixing term is &+&&. The new current
coupling is indicated by a cross.

The new couplings e and P are proportional to
4F„and this formalism is valid to first order in
&F,. It provides the framework for the argument
that S-matrix elements are gauge independent.

As an example of the argument, consider the
gauge-meson- scalar-scalar three-point function
6„. Figure 1 represents G„ in gauge F. To obtain
6„ in gauge F+ 4F, one must add the diagrams
of Fig. 2 to those of Fig. 1. Abers and Lee divide
the diagrams of Fig. 2 into those which are one-
particle reducible in the leg with the new coupling,
and those which are irreducible. Reducible dia-
grams, like the one in Fig. 3, have a simple in-
terpretation: They correspond to a shift &Z, in
the wave-function renormalization constant for the
particle in the leg with the new coupling. Next,
denote the S matrix defined in terms of the three-
point function by S„
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FIG. 3. A diagram which is one-particle reducible
in the channel of the new coupling (cross).

(1.6)

dent in spinor QED (but not Yang-Mills theories).
Because of this fortuitous gauge independence in
QED, the issues raised in this paper were not
apparent before the rise of Yang-Mills gauge
theories.

Apparently, formal Ward- Takahashi (WT) identi-
ties relating amplitudes which are "near the
mass shell" are subject to the same difficulties
as S-matrix elements. For example, the equality
Z, =Z~ between charge and scalar particle renor-
malization constants follows from a Vfg identity. "
The Z'8 are infrared divergent when normalized
on-shell, and, like the S matrix, can be regulated
in various ways. The equality Z, = Z& holds under
the procedure of Eq. (1.3b}, but not under Eq.
(1.3a) in Yang-Mills theories. This explains why

Refs. 10 and 12 disagree as to the equality of the
two renormalization constants.

In the rest of this paper I will discuss the gauge-
meson-scalar-scalar vertex for two gauge theo-
ries: scalar electrodynamics and Yang-Mills theo-
ries in which the scalar mesons belong to the fun-.

damental representation of the gauge group. I
will use the gauge-fixing term of the A& gauge

Abers and Lee argue that in the first term of Eq.
(1.6) only the one-particle reducible graphs of
Fig. 2 con'tx'ibute because only those have a particle
pole in all three channels and survive as one ap-
proaches the ma, ss shell. Note that this observa-
tion is unaffected by the presence of logarithmic
singularities in 6, and Zj '~' because irreducible
terms are alleged. to be suppressed by a linear
sero. By considering propagators one can readily
verify that these reducible contributions exactly
cancel the second term in Eq. (1.6). .One then
concludes 4S,=0; S, is gauge independent.

The part of the argument of Abers and Lee which
can break down is the assumption that one-particle
irreducible contributions to &G'„" drop out of Eq.
(1.6). The fact is that in dimension D=4 the coef- .

,

ficients a and P in Eq. (1.4) are so infrared singu-
lar that a graph can develop a factor (m,'- k,.') '
when the diagram is irreducible. %Shen these ex-
tra contributions are included, the cancellation
of the two terms in Eq. (1.6) can fail to take place.
In this way, S, and S3 can become gauge dependent.
On the other hand, for D&4 the infrared singu-
larities of cf and P are no longer able to generate
a factor (m,.' —k,'} '. As a result, the argument
of Abers and I ee stands, and S, is gauge indepen-
dent.

Note that the breakdown of the formal argument
for S, does not prove that it is gauge dependent;
one merely fails to prove that it is gauge indepen-
dent. As I have already mentioned, there is a
separate a&gebraic proof that S, is gauge indepen-

The corresponding gauge-meson propagator de-
pends on the gauge parameter $,

gab ab 'H - 1:-
vv- -

2 gvv- 2 —
] ~ (1.6)

II. THIRD-ORDER S-MATRIX ELEMENTS

A. Electrodynamics

Scalar electrodynamics is described by the
Lagrange density

I will then verify my assertions about gauge de-
pendence by a series of calculations in second- or
third-order perturbation theory. In Sec. D I calcu-
late S„S„Z„andg~. In Sec. III I calculate LES„
corresponding to a gauge parameter change &f,
using the formalism of Abers and Lee. I find that
when irreducible graphs are correctly included,
the results agree with what one obtains by dif-
ferentiating the results of Sec. II. This shows that
the breakdown of the formal proofs proceeds in
the manner I have stated.

The findings of this paper give added prestige
to the dimensional regulation of infrared singulari-
ties in gauge theories. Under dimensional regula-
rization, formal relations like the gauge indepen-
dence of the S matrix and Z, =g~ are valid. Under
regulation schemes carried out directly in D = 4,
these relations generally break down.
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I.==,'z„„P„.+(s„y'+few „)(s„y &e~„)

-(m'+ an') y'y,
E„„=S„A„-&„A„.

