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The 't Hooft transformation is a change of variables of the renormalized coupling constant to a new

coupling parameter such that the resulting Gell-Mann-Low (GML) function is a low-order polynomial with

coefficients independent of renormalization scheme. Explicit expressions for this transformation are given for

($"}„,d = 2,3,4, field theories, QED, and quantum chromodynamics. The solutions are expressed in terms

of the original GML function P(g) and their properties are given in some detail. In several cases these

transformations are shown to be valid up to the first nontrivial zero of P(g).

I. INTRODUCTION

In a renormalizable or superrenormalizable
field theory one can use different mass-indepen-
dent renormalization schemes. Each scheme will
give a different definition of the renormalized
coupling constant g and the corresponding Gell-
Mann-Low (GML) function P(g) that appears in
the renormalization-group equations. Thus if g
is the coupling in one scheme with a corresponding
P(g), another scheme will yield g' with a GML
function P'(g'), such that g'=—G(g) =g+ O(g'). The
functions P

' and P are in general different func-
tions, but the first two coefficients in their per-
turbation expansion must be identical. For exam-
ple in (P )s theory, if P'(g) = aig+ asg'+ O(g ) and

P '(g ') = at g '+ at'g ' + 0(g
' ), then ai = a,' and as = as'.

't Hooft' has suggested that one can exploit this
freedom in the choice of g even further and choose
a new coupling parameter g~ such that the corres-
ponding PR(gR) =—aigR+ atgR (for the above case)
and thus hns only two terms in its expansion in

g~. The transformation g-g„, which we shall
call the 't Hooft transformation, is defined to sat-
isfy p(g)8/Bg= pR(gR)8/Bg„so that it preserves
the form of the Callan-Symanzik equation when
written in terms of gz.

In perturbation theory the solution to the 't Hooft
transformation exists. ' Namely, given P(g)
=Ra„g", and writing gR -=G(g) =g+Zr„g", one can
determine all the z's in terms of the g's. The
following question immediately arises: Given a
P(g) does a nonsingular invertible gR

——G(g) exist
with PR(g„) = a, gR+ a, gR' for some interval 0

-g-g, p If so, howlargeis the interval 0&g&g,
and what are the general properties of G(g) and
BG/Bg in this domainP

In this paper we show that the 't Hooft function
G(g) can be given explicitly in terms of P(g) and
we shall rigorously study its properties for sev-
eral field theories (Q )„(Q )s, (Q )t, QED, and
quantum chromodynamics (QCD) .

In addition to the original application of this
transformation by 't Hooft' there are other appli-
cations, 2 but in this paper we shall concentrate
only on problems related to the existence of G(g),
its properties, and the location of its leading sin-
gularities. One of our main objectives is to clar-
ify the relationship of the first nontrivial zero of
P(g), when such a zero exists, to the zero of
PR(gR). which we call the 't Hooft zero. We also
show what happens in cases such as QED and QCD
where PR(rrR) has no positive zero.

II. CASE OF (y4), , g'),

We start by treating the case of P field theory
in 2 and 3 dimensions. Here P(g) has the form,
for small g,

p(g) = a, g + a, g'+ O(g') . (2.1)

It is important to recall that in these two cases
the signs of g, and g2 are such that

g(&0, g2)0. (2.2)

In fact, one usually rescales g such that p, = -1
and g2

——+1 as in Ref. 3.
The 't Hooft transformation for this case is de-

fined as follows:

gR=-G(g) =g+ O(g')

One then defines PR(g„) as

(2.3)

pg~ (2.4)

and looks for a G(g) such that

pR( gR) at gR a2 g R
2 (2.5)

The problem is now, given P(g) in some interval

Clearly in the domain where G exists and where
BG/Bg)0 we have

8 8
PR(gR) ; =P(g ——,—
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0 &g &g, can one find a G(g) that satisfies Eqs.
(2.3), (2.4), and (2.5) 7 More simply, what we have
to do is study the solutions of the first-order non-
linear differential equation,

BG(g) 2

pg [a,G(g)+a,G (g)];

such that G(x) =x+ O(x') as x-. 0. This equation
can be solved exactly in terms of P(g). To see
this we first write f(x) =—G(x)/x and (2.7) becomes

(2.7)

d
[xf(x)]= k(x) [f(x) + bxf 2(x)], (2 8)

with

t (x) -=a,x/p(x),

b = a2/a(.

