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We study a strong-coupling expansion of a ¢* quantum field theory with an O(¥N) internal symmetry. For
large values of N we observe that there is a critical point in 2 < D < 4 dimensions and recover the known.
results for the two-point and the four-point Green’s functions near the critical point, and for the critical

exponent.

I. INTRODUCTION

The advent of quantum chromodynamics® as a
very plausible candidate for a realistic theory of
the strong interactions has, in the recent past,
provoked increased interest in the development
of methods for the solution of strong-coupling field
theories. While most successful efforts have been
directed toward the study of lattice field theories,?
the continuum theory presents® the advantages of
being explicitly causal and Lorentz invariant and
therefore is worthy of further studies.

Recently, methods for expanding the functional
integral for the generating functional W (J) of sev -
eral field theories in inverse powers of the cou-
pling constant have been suggested and advanced
by several authors.?"® We use the method devel -
oped independently in Refs. 5 and 6. Although the
method has been applied successfully only to the
computation of the energy eigenvalues of the an-
harmonic oscillator in one dimension, the general
formalism is particularly simple and therefore
attractive.

In this paper we study a ¢* field theory with an
O(N) internal symmetry and develop an expansion
of this theory in inverse powers of the coupling
constant for the lowest order in 1/N. The main
motivation behind our approach is the success of
the 1/N expansion in providing a reasonable ap-
proximation to several field theory problems. In
particular, the renormalization-group functions
and the critical indices of the scalar ¢* theory
have been calculated, to zeroth order in 1/N, in
ordinary perturbation theory, a calculation which
is valid for any value of g.”*® Therefore, those
results provide a direet check of the strong-cou-
pling method.

We begin by deriving Feynman rules for the
-propagator and vertices of the theory. These are
obtained by expanding the kinetic energy term in
the Lagrangian in a power series in 1/Vg, while
the functional integral of the interaction terms is
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computed exactly. The 1/N expansion is next de-
veloped and we show that, to zeroth order in 1/N,
the class of diagrams to be summed is tremend-
ously simplified. Vertices and propagators con-
spire in such a way as to make this expansion a
series in powers of 1/VgN.

The series is then re-arranged to obtain an ex-
pression for the mass renormalization term. We
find that the theory has a critical point in 2<D<4
dimensions and compute the critical indices and
the renormalized coupling constant. In order to
evaluate the vertex functions, which are functional
integi'als giving the moments of
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a lattice in D -dimensional space is introduced only
as a computational tool and not as a basic ingredi-
ent of the theory. A simple cutoff method of reg-
ulating the theory is devised which allows us to
return to the continuum and eventually obtain re-
sults independent of the cutoff.

II. FEYNMAN RULES FOR THE 1/vVg EXPANSION

Detailed derivations of the expansion in powers
of 1/Vg can be found in Refs. 5 and 6. Here we
give only the barest sketch of a derivation, and
state the Feynman rules. We give the rules in
Euclidean space, although the expansion can also
be formulated in Minkowski space, as in Ref. 5.

The model we consider is a scalar theory with a
quartic interaction and an O(N) internal symmetry,
where N is very large. The Lagrangian is

N N N 2
L= % Z (au¢i)2+% Z’WLZQDiz +g <E§0,2> .
i=1 i=1 im1
(1)
The objects to be studied are the connected Green’s
functions

887 © 1979 The American Physical Society



888 NESTOR PARGA, DOUG TOUSSAINT, AND JOSE R. FULCO 20
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@) 0, = 70y Ty 0 [ 100) e [ (260 + fw)dx]

(2)

J =0

As usual, we can most easily interpret the path integral by replacing the spacetime integral by a sum over
points, each of which has volume A. As discussed in Refs. 5 and 6, we make the identification A =5(0)™".
The 1/Vg expansion is derived by expressing the kinetic part of the Lagrangian as functional derivatives