(2.1)
k2 k~p k~

k2-P k, -P

k~ k2 ki

Sn' is adjusted so m is the physical scalar-meson
mass. In setting up calculations, one must take
care not to introduce spurious gauge dependence
by the method of regulating ultraviolet and infrared
divergences. I regulate ultraviolet divergences
dimensionally, calculating in D rather than four
space-time dimensions. When I calculate S„,I
follow E(l. (1.3a) and expand around D= 4 before
approaching the mass shell. There is a pole in
I'~ at D=4 which could be removed by introducing
a renormalized charge, but this step is familiar
and irrelevant to the issues of this paper, so I
omit it. As a result, S, has an "ultraviolet" pole
at D =4, and S, has a mixed "ultraviolet" and "in-
frared" pole there. For S„ I let the photon mo-
mentum go to zero, holding the scalar-meson
momenta off-shell. No infrared singularities ap-
pear because the scalars are off-shell. In fact,
one can often set the photon momentum to zero

FIG. 4. Diagrams contributing to the proper vertex
&~V„ in third-order scalar electrodynamics.

before expanding around D = 4, without affecting
the result. This step greatly simplifies the Feyn-
xnan integrals, and I will indicate where it is al-
lowed.

The three graphs shown in Fig. 4 contribute
the third-order proper vertex g„V„. First con-
sider the calculation of S,. It can be shown that in
graph C one is allowed to set q =0 before expand-
ing around D= 4. This is done by writing the am-
plitude in terms of Feynman parameters and not-
ing that for all D the amplitude is independent of
q' for {q'~« ~&' -m'~. A~p»«de» and & «pend
only on 0,' or k,', so all three graphs can be
evaluated at q =0 in terms of the integrals

D
g '(p' ~ ' ~ "= d p

). 2 2 I (2v)D[(y P)2 ~ 2+)~](2[p2 ' ~ 2+ ]fl

and the generalizations Z'„', J,„~, . . . having factors p„, p,p„, ... in the integrand. The results are

(2 2)

IIn

n„V„n=8n' 2 (8 k)1 '-(I- —
~(n k)k„k I„„—k l„'+n(1 ——

~
k„k,ln„„,——(n ~ k)k I„'„

(2.3)

f"=Z'(n', m', 0).
The integrals have been evaluated for k'-m' in Appendix B. The complete proper vertex is

6 m'
n„('„=2(n(n k){1+ —81''(1)+kin +2+kin(1 —k lm )4)) D —4 4m

P 2+,—,— +1"'(1)—ln —2 —21n(l —k'/m')
(47()' $ D —4 4~

To calculate S, we also must consider the second-order corrections to the propagators. The scalar
self-energy part is shown in Fig. 5. The photon loop Z„must be taken to be zero in dimensional reg-
ularization. The other graph is

1 Ixo
kkn

Evaluating the integrals,e', " 6 m'
Z,=-, m' 31 (1)+3ln 74v' D 4 4m

+(k'-m') —+~ -3+ —&'(1)+ 3 ——
~ln

— —4+(6 —2/()ln(1-k'/m')
6-2/g ( 1, 1)) m'
D-4 (( $ $& 4))

(2.4)

(2.6)

(2.6)
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The scalar propagator is

Z

k -m —Z~ —5m
(2.7)

I choose 5m'=-Za(k'=m ). It is important that
this counterterm is gauge independent. Any ex-

plicit gauge dependence in the Lagrange density
would spoil the formulas developed by Abers and
Lee to calculate the response &G to a guage change

The scalar wave-function renormalization con-
stant is

Z,-'=, , [k2 m' ~,(k2)+~, (~2)]

e 6-2/$ 1'l. 1 m~ 2 2=I+, + -3 + —
~

I"(I) + 3 - —ln + 2 - —+ 6 - —ln(1 -k'/m')(4v)' i D-4 (2.6)

Note that one cannot set k'=m' because of the
infrared divergence. As in Eq. (2.4), all terms
which do not vanish at k'=m' are carried along.
It is useful to note that

I

the result

v„+a~ = (q'g„„-q, q„)o,

2/3, , m'
(r=;, ——,

' I '(1) + 3 ln

(2.11)

Z~~, V„=2ie(~ k). (2.9)

That is, if one ignores the wave-function renor-
malization of the photon line, all radiative cor-
rections cancel in the ~-matrix element. This
shows that ~, =~& in scalar electrodynamics under
the limiting procedure of Eq. (1.3a).