(2.9)

(2.10)

b'(x) = — h(x) —bk(x) .k(x) —1
(2.12)

Note that k(x) &0 for 0 &x&g* where g* is the first
IR zero of P(g), P(g~) =0. Writing

(2.11)

the differential equation (2.8) reduces to a linear
equation

tween the two possibilities f,
"

dx/P(x) finite or di-
vergent.

Given the explicit forms of G (g) and G '(g) it is
easy to derive the properties of this function for
both cases.

Case (I).
(a) G(g) =g+ O(g3) with no g' term for small g.
(b) G(g) exists and is bounded for 0 &g&g* and

as g g+p

(2.15)~gG(g') = ——= — -=gA'
b a2

where g~ is the 't Hooft zero defined by the non-
trivial root of pa(gs) =a,g„*+a2gs =0.

(c) G'(g) &0 for 0 &g&g*, and G maps the inter-
val 0 ~g&g* in a one-to-one manner onto 0 ~g~

gR a1/a2'
(d) If p(g) has a first zero g~ nearest the origin,

then G(g*) =gs~, the 't Hooft zero. However, the
existence of the 't Hooft zero does not imply the
existence of a zero in P(g) as we shall see in dis-
cussing case (2).

(e) Finally, it is important to study the behavior
of G'(g) as g-g*. To do this we assume that

p(g) has a simple zero at g~ and write

p(g) =-~(g-g'), g=g' (2.16)
Using standard methods and converting back to

our original function G(g) we get, using Eq. (2.3),

g exp dg

"a( 1
1 —bg exp dx

p p(x) x

(2.13)

We recall that in this case b = (a2/a, ) &0, so the
denominator does not vanish for 0&g&g*. It is
now a matter of simple algebra to calculate dG/dg
explicitly also and one gets

p(g) &
', p(x)

t g, 1
1 —bg exp dx

p p(x) x j

(2.14)

One should note that from Eq. (2.1) it follows that
all the integrals in Eqs. (2.13) and (2.14) above are
convergent at x =0.

Mathematically, there are now two distinct cases
to study: Case (1), where P(g) starts out negative
near g=0, remains finite for some interval 0 &g
&g* and develops a zero at g =g*, p(g+) = 0; p(g)
&0 for 0 &g &g*. We shall assume that the zero is
such that f~dx/P(x) diverges as g -g*. This is
the actual physical case for (Q4)2 and (Q4), . Case
(2) will cover the situation where P(g) has no finite
zero except at g=0, and we shall distinguish be-

where &u &0 is the slope of P at the fixed point. It
is simple to check from Eq. (2.14) that as g-g*,

G '(g) —= (g' -g) '&'" '. (2.17)

Therefore, in general, G'(g) would vanish or di-
verge as g g~ unless by some accident e =- -a, .
This accident could happen for (Q4)2 where the
value co = 1=-g, is consistent with the best cal-
culations of the slope. 4 However, in ($4)3 the best
value for v =0.782, while -g& ——1, which gives a
G'(g) that vanishes as g-g~, even though it van-
ishes slowly, i.e., -(g~-g)'27. Thus, in general,
G(g) will develop a branch point atg=g~.

Before we discuss case (2), we would like to re-
mark on the universality of the slope of P(g) at
the fixed point. It has been shown that for two
different renormalization schemes BP/Bg~, ~s
= BP'/Bg'~~, ~*,. However, the proof of this fact
depends on the assumption Bg'/Bg00 as g-g*.
This assumption is clearly not always true for
Bgz/Bg as g-g*. In fact, we can write

a) (2.18)

~~a=~g

and thus we can rewrite Eq. (2.17) as G'(g)
= (g~ -g)'"s "' '. Now one can see that G'(g) g0
a's g -g* can only happen if u~ = co and the assump-
tion about G'(g) begs the question. However, it
might still be interesting to seek a physical ex-

I.
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planation for the fact that the quantity (vs/&u)
—1~0 for ($4), and (es/&o) —1 =0.27 for' (Q4)3, thus
small in both cases. As an approximation v -= co~

is only 20% off for (Q~)3 and is almost exact for
(Q4), . Also, in (Q4)4 the approximation ~ =-&us

seems to be good for a certain Borel sum of )3(g).8

Case (Z). In this case P remains negative and
has no finite zeros for 0&g&~. Then if f,"dx/P(x)
is convergent we get a G(g) which is bounded and
monotonically increasing with g. It maps 0 &g &~
onto some interval 0 &g~ &g„~ such that g„~
&gz* —-1/b Th. e function G(g) increases but.
never reaches the value of the 't Hooft zero g~.
The left-hand side of Eq. (2.4) never vanishes as
g varies in 0&g&~.