— A b 5 .
Z() =ex [ A D o )T-—]f o] ex (—A () 2>ex <A J(x)-*(x)), (3)
D=exp| 3 -5 55y O @) 555y ) ) el exn(-ag FIFW” Jexp(a 503607
|
where G™X(x,y) =(-V2+m?) 6(x —y) and & is an N- B, =b,, -~ B, B, -6B,, B, - 3B,°, (5€)
t vector in internal- t
component vector in internal-symmetry group By=b, —15B,B, - 15B,° . (55)

space. We expand both the first and third expon-
entials in Eq. (3) in power series and rescale ¢
by letting ¢ ~(Ag)Y%p. The path integral of the
second exponential times the factors of ¢ from the
third exponential, which is a produect of integrals
at each point in spacetime, is to be evaluated ex-
actly, The terms in the product of the two series
that contribute when J goes to zero are those
terms that have the same number of J’s as 5/56J’s.
We can represent these terms by diagrams in
which a line represents ~G™*(x,y) and an m -point
vertex represents an mth moment of e"(#2, Op-
viously, » (and the number of fields of each type)
must be even, so we have two-point, four-point,
six-point, ete. vertices in the graphs.

In integrating over the locations of the vertices
we must be careful to avoid double counting when
two of the vertices coincide. As discussed in de-
tail in Ref. 5, such double counting is avoided by
using only the irreducible parts of the moments of
(@*?. That is, we subtract from the numerical
factor for an m -point vertex the contributions of
all possible ways of dividing the m legs of the
vertex into two or more groups. We denote by
be. the moment of e”?®* with a powers of ¢, ,

b powers of ¢,, etc., where the subscript on ¢
is the internal-symmetry index. Therefore,

_Jag,dogefel- - exp[ (DY 0] _

Dape - - fd§91' ccdoy exp[-—(Z}?; 1¢‘2)2]
(4)

Obviously bg.... is symmetric under all permu-
tations of the indices, and is zero unless all of the
indices are even, Notice that the §,.... depend on
N. We will examine this dependence later in this
paper. The irreducible parts of the moments are

denoted by B,,..... The simplest examples are
B,=b,, (5a)
By =byp ~ (32)2 ’ (5b)
B,=b,-3(B,)*, ) (5¢)
By =bagp =3By B, — Bz3 s (5d)

The reason (5b) differs from (5¢) is that there is
only one way of partitioning ¢,%¢,” to give a non-
zero contribution, while there are three ways of
dividing four identical fields into pairs. Equations
(5) define the B’s of each order in terms of the
b’s of that order and the B’s of lower order. In
Ref. 5 this recursive definition is solved to ex-
press the B’s explicitly as functions of the b’s.

(In the statistical mechanics literature, the B’s
are known as semi-invariants.)

The Feynman rulesfor our model are similar to
those in Ref. 6, where a ¢* theory with a single
field is discussed. Apart from the trivial modifi-
cations of introdueing an index on the lines to label
different components of the field and conserving the
internal-symmetry indices at each vertex, the
major difference is in the factors used at the ver-
tices. To compute an unamputated 2z-point con-
nected Green’s function, we draw all diagrams

‘with 2» external legs using two-point, four-point,

six-point, etc. vertices. For an internal line con-
necting vertices at x and y there is a factor of
-G™Hx,y) =(V% —=m?) 8P(x —v), while for an ex-
ternal line there is simply 6(x —y). Each line is
labeled by an index which runs from one to N, For
each m -point vertex there is a factor of

5(0 ~(3/4)m+1
_(_()Tg)_m.ﬁ._sa,,c,,... , (6)

where a+b+c+d ++++=m and 6(0)"=A is the
volume of a point in spacetime, arising from our

“interpretation of the path integral as a product of

ordinary integrals. There is a symmetry factor
for each graph equal to one over the number of
symmetry operations, such as interchanges of
lines, that leave the graph unchanged, exactly as
in ordinary perturbation theory. Finally, we inte-
grate over the locations of all the vertices.