The photon polarization part is shown in Fig. 6.
The contributions are

(G )
-i q~q„wg~q„

g ll v 2(1 o.)
g Ail (q2q'

Z, '=, q'(1-o)
Bq

e' 2/3, ,
m'

= 1 -
( ), - -'I'(1}+-,' ln

(2.i2)

The photon propagator and wave-function renor-
malization constant are

27t+ ~ ~28 q I
I ~=J~(k' m' m-')

(2.io)
Thus the electrodynamic S-matrix element is
seen to be independent of ( in third order

These integrals are evaluated in Appendix B, with 8,. ~ED ZqZ e V

=2ie(a k) 1+, j I' (1)

m
+-,'ln . (2.i3}

4m

8, is readily calculated by evaluating the inte-
grals of Eqs. (2.3), (2.5), and (2.10) in the limiting
prescription of Eq. (1.3b). The formulas of Ap-
pendix B give the results

~„V„=2ie(e k)+0(e'),

Z~ '=1+0(e'),

'I (2 —D/
6(4v} ~2

(2.14)

S2 QEn 2ie (a ~ k) 1 — ~q, (m')
~'I (2 —D/2)

64~ ~'

FIG. 5. Diagrams contributing to the scalar-meson
self-energy & in second order.

This shows that 8, is also gauge independent
through third order in scalar QED, and in fact,

The re is no second-order contribution to
the charge and scalar-meson renormalization



926 J. B. BRON ZAN 20

k2 ki P k,

P

/

P

D C
'

D

FIG. 7. Additional diagrams in non-Abelian gauge
theory. 7t'D is a ghost loop.

T(R)t)„=Tr(t't').

The third is the Casimir eigenvalue C,

(2.16)

FIG. 6. Diagrams contributing to the photon polariza-
tion n in second-order scalar electrodynamics.

C2 5,, = t'I,",.~, (2.1V)

constants. Therefore, through second order the
Ward identity result Z, =&~ is satisfied in QED
under the limiting procedure of Eq. (1.3b).

B. Yang-Mills theory

In Yang-Mills theory the Lagrange density is
the same as Eq. (2.1), but with the changes

ie Ct) A---igt' QA'„,

[7', ~'] =ic„,rc
(2.15)

T' is any representation of the gauge group gen-
erators, and the last equation defines the struc-
ture constants c. All the graphs in QED contribute
to the gauge-meson-scalar —scalar proper vertex,
but with coefficients depending upon group factors.
One of these is the matrix t' of the fundamental
representation of the gauge group, to which the
scalar mesons belong. Another is the trace

which is needed for the fundamental (R) and ad-
joint (G) representations. For the group SU(N),

T(R) = 2, C, (R) = (V2 —1)/2N, C, (G) =N . (2.18)

The gauge group factors for amplitudes calculated
in QED are

e, V, „and e„V, 3: [C,(R) —,
' C, (G)](t2) .

~~ V~, c: [C,(R) ——,'C, (G)](t')„, ,

&e: C, (R)5y, ,

m„and ~,: T(R)~,„.

(2.19)

i and f are group indices for scalar mesons, and
a and b are group indices for gauge mesons.

There are new graphs in non-Abelian gauge
theory shown in Fig. 7. First consider &y For
the amplitude &„V~ D I found no argument proving
that one is allowed to set q =0 before expanding
around D =4. One must therefore use the integrals

I ()(k, (1) = (») [(k -P)'-I'+i&][(P+e)'+i&]'(P'+ie)'
kkk

and their generalizations I,~ etc. However, when I evaluated the amplitude, expanding around D =4 before
setting q =0, I found the result is the same as when one sets q =0 first. Therefore the amplitude can be
expressed in terms of the simpler integrals I ()(k, 0) =I'

&~ V~, 22=4g'C, (G)(t')~, k'e I"— 1 ——a„k„k,I" ——&~k„„"„+ (k .a)I"——(c .k)k„ I„"
Isa

Evaluating the integrals,
2

k„V =2ig(k 'k)((')&, C,(C),
I

—,
' + —,')n(1 —k'/m. ')

1" 32 m2

(2.21)

(2.22)

The additional contributions to the gauge-meson polarization part can be written in terms of integrals
I ('= J 8((I', 0, 0). The expressions are



20 GAUGE DEPENDENCE. IN THE YANG-MILLS S MATRIX

2 2

ivz= —5,&C2(G) 1 —— [(q ) I„„—q q q I2„-q2q„q I22+q q„q q I22]

+[4q q I"„,—'(6 —4D)l„" +(3 —„2D)(q I,"yq„l") (6 D)q q I"]I,
iv~ = g'-5„C, ( G)(I'„'„—q„I,").