For the case where a, f,
"

dx/P(x) -+~, we again
get a monotonically increasing function G(g) for
0 &g &~ where now as g -~, G(g) -gg = -1/b. The
interval 0 &g&~ is mapped in a one-to-one manner
onto 0 ~g„&gs*=-1/b.

We know that (Q )„(Q )3 both have a nontrivial
IR zero g* of P(g). We only discuss case (2) to
make clear what happens to the solution of Eq.
(2.13) when P has no zero and to stress the fact
tha, t the existence of the 't Hooft zero does not
necessarily imply a zero in P(g). However, if
P(g) is known to have a first zero at g=g~ that
zero must lead to the 't Hooft zero under the
transformation gg =G(g~) .

Finally, for completeness, we mention what hap-
pens when P(g) develops a finite zero such that
J~dx/P(x) converges as g-g~. In this case G(g)
will be bounded and monotonically increasing for
0 - g g* with G(g~) &-1/b, and the value of the
t Hooft zero is not reached. However, now it is

evident from Eq. (2.14) that G'(g)- P(g) ] ' as g
-g* and will diverge in such a way that the right-
hand side of Eq. (2.4) remains finite as g-g*.
Although this is an unphysical case for (P )& and
(Q4)3 a branch-point-type behavior in P cannot be
ruled out in general in other field theories and can
be made consistent with the renormalization
group.

(3.4)

with

&R(gs) =a2gs'+a3gs .3

The coefficient of g' in (3.3) denoted by r2 will
turn out to be a free parameter and appear as an
integration constant below.

As before, we seek solutions of the differential
equation

(3.5)

(G'+ bG'), b =~&0.
dg p(g) '

a2
(3.6)

1———b lng+ y), (3.7)

where r, is the constant that appears in Eq. (3.3).
It is easy to check that G defined by (3.7) is the
solution of Eq. (3.6) with initial conditions speci-
fied by Eq. (3.3).

Although Eq. (3.7) is not explicit, it is more than
adequate for determining the relevant properties
of G(g) starting from g= 0. To do this we must
keep in mind that in this case b = a3/aq &0.

Again we have to consider two cases separately:
case (1), where P(g) starts positive for g&0 and
develops an ultraviolet (UV) zero at g=g„, P(g„)
= 0, -p'(g„)' &~; case (2), where P(g) has no zeros
for finite g = 0 and is positive for 0 &g &~.

Case (I). G(g) =g for small g&0 and increases
monotonically, G'(g) &0 in the interval 0&g&g„.
As g-g„ from below the right-hand side of Eq.
(3.7) diverges, this can occur only if the argument
of the logarithm on the left vanishes and we get as
g-g„ from below

Unfortunately, unlike the previous case, we cannot
write out the solution explicitly for this case.
However, we can do almost as well by getting an
implicit form for the solution.

Omitting the algebra we get

1 l 1 ~
a& 1 b 1

G(g) ) G(g) P(x) x x)

III. CASEOF (P )4
G(g-) = —

b
= —,=gs.~a (3.6)

(3 1)

where

= —17a2= ~, a3=- —', .
Proceeding as before we define

gs= G(g) =g+r, g'+ O(g')-

(3 2)

(3 3)

tn four dimensions the QML function has a po-
wer-series expansion of the form

e

p(g) =a2g' + a,g'+ O(g ),

P(g) -=(u(g-g„), g=g„), (u &0. (3 9)

Then from Eq. (3.7) we get as g-g„ from below

Thus again G(g) maps the interval 0 &g &g„ in a
one-to-one manner onto 0 ~ g~ ~g~, where g~ is
the zero of the 't Hooft P„, P~(gs) = a,gs'+ a3g„"
=0.

