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Scattering theory and 1/N expansion in the chiral Gross-Neven model
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We show how to establish the scattering theory of the chiral Gross-Neveu model in terms of a massive field
with generalized statistics. It is in terms of this field that the property of antiparticles being bound states of
particles is consistently formulated. We Qso employ an auxiliary local Fermi field in order to develop an
infrared-regular 1/N expansion. The connection between these two fields is discussed.

I. INTRODUCTION

Recently, considerable interest has been de-
voted to obtaining the exact S matrix of all two-
dimensional factorizable field-theoretical mod-
els. ' Among these the chiral Gross-Neveu model'
defined by the Lagrangian
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although suspected for a long time of belonging to
this class, was plagued by difficulties which de-
layed its complete comprehensibility. These were
related to an apparent spontaneous breakdown of
chiral invariance, which is of course impossible
in two dimensions. '

However, it has been argued by Witten4 that
dynamical mass generation for the fermions can
be reconciled with the absence of spontaneous
symmetry breaking. As a consequence, several
proposals for the exact S matrix of this model
have been made. ' ' In Ref. 5 a unique S matrix
was proposed following the guiding principle that
in this model antiparticles are bound states of
particles. In Ref. V it was pointed out that unique-

ness of the above S matrix can also be achieved
by demanding absence of ghosts. '

In this paper we want to elaborate on the scat-
tering theory of the chiral Gross-Neveu model.
Since the natural interpolating field g has genera-
lized statistics, we find it convenient in Sec. II
to introduce an auxiliary field (I)', obeying Fermi
statistics, in terms of which conventional scatter-
ing theory can be formulated. The interpolating
field (t satisfies a generalized asymptotic con-
dition which allows us to relate its S matrix to
that of (I)'. A certain order of the particles in the
in and out states is required, if the S matrix of
the (1) and (I)' fields is to coincide. In Sec. III these
points are illustrated in detail for SU(2) and
SU(3).

The field g', being canonical, allows one to
check the proposed exact S matrix in perturbation
theory. In Sec. IV we work out the 1/N expansion
for the Green's functions and find out, as expected
from boson-representation arguments presented
in Sec. II, that they belong to a genuine massive
theory, i.e., they are free from any infraparticle
structure. On the mass shell our resul'ts coincide
with those of Ref. 7, reproducing to first order
in 1/N the proposed exact scattering amplitudes.
Section V is reserved for a brief conclusion.

II. THE FIELDS OF THE CHIRAL GROSS-NEVEU MODEL

The original field g of the chiral Gross-Neveu model can be written in boson form as
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where Kt is a Klein factor needed to ensure the anticommutation relations for the different SU(N) com-
ponents, (())(x) is the pseudopotential of the U(1) current, and the (t);(x) are pseudopotentials of the diagonal
SU(N) currents. tt)(x) is a free canonical zero-mass field, as a consequence of the V(1}x U(1) symmetry,
and this implies that g, (x) describes infraparticles. "

In order to extract the real particle content of the theory, we introduce the fields g defined as
X/2 oo

)t);(x) =K,
~ 2

e'('~')& exp —i)(t) y'(t), (x)+ dz'(P, (z), i =1,2, . . . , N.
x

(3)

From its definition it is clear that g carries
neither U(1) chirality nor the U(1) charge and con-
sequently transforms according to SU(N). It is
therefore not surprising that the (t)t satisfy the
algebraic identity

(N 1)i '"'~t tJ122 ~N 161 ~~N 1)

(4)

('(vt, t) = [e ' )'a.„,(,„)(myv)
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where a and b~ are the usual annihilation and
creation operators and y= (1 —v') '~'.

For (t) we expect a similar asymptotic limit

(t)(vt, t) = [e ' )'a.„t(. )(myv)
t~+~(-~)

(6a)

where a suitable normal-product prescription
for the right-hand side is understood. In a
theory with particle content Eq. (4) means that
antiparticles should be identified with bound states
of N-1 particles.

We may, furthermore, read from definition (3)
that (t) satisfies neither Fermi nor Bose statistics,
but rather carries "spin" S = —,'(1 —I/N). There-
fore one expects an appropriate collision limit
to reveal asymptotic states characterized by
generalized statistics. '

Since a Lehmann-Symanz ik- Zimmermann
formalism appropriate to the field (t) is not known

to us, we are going to introduce an auxiliary
Fermi field )I)',"in terms of which the usual scat-
tering theory can be carried through,

y't(x) = exp i( —~
[y'A(x)+B(x)] yt(x},

)(N]

i=1, 2, . . . , N (5)

where A(x) and B (x) are two independent auxiliary,
free massless fields, quantized with metric op-
posite to that of (P(x). The role of these fields is
to compensate the infrared structure of g without
affecting its statistics. In this way the U(l)
x U(l) charges become spurions by a mechanism
analogous to the one occurring in the massless
Schwinger model, "the essential difference being
thathere the spurions carry nontrivial spin. It is
thus clear that the Green's functions of g' will have
the structure of a conventional massive, local
fermionic theory. Consequently, following Haag
and Araki, ' we have