'These integrals are evaluated in Appendix B:

Z
2 13 3

C D 4+~2 aQ 2
7T J

1 1 1. . . q2& 1
+

( D 4
+ ———,

' I"(I)+—,'ln —
~

+

q

The amplitudes can now be assembled. The proper gauge-meson-scalar-scalar vertex is
2 6 m'

V, =2ig(& k)(t')z, +2ig(& k)(t')&, , C,(R) —3I"(1)y31n +2+Gin(1 —k'/m')
4m

+ —' + I"(1) —ln —2 —21n(1 —k'/m')C, (II) ] 2 m'

(

D —4 4](

m2
+C,(G) +-,' I (I)--; in —,

'
-', in(1-k'/m')

(2.23)

(2.24)

+ ' +—,
' I"(1) ——,

' ln + —,
' ——,

' ln(1 —k'/m') . (2.25)C, (G) 1/2, , m'

&z ' is given by Eq. (2.8) except that the coefficient e' is replaced byg'C, (R). Z~
' is given by Eq. (2.12),

where

1Tg + 7f s + 7Tc + ]fD = (q g~ „—q D q „)V .
The result is

2 23 m' 13 3

4m

(2.26)

(2.27)

The Yang-Mills S-matrix element is now seen to be gauge dependent:

= 2ig (~ .k) (t')„.

+2ig(e k)(t')f, , T(It)
D

——,
' I"(I)+—,

' ln

2 m2

+ ' 1 ——,
' ln +—,

' ln ——,
' ln(1 —k'/m') +

4~ 4 (2.26)

From this one can calculate the differential response
2 m2 2

&8, rM =2ig(a k)(t')q, , , C,(G) 1-~—,
' ln —,

' ln — ~—,
' ln(1 —k'/m') —— (2.29)

In the next section I will show that the formalism developed by Abers and Lee gives Eq. (2.29) provided
all contributions from one-particle irreducible graphs in Fig. 2 are included.
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The charge renormalization constant is

Z,-' = »„V„[2ig(» .k)(i )„]-'

=Z~ '+, + 3+ —I' (1)+ -3 ——ln +
~

—2+ — + -6 ——~ln(1 —k'/m')g2C, (G) "-6 2/~ 1 1 m' (
44m' D-4 ( $ 4v

(2.3O)

This shows that Z, &Z~ in Yang-Mills theory under
the limiting procedure of Eq. (1.3a).

S, can be calculated in Yang-Mills theory using
the results of Eqs. (2.19), (2.21), and (2.23):

»„V„=2ig(» k)(t')„+O(g'),

Z '=Z, '=1+0(g ), To third order

hG, (k, ') b, G, (k, ').G, (k ') G (k ')

+(1 —o)a(1 —o) '+
Vv

(3.4)

g'I (2 —D/
g 12(4&)D/2 (2.31) EpnV~ = [ —i(k, ' -m')][ -& (k -m')] (iq')» zG'"

S, „„=2ig(» k)(t')„

g'r(2 D/2) (,)„,,
12(4~)~/'

The contributions of m~ and m~ vanish under di-
mensional. regularization, that is, at q =0 and
D&4. The proper vertex graph &„V, ~ just com-
pensates for the new coefficients multiplying
»„V„„...c.~ and as in QED there is no net third-
order correction to &,V, . Evidently S, » is
gauge independent, and Z, =Z~ under the limiting
procedure of Eq. (1.3b).

III. DIFFERENTIAL CHANGE OF GAUGE

and

-2e(» k, )(k,'-m')AG~(k, ')

-2e(» k, )(k,'-m')n, G~(k, ')

—2ie(» k, )b,o (3.6)

Z S, = [ i(k, '——m') ][ —i(k, ' m') ] (—i q')» „b.G„'"

+ 2ie(» k, )[ ,'bZ~(k, '-)+i (k,' —m')b, G~(k, ')]

+ 2ie(» k, )[-,'hZ, (k,') i+(k,' - m)aG (k, ')]

The formalism developed by Abers and Lee. per-
mits one to calculate the response b, S, to a gauge
change b, E. In general

gZ 1/2(k 2) ~ 1/2(k 2) gZ 1/2(q2)
I 1 Z I/2(k 2) Z I/2(k 2) Z I/2( 2)

+2ie(» k,)[-,'Az, (q') -n. v].

The substitution s g(t')/, gives the analogous
formula for Yang-Mills theory.

A. Electrodynamics

(3.6)

&u&Vu
+ 0 (3.1)

To third order this becomes

b S, = 2ie (» k, )[-,'hZ
~ (k, ') + -,'hZ

~ (k,') + -,'m, (q')]

+ 6p5p . (3.2)

In order to use the Abers-Lee formalism, the
proper vertex must be related to the three-point
function

In electrodynamics the only modified coupling
of Eq. (1.4) which contributes to the S matrix
connects the scalar-meson current to the scalar
meson and photon fields; its momentum-space
form is given in Appendix A. The factor 1/k' in
the modified coupling generates the infrared
singularities. The second-order shift in the scal-
ar-meson propagator is given by the diagrams in
Fig. 8:

ie'b,
b, G = (2k I "-I")s k2 m2 g2 P

»&GI,
" = G~(k, ')G&)(k, ')»„G, (q')»V,

=G, (k, ')G, (k,'),(1 )
~„V„.