III. THE LARGE-N LIMIT

To lowest order in 1/N the model we are con-
sidering can be easily treated in ordinary per-
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turbation theory.® In perturbation theory factors
of N arise from summing over the indices on in-
ternal loops in the Feynman graphs. One can show
that the graphs in the two-point function with the
most powers of N at each order in g are propor-
tional to powers of gN, and the leading order in N
graphs in the four-point function are proportional
to 1/N(gN)™. Therefore, one considers the limit
N- with gN fixed, and gN becomes the effective
expansion parameter. In this limit it is easy to
sum the relevant graphs in the two- and four-point
functions. Because we can treat perturbation the-
ory to all orders in g, we can use its results in
the limit N—-« with gN fixed and large, where the
1/Vg expansion should be reasonable. We also ex-
pect that simplifications similar to those in per-
turbation theory will occur in the 1/Vg expansion
as N—-,

The first thing learned from the large- N per-
turbation theory is that the effective expansion
parameter is gN. In the 1/Vg expansion we have
factors of N from summations over free indices
in the graphs and factors of 1Vg from the vertices,
so it is not easy to see how the result could be a
function of gN. The answer is that the B coeffici-
ents depend on N, and the N dependence of these
coefficients conspires with the factors of N from
summations over indices to give the same result
as perturbation theory. For example, consider
the simple graph in Fig. 1. This graph is propor-
tional to g™ B,, N, where the N comes from sum-
ming over the index on the loop. (The term where
¢=j and the vertex factor is B, represents a cor-
rection of order 1/N.) However, it turns out that
B,, is proportional to N2 for large N, so the graph
is actually proportional to (gN)™,

It is not difficult to evaluate the b,.... by doing
the integration in Eq. (4) in generalized spherical
coordinates. Both the angular integrals and the
radial integrals give I" functions, there are many
cancellations, and the doubling theorem canbe used
to further simplify the result. We find

T'((a+1)/2)T((6+1)/2)

Bavea -+ = (1 /) T(1/3)
X 9m/2 I‘(N/4+1/2) (7)

T(N/4+1/2+m/4) ’

FIG. 1. A simple loop graph. The vertex factor is
B,,.

where a,b,c,... are evenand m =a+b+c+-+-"
The factor T'((e+1)/2)/T'(1/2) can be thought of
as (1/2)%/2 times a combinatoric factor equal to
the number of ways of dividing the legs of one type
into pairs of legs. For example, if a=4 then
221'(5/2)/T(1/2) =3, corresponding to the three
ways of dividing four legs into two pairs. The
final factor in Eq. (7) contains the N dependence
and is a function on the total number of lines com-
ing into the vertex. For large N we can make an
asymptotic expansion of this factor in powers of
1/N. For convenience define y =N/4 —1/2 and
s=m/4. Then

T(N/4+1/2) T'(y +1)

TW/A+1/2+m/4) T(y+i+9) ()

For large y .
T(y+1) _ _'s< s?+s  3st+2s%-3s%-2s
T(y+1+8) 1+ y y?

N 8%~ % —3s% + 5% +25%

)-1
+o-- .
y3

(9)

Using this formula, we express the b’s as power
series in 1/y ~1/N. For example,

Yyt (8, 2 105 )
b= (1‘ 8 " 128y7 ~ 10245 T )’
(10)
-1
b= $0u= L (1-1/y +1/y7 = 1/3%+++).
(11)

We see from Eq. (9) that each b, ... begins in
order N™™/%, Fortunately this is not the whole
story. When we compute the By, from the b, we
find that there are cancellations of the leading
orders in 1/N. Each timem =a+b+c+++- is in-
creased by 2 there is one more cancellation. This
means that B,, and B, start at order N although
by, and b, start at order N™'. B,,,, B,,, and By
have two cancellations and start at order N~7/2,

In general, bg.... goes as N™™/% while B, goes
as N™3m/471  We have verified these cancellations
through m =10, where the first four orders cancel.
To leading order in 1/N the first few B,,,... are

B,=3N"2,

B,,=-iN7%,

Bzzz""%N-wz, 19
Bypoy = =3N73, (12}
Bigone =0 (N 71%2)

~ 20N "*¥2 (numerical estimate) .
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The other B coefficients for » <10 can be found
by multiplying by the appropriate combinatoric
factors.

1IV. IMPORTANT DIAGRAMS FOR LARGE N:

In the limit N-~~ we consider only those dia-
grams at each order in 1/Yg which have the most
factors of N. This means that we consider only
diagrams where none of the loops share lines,
because if two loops share a line the indices in the
loops cannot be summed independently and the
graph will be suppressed by a factor of 1/N rel-
ative to some other graph with the same number
of internal lines. Figure 2 shows some of the
leading diagrams in the two-point Green’s func-
tion. The relevant diagrams look similar to those
that are considered inordinary perturbation theory,
except that the 1/Vg expansion contains all 2x-point
vertices. Because we wish the internal-symmetry
indices on all of the loops to be independent, the
appropriate vertex coefficients are the B,,,...,
since requiring more than two of the lines coming
into a vertex to have the same index suppresses
the graph by factors of N.