+ e™tbpllt(tll)(m yv)] . (6b)

From the equal-time commutation relations for

t() t (x, t)kt (y, t) = e"' " "(t),(y, t)(t (x, t),

we expect using the limit (6b) that
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and the same relation with a replaced by b. A so-
lution of Eq. (8) is given by

oo
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where N,.„(P) is the total in-number density op-
erator. From PT invariance we obtain the solu-
tion for the out operator

Equations (9) generalize expressions obtained in
the study of the scaling limit of the Ising model. '4

%e want to stress at this point that we consider
a and b as our fundamental operators in terms
of which the idea that antiparticles are bound
states of particles can be consistently formulated.
On the other hand, the whole factorizable, analy-
tic 8-matrix program is to be carried out using
g' as an interpolating field. Notice though that
from Eq. (9) the following identity holds:

P
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mOO ~II

(Qb)
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where P, &p, & ~ ~ ~ &P„, py+p2+ +P Hence.
using this order for the operators, 9-matrix ele-
ments calculated with g' coincide with the ones
one would obtain using g, whereas the conven-
tional ordering introduces nonanalytic phase fac-
tors in Eq. (10). In the following section we will
discuss how the above ideas may be used to de-
termine uniquely the 8 matrix of the chiral Gross-
Neveu model.

III. THE SGATTERING MATRIX OF THE CHIRAL
GROSS-NEVEU MODEL

As has been discussed already in Sec. D the
correct invariance group of the present model in
SU(N) [as opposed to U(N)]. The scattering prob-
lem having this symmetry is set up using the field

Since this field carries no U(1) charge, anti-
particles have been identified with bound states
of (N —1) particles.

On the other hand, using the field g' the same
problem may be viewed as having an apparent
U(N) symmetry and Fermi statistics. Equation
(10) now requires the U(N)-symmetric S matrix
to have a bound state in the (Nt channel with the
same mass as the original particle. Consistency
further requires that the scattering amplitude of
this bound state with the original particle coin-
cides with the particle-antiparticle S-matrix ele-
ment computed using g as an interpolating field.
From the general classification" of .all factoriz-
able U(N)-symmetric S matrices the above re-
quirement uniquely fixes the scattering amplitudes
of the chiral Gross-Neveu model to be'

«(8.)r(8,) lsl~(8, )c(8,)& =.,(v)5.,5 ".(~)5..5,„,
(11a)

I

I"(1 —y/2) I"(y/2 —1/N) 2

r(I - q /2 —I/N)r(q /2) '

I (1/2+ q/2)l" (1/2 —p/2 —1/N)
I'(1/2 —cp/2) I'(1/2+ y/2 —1/N) '

2
t,(y) ——

(1 )
ta(&) .

(12a)

(12b)

The above amplitudes, which have been con-
structed with the local field g', satisfy the usual
analyticity and crossing properties. They belong
to class II of the general classification of Ref. 15.
From Eq. (12a) one sees that the antisymmetric
amplitude u, -u, has a bound state with mass
given by

sin(2v/N)
sin(v/N) ' (13)

inducing now" the following spectrum

sin(nv/N)m„=m . —,1&n &N —1.
sin(v/N) '

This equation implies that the bound state. of
(N —1) particles has mass m„,=m. The con-
sistency check mentioned above will now be il-
lustrated for the case N=3. Computing the scat-
tering amplitude of three particles, with two of
them projected onto the (g3 channel, we obtain for
the (' S matrix, the relation

&5(8,)r(8,) ISI ~(8,)P(8.)& = t, (v)5.,58 + t.(v)5. 5„, ,

(11b)

where p=(8, —8,)/iw, and
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From the residue of the amplitude at the. pole 8/2 3im one finds the scattering amplitude of the bound
state Z with the particle y to be

4

&r'(8.)T'(8,) ISIS(8,)r(8,)&
= —(5z z5, ,T&+ 5z, 5z, T.) .

Equation (10) allows us to obtain the S matrix for g, denoted by S, to be

&r'(8.)~'(,) IS I~(8&)r(8.)&;„=,.„&&'(8,)r'(8, )

ISIS�

(8,)r(8,)&;„=;„&&'(8,)r'(8.) IS I~(8,)r(8.)&

From Eqs. (lib) and (10) we obtain for the particle-antiparticle amplitudes
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From Eq. (4) we see that the last amplitude of
Eq. (1V) is to be identified with that of Eq. (18) up
to a Klein factor. From its definition the Klein
factor of Eq. (4) has to have eigenvalues +l. At
the same time Eq. (4) requires this factor to be-
long to the center of the group. Consequently,
for all odd N the Klein factor equals one. For
SU(3) this means that the following identifications
have to be valid:

T] =t], z=1, 2.
In fact the explicit computation for T„Eqs. (15)
and (12), confirms Eq. (19).