This leads to the relation between responses

(3.3)

i b( e' -2
k2 2 (2 (4 )2 D 4

+ ( )

m'—ln ——21n(1- k'/m')
4m

(3.7)
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k-p k k k-p

FIG. S. Diagrams giving the gauge shift in the scalar
propagator.

By E(ls. (2.7) and (2.8), to second order

~&g =-k, b. (&e —5m')9

= —i (k' —m')'g ("
g$2 $

Using E(l. (3.7) ~

(3.8)
C

e' —2 m'
bZ = (, (4 ), 4

+I'(1)-ln—

—2 —21n(1 —k'/m') (3.9)

This result can be obtained from E(l. (2.8) by
differentiation, showing that the method of Abers
and I,ee is borne out in practical calculations.
There is no shift in Z and the transverse photon
propagator through second order.

The first term in E(l. (3.6) contributes to 8,

D

FEG. 9. Diagrams contributing to the gauge shift in
e ~6~3 iz. electrodynamics.

only when there are poles in all three legs of
e~b, a'„". Evidently, the diagrams of Figs. 9(A)
and 9(B) contribute and give terms which can be
read off E(l. (3.7)

(,& (,) i i -i 2ie'(e k, )'((«(,~+«(.e)-k a m. k ~ 2
—

a (4 )2
1 2 ™

m2
+ 1"'(1)-ln ——ln(1- k '/m') - ln(1 —k '/m')

D —4 4n' 1 2

The irreducible diagrams of Figs. 9(C) and 9(D) also contribute:

(3.10)

p ~ C Q
2 m2 q2

(3.11)

As in the diagram of Fig. 4(C), we can let q=0 before evaluating the diagram at k,'=k, '=k'4m'. The

only term in Eq. (3.11) which develops the pole at k'= m' is I '„', giving the result

2 2

(3.12)

All other irreducible diagrams which can be constructed do not contribute to Eq. (3.6). Altogether, terms
developing poles in all three channels are

2 e' m2
EpAGp =

~2 2
—

2 2ie e I(',
4 „, 4

+I' 1 -ln 4- —+2-2ln 1-4' m'
p . p k2 2 ~2 4m

(3.13}

E(luations (3.6)-(3.8) and (3.12) now give

aS, =O. (3.14)

The result b, S, = 0 agrees with Sec. II, but it is
surprising that an irreducible diagram contri-

butes to b,S,. Recall that the argument of Abers
and Lee implies that QS, = 0 when irreducible dia-
grams do ~at contribute. The point to observe is
that S,4 S, in electrodynamics. The condition for
S~=S3 ls
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g (P2) 1/2(g2 ~2)G (JP) ~ g ($2)1/2
A ~m

(3.15)

This condition is not satisfied at D = 4 owing to
the infrared logarithms in G~ and S~. There-
fore, S, is gauge dependent in electrodynamics,
even though S, and S, are gauge independent.

FIG. 10. Diagrams contributing to the gauge shift in
the meson propagator in non-Abelian gauge theory.

B. Yang-Mi8s theory

In Yang-. Mills. field theory there is an infinite
perturbation series of modified couplings to both
scalar- and gauge-meson currents. The relevant
terms in this series are given in Appendix A.

The calculation of the shift in the gauge-meson
propagator G, (q)» is simplified by noting that in
the S matrix the propagator is contracted with &„,
and e q=0. This means that only propagator
shifts proportional to g„„need be calculated (the
diagrams are shown in Fig. 10):

&G, ,„., + &Gg, „.„=5„C,(G) —,)
-il ig'a$

q' f-i -
1/2

"" V (4 )' ~q' D-4
t'-—a - -'1" (1)+-'»~

~
+q q„ ter'ms,

(4m ].

(-il ig b,g, -„-„ / 1
~Gw. ».c+~G..».~=5.~C.(G)

I

—
21 a a'„.q'I"+f", -~1-] q'&'„'.

g' -s -3/2, , & -q' 1= 5,~C~(G)g» --],
(
„—, + gF'(1) -gin — -—

&
+q&q„ terms.

4m 2

(3.16)

From Eq. (2.12),

hG, »=,",
1

""„+q&q„terms
9 L'&-O'J

so to second order

(3.17)

ao=C, (G) (, (4 )2 D 4
-~+-,I"(1)

8az, =, (q'b, o)
Bq

1--,ln ——. (3.16)4w 2g

The shift Z~ can be verified by differentiating Eq.
FIG. 11. Additional diagrams contributing to the gauge

shift in e „G„3 in non-Abelian gauge theory.
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(2.2V).
The shift in the scalar-meson propagator is

given by the diagrams of Fig. 8, with the replace-
ment e'-C, (R)g'. Since this agrees with Eq.
(2.19), b.Gz and AZe are correctly given in Yang-
Mills theory by the formalism of Abers and Lee.