Given the leading graphs in the two-point func-
tion to some order in 1/Vg, we can generate all
of the leading order in 1/N, next order in 1/Vg
graphs by one of two operations. We can insert
a two-point vertex on any line of the graph, in-
cluding an external line. This introduces a factor
of B, /Vg=1/J/Ng. We can also add a line to the
graph, with both ends of the new line on the same
previously existing vertex. This adds a loop to
the graph and hence a factor of N, but as we have
seen, adding two lines to a vertex adds one more
cancellation to the B coefficient, giving a factor
of N"¥2/Jg relative to the previous vertex. There-
fore, the factors of N from summations over in-
dices exactly compensate the extra factors of 1/N

——— 4 ——e—e—— + ——Q————
+ ————o—o—— + ————Q«-—

FIG. 2. Some leading order in 1/N graphs in the two-
point function.

FIG. 3. The simplest nonleading graph in the two-point
function.

coming from the cancellations, and the leading
graphs to all orders in 1/Vg in the two-point func-
tion depend only on the quantity gN. A similar
argument shows that the leading graphs in the
four-point function are proportional to 1/N times
a function of gN, in agreement with the perturba-
tion-theory analysis. We see that the 1/Vg expan-
sion reproduces in a complicated way results that
are quite easy in perturbation theory.

If we wished to go to the next order in 1/N, the
1/Vg expansion would be quite complicated. Not
only would we have to consider graphs where two
loops share a line (see Fig. 3), but we would also
have to consider graphs containing vertices of the
form B,,,,... , and also consider the next order in
1/N in the B,,,... .

V. REGULARIZATION

Before we can evaluate graphs in the 1/Vg ex-
pansion, we must have a method for handling the
singular factors in the Feynman rules. Both the
vertex factors and the inverse propagator are
singular. To calculate in the 1/Vg expansion we
must introduce a smoothed-out 6 function, which
is equivalent to introducing an explicit cutoff into
the theory. There are many ways to do this,’ the
most obvious and intuitive being the introduction
of a lattice.® However, lattice calculations are
unwieldly and Euclidean invariance is not manifest.
We prefer to proceed by defining

or0) = f ket on® - p%), (13)

- which becomes the Dirac 6 function as A -, This

smoothed 6 function has the advantages of manifest
Euclidean invariance and ease of manipulation for

the problem at hand. With this choice it is easy to
evaluate 6(0):

dD 2 2 2AP
0= [ G0 =) 555 vz -

(14)
The inverse propagator is then
G™(x) =(=V2 +m?) 6, (x)

- f (‘ij))‘”e”""(p%mz) (A% -p?), (15)
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and in momentﬁm space
G™H(p) =(p*+m®) 6(A® - ). (16)

If we evaluate diagrams in momentum space we
will need only to integrate polynomials with a
sharp cutoff at p>=A%, Of course, in a compli-
cated diagram where several loop monenta run
along a line, this could be very messy. However,
for the theory we consider the relevant graphs
are easy to evaluate.

V1. THE TWO-POINT FUNCTION

We can now analyze the zeroth order in 1/N
diagrams in the two-point function. As stated
earlier, the leading diagrams are those in which
no two loops share a line and all of the free indices
are different, so that the vertex factorsare B,,,... .
We define o as the one-“particle” irreducible
(1PI) part of the propagator, as illustrated in Fig.
4. The complete two-point function is then given
by the geometric series

Gy(p?) =0 = a(p? +m?) 6(A> =p?)o
+a(p?+m?) (A% = 2o (p?+m?) 8(A% - pA)o

= p2—+m—12-m;'0(1&2 -p) +06(p* =A%),
(17)

so for p?<A? the propagator takes a familiar form
with ¢ equal to one divided by the usual self-en-
ergy.