However, again as g-g„, G(g) will in general
develop a branch point. The nature of this branch
point will depend on the slope of P at g=g„. As
before, we take
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(3.10)

2=a2 /ap tds &0 ~ (3.11)

This gives us

Q(g}+ 1/b'=(g- g)-"'"' g=g-.
The quantity a2/nb =ap /&rap&0 for (tttt )4, &@ &0,
ap&0. It is instructive to express Eq. (3.10) in
terms of the slope of the 't Hooft function Ps(gs).
We define

However, this is not the function that should be
transformed by the 't Hooft transformation, since
in the Callan-Symanzik equation for QED' the op-
erator aP(a}B/Ba appears. One should thus look
for a, 't Hooft transformation for P

—= aP(a) which
transforms P to a two-term expansion. We shall
do this below but first it is instructive to consi-
der the transformation of P as given by (4.1).

We seek a transformation a - as ——Q(a) such
that

Q(g) = 1/b-+-(g- g)""-" g-g- (3.12) 2 2 1
PIt(as) = atas+ apas, at =—,a2= 2 . (4.2)3r '

271

Q'(g)= ' (g. -g)" '" ', g-g-. (3.13)
The equation we have to solve is

As in the (ttt ), and (ttt )p cases, G '(g) will in gen-
eral vanish or tend to infinity as g g„. Only if
&us=to will G'(g) be nonzero as g-g„. The
' t Hooft transformation by itself obviously gives no
relation between co and ~~. However, i.f from
some additional physical input one can show that
Q '(g) vanishes slowly as g -g„, then (&tts/&u)

-1«1 and one gets co~ =~. For the specific Borel
summation method used in Ref. 2 the function
P~(g) and its corresponding G~(g) seem to satisfy
this property and this explains the approximate
agreement between ~~ and e„ in that case to with-
in 20%.

Case (2). Here P(g) has no finite zeros. G(g)
increases monotonically in 0 ~ g &~. The behavior
as g-~ depends on whether f,"dx/P(x) converges
or diverges. In the first case lim „Q(g) =gtp~
and gs &(-1/b), thus 0 &g & ~ is mapped onto
0 &ga &gs . In the second case lim, „G(g) = -1/b
=g~, and 0 &g« is mapped onto 0 &g~&g~.

Finally, we should note that in case (1) we only
discussed the consequences of a simple zero in
p(g) at g=g„. In general, one could study other
possibilities including the situation where the
zero at g=g'„ is a. branch point and f~dx/P(x} is
convergent as g-g„. For the sake of brevity we
limited ourselves to cases (1) and (2).

lV. @ED

This case differs from the 4t cases considered
before because the relative sign in the first two
terms of the Gell-Mann-Low function is positive
not negative. This makes a significant difference
in the behavior of the 't Hooft transformation func-
tions.

The renormalization-group function P(a) is
given up to third order in n by De Rafael and
Rosnerq

BG(a) 1 2

Ba P(a [a,G(a)+ a,G (a)], (4.3)

with G(a) = a+ O(a ). This is the same as Eq.
(2.7) in the (Q )2 case with g replaced by a. The
solution will be the same as in Eq. (2.13), but now
b =a2/at &0, and the denominator can vanish. The
interesting case to study is again that where a
first zero develops at a = ap, P(ap) = 0, such that
f;dx/P(x) diverges as a-ap. Then it follows
from Eq. (2.13) that Q(a) will diverge at some a
= a, with n, &no, and given by

a & "a&
1 =—~a, exp dy

a, '
p P(y) y.

(4 4)

It is fairly easy to check that for the above case
a solution of Eq. (4.4) always exists with a, &ap.
As a-a„G(a) will develop a simple pole, G(a)
= (a, —a) '& a = a, . The domain 0 &a &a, is map-
ped in an invertible manner onto 0 &n~ &~.but the
zero of P(a) is outside this domain. [There is
nothing, however, to prevent one from studying
the solution in the region e &o, The second
branch of the function Q(a) will map the domain
at&a&ap onto -~&a„&-a2/at. Ps(as) in this
case has no positive zeros, but it has a negative
zero at as ——a2/at &0.]

The behavior in the case where f, dx/P(x} con-
verges as a-ap, P(ap} =0, is also worth noting
here. In this case Eq. (4.4) may not have a solu-
tion for 0 &a, &ap. The resulting G(a) will vary
in some interval 0 & a~ ~ e~~ for 0 ~ a & o.o. As
a -ap, G'(a) = [t3(a)] ' and will diverge at the zero.
Nevertheless, the whole interval 0 + e & no is
mapped in a nonsingular manner.