The response e„G'„"of the three-point function
is determined by the diagrams of Fig. 9, which-
also occur in electrodynamics, plus those of Fig.
11. All other irreducible diagrams turn out to
give no contribution to Eq. (3.6). Diagrams 9(A)

and 9(B) are given by Eq. (3.10) with the replace-
ment e'-g'(t')z, C,(R), and diagrams 9(C) and
9(D) are given by Eq. (3.12) with the replacement
e'- g'(t ')I, [C,(R) ——,'C, (G)]. The contributions
of diagrams 11(E) and 11(F) can be obtained from
Eq:. (3.16) by multiplying by 2[i/(k' —m')]'2ig
)((& ~ k)(t'$, and omitting 5,vg„„.

The irreducible diagrams 11(G}-11(K}must be
evaluated setting D= 4 before letting q' and then
k'-m' become small. I therefore use the inte-
grals of Eq. (2.20):

(,) i / i-(-i g'I) g)
vkGv ~ e —

k2 p
~

2 „(t)y(C2(G) 2» vkviv„4„vI v 2„2 ev „Ivv—m I,q

+
1

& y jo ~ q
& I11+ &Uqv

P V 2 2 Il P 4 2 P~

1 1 A 1

(3.20)

The only integral which has the requisite pole at k'= m' is E &'„. In Appendix B I show that for small q'

J."uv 8'flu g 2'v" =(4v)'(m -k') 2m

The resulting shift is

2
Z

P 8 Q2 m2 q2 )' 4v)'

—,ln —~ ln ——a ln(1 —k'/m) .6( C,(G), -(I', m'
4v '

4w
(3.21)

(3.22)

Evaluating these integrals,

Similar care must be taken in evaluating diagram J. Initially there are 43 terms. A number of these drop
out at q '= 0, and those that remain can be combined into four having a pole at k'= m'.

e hG'" = —(-ig') ' —e k I" - 1-—e k (I'I"+(e ~ k)(I'I"-(e ~ k)I"C,(G) ag " 1 A

u v~z k2 ma (Ia 2 $2 v v ~v- -g v v v

2 2

b g C,(G)X— -3ln~ ~+31n +61n(1-k'/m')+2--t'-q'& m' 2"
(4(( ) 4)(

(3.23)

The total shift in the three-point function contributing to Eq. (3.6) is

( ) i )' fi) . ', g' b$
2 I2ig(' k}(t')f(

(4v)2 (R

m2 I

x C, R +I" 1 -lnm +2-21n 1-0' m'D-4 4m

+ ' +-,'2'(1)+-,'in —-ln I+in(1-k'/m') -2-—C,(G) -1 . . . m' -(I'&» 1'
2 .D-4 ' 4n4v j' (3.24)
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Collecting results, Eq. (3.6) now reproduces Eq.
(2.29).

These calculations verify that irreducible dia-
grams contribute to the Abers-Lee formula for

e gauge shift AS, v„. Because they do, we
understand how S, can be gauge dependent. The
specific value of the irreducible contributions
gives the shift AS»„ found by direct calculation
in Sec. II.

9 1 BA
-Aa (M~ ')cz»z(4) = —

2( s

(A6)

This is a gradient, so it does not contribute to
momentum-space Green's functions when photon
legs are contracted with a polarization vector.
As a result, modification of the electromagnetic
source current coupling can be, ignored when cal-
culating S-matrix elements.

For the scalar-meson current

r,'=-f6(z —y), A=O, a=fz), C=Q). (A7)
This work was begun during a visit to CERN in

1978. The hospitality of Theory Division is
gratefully acknowledged. This work was support-
ed by the National Science Foundation.

APPENDIX A: MODIFIED SOURCE COUPLINGS IN

THE GAUGE $+ h$
I

According to Abers and I ee, Eq. (22.18), the
field coupled to source current JB is

The incremental field coupled to the scalar-meson
current J is

-ig&$ 1 BA,
rBCB (MJ' )cz +z(4) 2] 0 (z) s2 ls 2 sZ~ Z~

(A8)

The coupling in momentum space is shown in
Fig. 12(A). It can be read off Eq. (A8) by the
replacement S/sx, --i&~ for an incoming photon,
and ls

Zs[ ys —(F~g~+Acz)(M~ ')c~Ez(y) j. (Al)

Pz is a generic symbol for a field, 8 is a collec-
tion of group and space-time indices, MF is the
Faddeev-Popov determinant, and AE is the
change in the gauge-fixing function. The group
functions I' and A are defined by Abers and Lee."

l. Electrodynamics

The gauge-fixing term is

8
(y)=v g d'z 5(x-z) A„(z), E=(xj .