In all of the leading diagrams in ¢ the two ex-
ternal legs are attached to the same vertex. If
the external legs were attached to different ver-
tices, then a cut could be made through the graph
cutting an odd number (>1) of internal lines. This
means that at least one of these lines would be
shared by two loops and the graph would be sup-
pressed. Therefore, o is independént of the ex-
ternal momentum p? and simply gives a mass re-
normalization. This means that the wave-function
renormalization Z, is equal to one, as in perturba-
tion theory, and the physical mass 2 is ‘

wi=m2+1/c. (18)

S O R

RN

FIG. 4. The simplest graphs in ¢, the 1PI part of the
propagator.

891

| o)

—@—=-—+—o—++¢—+

FIG. 5. A rearrangement of the graphs in o.

Foee

We can rearrange the diagrams in ¢ according
to the number of loops attached to the vertex with
the external legs, as illustrated in Fig. 5. The
blob in Fig. 5 indicates the sum of all possible
loops, which is easily seen to be

Z (all loops)
« (e

+(p®+m?) m(;bz + m2)> 6(A% —p?)
1 P2 +m?

— pPPrme+1/c 60" ~p9). (19)

If we denote the vertex coefficient B,,,... with 2&
legs by B, ), then the series for o is

o= 6(0)-1/2 © Nak/2 BZ(k+1)

Vg 7!

k=0

L‘a)k’ (20)
where

- 1 A pE+m? dup
= ~L5(0)"%2
a 25( ) J—__./. 5 3 1 7 (2 )D"

(21)

The effect of the 6 function in G™*(p?) is just to cut
the integral off at p>=A%. For the term with &
loops there is a symmetry factor of 1/k! 2%, but
we have absorbed the 2* into the definition of a,
leaving only the %! in Eq. (20).

Let us digress for a minute to discuss Eq. (20).
We introduce a generating function defined by

L) 3kR/2
Fla)= ) St Loy, (22)
k=0 °

where b,,, is given by Eq. (7). Taking the log-
arithm of F replaces the moments b,, by the ir-
reducible parts B,,, and differentiating with re-
spect to —aN is equivalent to inserting two ex-
ternal legs. Therefore, Eq. (20) can be rewritten

as .
o= —6(702.._;/—2- (— ?i%—> (71\7_ 1nF(a)> . (23)

Our assertion that the effective expansion param-
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(e
E—OAZ— ~
> - N=6 -
~
=-0.3I- v
L N -
-04r N=35\
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o Q. 0.2 03 04 05 06

FIG. 6. Graph of (1/N)InF(a) for N =25 and N =35.

eter is (gN)™V? is equivalent to the assertion that
(1/N)1InF(a) becomes independent of N for N very
large. In Fig. 6 we show (1/N)InF(a) calculated
for N=6, 25, and 35. The last two functions are
already quite close except near a=0.6, where
-InF(a) appears to be going to infinity [F(a) has
a zero]|. Finally, we note that F(a) has an inte-
gral representation

F(a) = (const)(N ¥ 2q) (¥ ~2)/4

xf dtt¥2e ey, (N¥2)V?t)
0

(24)
)
D 2 2)2
mw= e[ g (e - B

Differentiate with respect to u?

[ @ (e

3m

Now, for 2<D<4 the last term in Eq. (27) is infra-
red divergent as p®~0, while all the other inte-
grals go to a constant. For small y?® the last term

is proportional to (1?)%272 and we have
2
%L.”T ~A+B(u?)Pr22, (28)

As p?-0 for D<4, A can be neglected and this
equation can be integrated to give

m® —m oy Pm (P27 (29)
or
1
')/ = ———D/Z — 1 ) (30)

which is the well-known result.

(p2+m2)2)]k-1[3m2
P+t au?

which can be verified by expanding the Bessel
function in a power series and integrating term
by term. If we are given the bare parameters m?
and gN, we can use Egs. (21), (22), and (23) to
find (at least numerically) o and @, and hence the
physical mass @2,

Although we began our analysis by treating each
point in spacetime as independent, we are natural-
ly most interested in the regime where the cutoff
becomes infinite, or, equivalently, the correla-
tion length is long relative to A™*. That is, if we
imagine holding A fixed, we wish to study the the-
ory near the critical line where the physical mass
U is infinitesimal and the external momenta are
also infinitesimal. Near the critical line the phys-
ical mass is related to the bare mass by the criti-
cal exponent y:

pE=m® -m i )7 . (25)

To calculate y, note that Eq. (20) expresses ¢ as
a power series in @, which is defined in Eq. (21),
and the physical mass is p?=m?+1/0. By taking
the reciprocal of the power series in Eq. (20), we
get 1/0 as a power series in a

(26)

A de (1 ) P P +m2)2]
(2mP P +u @m? (PP +p?)?
(27

VII. THE FOUR-POINT FUNCTION

We next analyze the four-point function and com-
pute the physical coupling. For simplicity, we
‘consider the four-point function with two legs of
type 7 and two legs of type j. That is, the first
contribution is B,, rather than B, .