Finally, let us illustrate the role played by the
Klein factor in Eq. (4) in the case N=2. Although
in this case Eq. (4) does not iinply a bound state,
it nevertheless can be used to make the necessary
identifications. From

(Sp), (Sp) (5))) = ~)ac ~)IP (o)

FIG. l. Bubbles to be summed giving propagators to
first order in 1/¹ (p5) stands for y~ y5, etc.

who resort to a, field P which is apparently non-
local and in this case would not lead to the usual
Feynman rules.

From its definition Eq. (5) and Eq. (1) (j( is
described by the Lagrangian

N 2 (2(
~ = i Z 4l A;+ -' g' Z ll ll —

l Z
f=1 k=1 ~k=1

2j ((Q2 (20)

where Q2 is the third component of isospin, one
finds

e2$ V1Qg~

From Eq. (21) we get
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where a minus sign arose from the Klein factor
in conjunction with the Eq. (21) used above. Equa-
tion (22) together with Eq. (10) implies

fl5(2y5sl + f25(2852'/ +» E ((((2(+25(2'y'582 + +25(2'25y's) I

(23)

where the minus sign in the kinetic energy terms
of A. and B is due to their indefinite-metric quan-
tization. The constants a and P are unrenorma-
lized and, as we will show below, renormalization
effects will have to be taken into account. Follow-
ing standard procedures' the Green's functions
in the 1/N expansion are generated by the follow-
ing Feynman rules, having effective propagators
given by

2mi coth(q/2) [1 —u2/v (1-y/sinhq)]
1 —u /w

fl (Ql 8.2) &I f2 +2 (24) )
2vi tanh(y/2)

(26b)

This equation is confirmed using the formulas
(11) and (12) for N=2. 1 1

&~(P) = ———,
N P' 1 —a'/v ' (26c)

IV. THE I/N EXPANSION

With the aid of the local Fermi field g' we work
out the 1/N perturbative approach and show in

lowest order that the Green's functions corres-
pond to a genuine massive theory, leading to the
proposed exact S-matrix elements. On the mass
shell our results coincide with those of Ref. V,

2 1
&3(P) = ———

N I' (26d)

where P'= —4m2sinh'(y/2). These propagators
are obtained summing the bubbles of Fig. 1. The
A propagator is the free one, as expected from
Eq. (5), owing to Ward identities relating these
bubbles, since for a free field of mass m one has

(2Va)

(2Vb)

They imply the conservation of the true axial-
vector current of (j',

(28)

is((&T [gy'y" g] (x) [(1(y'y"(j(](y)) = 2m& T [(j(y'(j(](x) [Ty('(y'g) (y)) + sT,
iS„(T[0y'y" 0] (r) [4y'0](S)) = 2222 &T [T(y'(j](~)[(jy'(I] (X)) + i&T(4(~))5(x -y),

I
The B propagator remains free, since this field
is a pure gauge excitation.

The 1/N correction to the four-point function
is given by the graphs of Fig. 3. From our argu-
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JI(g)-------
(g
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able matrix elements are unchanged.
The four-point function computed from the

graphs of Fig. 2 is given by

+y'Cm y'[ lim Z, (k)]+1II 12,(k)+ ~ ~ ~,
Q(2~ oo

(29)

J3

(Ze)

FIG. 2. Diagrams contributing to the four-point func-
tion to first order in 1/¹
ments of Sec. II we expect that the choice of n
and P corresponding to renormalized couplings
given by vw gives rise to the Green's functions
free from infrared singularities. Indeed taking
the limit a'- one notices that the graphs of Figs.
2(b) and 2(c) cancel on the mass shell and the pole
in the pion propagator of Fig. 2(a) disappears.
Its role is taken by the A propagator of Fig. 2(d).

The fact that the limit n' ~ implies a re-
normalized coupling given by Wir is heuristically
evident, since the (y" y', y"y') bubble has been
regularized gauge invariantly. This produces a
chiral charge Q, = f(/+A. )Ch', which commutes
with the field g, so that in order to maintain a
coupling of A with g' in the Lagrangian (25), the
unrenormalized coupling must be boosted to in-
finity. This would not be the case had we used a
different regularization for the (y~y', y'y') bubble,
for example one which preserves chiral invar-
iance in the limit m -0. Of course these dif-
ferent regularizations are related by renorma-
lization-group equations, ensuring that observ-

where the dots stand for the graphs of Figs. 2(b)
and 2(c).

Notice that for P =Wit the vector and pseudo-
vector couplings combine to give a contact term,
so that the massless excitations have in fact been
removed. On the mass shell our Green's functions
unambiguously lead to the same results as ob-
tained in Ref. 7, thus establishing the correctness
of the proposed S matrix to order 1/N.

V. CONCLUSIONS

In the present paper we have developed a method
which allows not only the study of scattering prob-
lems of yarticles with generalized statistics, but
also setting up an infrared-regular 1jN expansion.
We believe this method will also prove useful in
other problems involving generalized statistics,
for instance the scattering of kinks in the usual
Gross-Neveu model. " From an esthetic point of
view, the development of a scattering and per-
turbation theory employing only the field g, with-
out resorting to auxiliary fields, would be highly
desirable and is now under investigation.
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