P

g&$ 0,„
2$

2. Yang-Mills theory

The gauge-fixing function is

&z(Q) = v $ g d'z 5(x —z)6., A,'(z),
Z g

E=fx, ap.

For the gauge-meson current

(A9)

(Al0)

For the electromagnetic current,

c 8r =O, A'= -- 6(z -y)B g gy

Thus the Faddeev-Popov determinant is

(A2)

(As)

k

kz ——— — ——k

~——kb&, a
k

kg, p,

(M,)„= A', =- 6(x-y),F EC gp B g ay

kq, V,c

kg/, d

—k&a. )
'I

(M~ )cz ——
~( 5(y-x) „,1

~X~

(A4)
k~, ~, a kp)Q, , 0

kd, p = n- ~ —k(, rYl k, ,p
——~ =- kp, cA

Since

»z(4)= ~ s„',
2 $ x~

(A5)

k2 + Q

~- ——k„rn k, , p
——

kg, g, ,o

kz, 9, b

kq, m

the incremental field coupled to the electromag-
netic current is FIG. 12. New current couplings in the gauge (+~( .
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r,', =g.„6(z-y)c„„
c 1 8
B ———

5db 5(Z —y)

B= fz, d, o), C = Q, b), D = {y,c, t ) .

(A 11) = v $5(x-y) c,b, &
A„'(y)- 6(x-y)6, b

~V

(AI2) .
In the first term, &/&y„operates on both A„'and
the function to which M~ is applied. As a pre-
paration to inversion, write this

s
(M, )Bc=Z J

d'
ez~ d c S2 Sy 2

Qy
v

The second term is inverted as a power series ing. 'The terms needed are-

(ME )cB ~j 6ba6(y x) S2/S 2 ~ 6(y, x) bac 62/Sx 2 S v(x) S2/S 2

1 8, 1 p 1~ 6(y «) CbdcCdabe2/S 2 S v(«) S2/S 2 S Ap(«) S2/S 2'
+0 +V +T V XQ

(A13)

(A14)

Derivatives operate on all terms to the right. The incremental coupling to the electromagnetic current is
now obtained from Eq. (Al). The couplings are shown in Figs. 12(B) and 12(C). All gradient terms have
been dropped in the following expressions:

ig~h k,„k,„l
abc gran„2 -gbv a 2, 1 ~

K3 K2 /

g'&& (k, +k,)„k„(k,+ka)2kb„~
aab acdgbn (k + k )2k 2 (k ~ k )2k 2

, g'&h, , (k, +k, ) k,„(k,+k, )„k„&'" " '" (k+k)'k' (k+k)k'
g'&5, , (k, +k, )„k,„(k,+k, ) k,„~

aad abcgbt
(k

.+k )2k 2 (k +k )2k 2 ~

(AI6)

The + (-) sign applies to the left (right) coupling.
For the scalar-meson current,

I
The couplings are shown in Figs. 12(D) and 12(E):

r' = -ib(z —y)(f')...
P~c =0,

B= (z, p), C = Q, b}, D = (y, m}.

(A16)

12D: (t'),„2,",
2 (A17)

ig'&$
(p) (k, + k, )„k,„(k,+ k, )„k,„"

2$ '' "
(k +k Pk' (k +k)'k'

Integrals are evaluated by using Feynman parametrization to combine denominators. 'The loop momen-
tum integration can be performed after this is done, leaving the expressions

imn ( ) ( + n 2) It dx«D/ 2-n(1 «)n 1(m2 k2+ k2«)D/ 2 . vmn
(m - 1)!(n - 1)!(4m)'/2 ~

where a stands for a collection of tensor indices, and fm is a corresponding factor in the integrand. These
factors are

pn. f «-1. pn. f
g„,(m' —k'+ k'x)
2(m+n —1 —D/2) '

(g„„k +gvck„+gcakv)x(m -k +k x)
2(m+ n —1 —D/2)

In order to calculate S„ these integrals and their derivatives are evaluated at k'=m', with the results

(B2)

i(-1) '"r(m+n-A -D/2)I'(D-m —2n+B)(m')D/' nE

(m —1)!(4z)D/br (D —m -n+ B)

where the indices and factors are

(B3)
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I~"' A=B=O E=1 I " A=O B=1 F =0

I"„„": A. = 1, B= 2, F„„=(m + n —1 —D/2)k„k„——,'m'g„„;

I"„„,: A =]., B=3, F„„,= (m+g- 1-D/2)k„k„k, --,'m'(g„„k, +g„,k„+g,„k„).
Also,

i(-1)"'"I'(m + n+ 1 —B—D/2)1 (D —m —2n —1+B)
(Qk2 III''' I v m (m 1)i (4x)&/2f (D m ++B)

where B is the index in Eq. (B4), and F is
Imn. F
I"„"k„: T =D(1-n/2)+ (m+n)(n —1) —n;

Im"„k„k„: F = (D —m —2g+ 1)(2m+ 2g ——,
' -D/2)+N(m+n —

&
—D/2)(m+n —1 —D/2).