- The quantity given by our Feynman rules is the
‘unamputated Green’s function

2 GJ‘(xli 3, (x5)
(o} 5 1
X 3 1
T, ————”Jj(x? InZ(J) s (31)

The diagrams in G,, consist of the one “particle”
irreducible piece and four legs, as shown in Fig.
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FIG. 7. External legs on the four-point function.

7. The one “particle” reducible part on each leg
may be either a bare external line, or an internal
line (-p® —m?) connected to an external line by any
of the diagrams in the full propagator. Thus for
each lég there is a factor of

p2 + m2 - “'2 _mz : (32)
To obtain the amputated Green’s function I',, we
multiply by (p?+p.2).

Defining 7/N in analogy to o, as indicated in
Fig. 8, we find, to leading order in 1/N, that the
1PI part of the four-point function is the geometric
series of bubbles illustrated by Fig. 9. The shaded
blobs in Figs. 8 and 9 have the same meaning as
in Fig. 5 and Eq. (19). Then we find, in analogy
with Eqs. (20) and (23), that

_ 5002
==

2k
Bz(k+2)N !

Rl : (-a)f

T

k=0

5(0)2 d \?/ 1 )
= —) (= . 3
S ( < ) (N InF(a) (33)
Summing the series in Fig. 9 and taking into ac-
count the external leg factors, we obtain the am-

putated four-point function at zero external mo-
mentum

T4a(0) = (a2 =m?)* -
X o g2 il
L [ (- BB

(34)

A dimensionless renormalized coupling constant
can be defined by writing ~I',,(0) in units of the
physical mass p?

~ - -~ - -~ — ~ -
L) = T2l + ,:@:\ + ,%’:r---
B

FIG. 8. The definition of 7/N. All four external lines
attach to the same vertex.
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FIG. 9. The 1PI part of Gy,.

Ng, = -NT ,(0) u2 "

(u? —m?)*u? " *(~7)

JDP 2 (p2+m2)2 3 .
@m)?P <(p2+m )- P >

(35)

1-37

T is negative, so the renormalized coupling is
positive. Now if we go to the critical point where
w2/A%-0, the last term in the integrand becomes
infrared divergent and dominates the integral. We
also use w2« s, ? and the fact that in the important
range of the momentum integration p><<m? to find
that near the critical point

_op-afr (" d% 1 o
Ng w2 (3 [ {5 )
—T'(D/2)(47)?/*(4 -D), (36)

again recovering the well-known result. Finally
we note that if we evaluate I',, with small external
momenta, q..°<m? A* we find, for the four-point
function,

Nr_zz(qu%’qs;qa;)
- (L A de 1 1 -1
\FJ @ PP (prai+a)pt)
(37

where (g, +¢,) is the momentum flowing through
the bubbles in Fig. 9.

'VIIL. CONCLUSION

We have shown that the zeroth-order terms in a
1/N expansion of a gg* field theory with an O(N)
internal symmetry can be expanded in powers of
1/YgN, and that the resulting expansion gives the
same results for the critical index and the renor-
malized coupling constant in 2<D <4 dimensions as
the usual perturbation expansion of the same the-
ory. As in the usual perturbation theory, we find
the quantities related to the critical behavior by
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summing an infinite series of diagrams, thereby
avoiding, for this case, the Padé or Borel approx-
imant techniques usual to strong-coupling expan-
sions. These results show that the 1/Yg expansion
is a useful method for studying theories for large
values of the coupling constant and increase our
hopes that it can also be applied to more compli-
cated theories without the necessity of defining

- equivalent lattice field theories. Work in this di-
rection is in progress.
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