(B4)

When evaluating S„ infrared-finite integrals can be gotten from Eq. (B3) by expanding around D =4.
(Integrals having m+ 2n -B&4 are infrared finite at k' = m'. ) Integrals which are ultraviolet convergent
but divergent at k' = m' can be evaluated by setting D =4 in Eq. (Bl) and evaluating the integral. The re-
quired expressions are

I
( p g ln(1 k /m )4x 'm'

P2
(4v)'m'(k'- m') '

I~~2 = 2",[1+ln(1 —k2/m2)],
4x 'm'

Contributions which vanish at k'= m' have been dropped. . 'There are further integrals which must be calcu-
lated through O(k'-m') to evaluate Zz. These integrals are ultraviolet divergent atD=4, so the integrand
of Eti. (B1) must be expanded around D= 4 before integration:

m2 -2 2 k' 'tk'I"=, m' +1"'(1)+2—ln + (k'-m') + I"(1)+2 —ln —ln 1—

2 2

(B8)4x 2 F 4m

2

k„k„I'„'„=
( ),

m' +-,'I"(1)+-,'--,' ln + (k' —m') —+ —,'I"(1)+1--,' ln —+-,' ln(1-k'/m')
1e

The integrals I"=2', q„q„i", q„I„", and I„"„are required to terms of O(q') to evaluate the scalar loop
contribution to the vector-meson polarization part. This is done by deriving expressions analogous to
Eg. (Bl), expanding in powers of q, and evaluating the integrals. These integrals have no singularity at
q =0 for D near 4, so the resulting expressions can be used for S, as well as 8,. 'The results are

-iI'(1 —D/2)(m')~~' '
(4v) ~'

iq„q„I'(2-D/2)(m')~~' '
qgqv —

(4 )gy2

iq„q„F(2 —D/2) (m')
qll P 2 (4v)D / 2

—jg„„f'(1 D/2)(m )I~2-—~ t'qm Z'(2 —D/2)(m2)
2(4 )'& '~4g"" q'" 8(4 )' '
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The integrals I", I,", I„"„,I'„'„, I'„'„, and I'„'„, are required to evaluate the gluon and ghost loop contri-
butions to &G „„in Yang-Mills theory. These terms can be obtained by setting m =0 in Eq. (Bl); for
m'=0 the integral over x can be evaluated as a P function. The contributions all vanish for S„where one
sets q' = 0 for D &4.

The final class of integrals to be considered is the E of Eq. (2.20). These integrals require two Feynman
parameters. 'The discussion of all cases is lengthy, and I illustrate the procedure by calculating I",
which contributes to Eq. (3.22). Introducing Feynman parameters,

i(-1)"'""I(m + n+ 1 —D/2)
(m —1)!(n —1)!(4v) "

1 j.

x d dux" '(1-x)~ ' '(1-u)" '[u'(1 —x)k'+u(m' —k'- 2xq 'k) —xq'] /'
0 0

Write the factor 1-u as

2u(1 —x)k'+ m' —k' —2xq ' k u[2(1 —x)k'+ m' —k' —2xq k]
m2 Q2 2gq 2gq

(B10)

(B11)

Inserting this decomposition, the first term can be integrated over u:
I

(3- /2) ' d(1- ). '' [(, )/, , (, , 2 k, )
/, ,]

(4z/) /', m' —k'-2xq 'k

[2(1—x)k'+ m' —k' —2xq ' k] du u[u'(1 —x)k'+ u(m' —k' —2xq k)
zr(4 D/2) ' dx(1

(4.) /', m'-k'-2xq k
xq2]D/ z-4 (B12)

At D =4 the last integral is at most logarithmically divergent at q'=0, whereas in Eq. (3.22) it is q'I"
which appears. 'Therefore at small q this term can be ignored. Likewise, the second term in the braces

Ps

can be dropped. Letting q-0 before 0'-m', the significant term in I" is

zI'(3 -D/2)I'(D/2 —2)I'(D/2-1)
(4vP/'(m'- k')1 (D —3)

Expanding around D = 4,

(B13)

Z

(4z/)'q'(k' —m') D —4 ' '
4w

th

'The other integrals in Eq. (3.22) are I"=I" and

2)

(B14)

I"„=,„"»)+terms not contributing to (3.22).

(B15)
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