The physically relevant 't Hooft transformation
to consider, however, is the one for the function
aP(a) = P(a) since t—his is the combination that ap-
pears in the Callan-Symanzik equation. We want
a transformation such that

P(a) =—a+ 2 a —
p a + 0(a ) .2 1 2 121

(4.1) aP(a)
B

= P(a) Ps(as) B=-
8 — 8 — 8

(4.5)
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where

2 3~.(n.}=~2n. +~3n. , (4.6)

with a2 = 2/3m, 423 = 1/221, and a3/a2 = b &0. The
transformation we want n„=G(n) = n + O(n') is
now defined by the differential equation

formation to consider.
The main thing to notice is that in the scheme

of Ref. 8, the first three coefficients as given in
Eq. (4.1) give a polynomial which has two nonvan-
ishing real roots, one positive and one negative.

The problem is to study the differential equation

Bn p n)
42G'(n) + 423G'(n} j . (4.7)

BH 1
2 3 4

Bn Pn (a2H'+ a3H + a4H ) . (4.11)

This is the same as Eq. (3.6) for (1j14)4, except here
b =—a3/a2 &0. The solution is as before

The solution with initial conditions H(x) = x+ r, x2

+ O(x') will be given by

X(2 1 X2 1 1
H(n) '

~2 —~, H(n) ' H(n)
ln +&& + ln — +&2

1——-blna+r .
A

2' (4.8) dx — ——2+ ———~inn + r2, (4.12)
a2 1 a3 1 a

p p(x} x 422 x n 422

Again the interesting case to study is the case
where P(n) develops a zero at some n = np, np

being the zero nearest the origin, and f; dx/P(x)
diverges as n-np.

The solution G(x) starts at zero and increases
monotonically and G(x) will diverge as x- n, &np,
where n, will be given by

} R( R) n2 44 ~3 a ~4 R
2 3 4 (4.10)

The coefficient a4 willin this case depend on the
renormalization scheme of the original P(n). This
is a distinct change in the original motivation of
't Hooft which was to express the GMI. function in
a way that would be independent of a renormaliza-
tion scheme. However, it is still a useful trans-

a2 1 b 1
b lnb =- dx ' ——2+————b inn, + r2 .

P(x) x' x n,

(4.9)

If p(np) =0, and J,"pdx/p(x) diverges, this equation
always has a solution for some n, &np. To see
this, one has to notice that the right-hand side of
(4.8) increases monotonically from -~-+~ as n
varies in the interval 0 & e & np. It is easy to check
that as n-n„G(n) =(n, —n) '~2 and develops a
branch point at a = a, .

Hence, because of the relative sign of the first
two coefficients, the result in @ED is not as useful
as in the (1j1 )4 case and we do not get a nonsingular
mapping in a domain large enough to reach the
first zero of P(n), if such a zero exists.

The case where P(n) has no finite zeros can
similarly be studied and the result will depend on
whether f,

"
dx/P(x) is finite or diverges.

Actually one can do better in @ED if one gener-
alizes the 't Hooft idea and transforms to a new
variable aR that gives a pR with three terms,
namely,

where (-X,) ' and (—}12)
' are the two real roots of

the polynomial 1+ (a3/a2)x+ (a4/a2)x', and with a4
as given by Ref. 8, A. , &0 and A, 2 &0,

~1~2 424/422 ~1 ~2 423/442 '

One can now check the properties of H(x) from
Eq. (4.12). We do this first for the interesting
case where P(np) =0 for some n = np, np being the
zero nearest the origin. Then again H(n) starts
at zero for n =0 and increases monotonically until
1/H becomes equal to -X2, where(X, ) 'is the nega-
tive root of the polynomial in (4.10). We are as-
suming of course that f, dx/P(x) diverges as n
-ap from below we get

(4.13)

1
limH(n) = ——= npa, X2 &0
ew Op

R& 2 (4.14)

V. QUANTUM CHROMODYNAMICS

This case is similar to @ED. Asymptotic free-
dom here does not make a difference, the relevant
property is the relative sign of the first two co-
efficients of P(n). Writing g = 2onenhas'

where (-X2) ' can be calculated from Eq. (4.13) and
is a zero of P44(na}.

In @ED there is a, respectable conjecture that if
P(np) =0 this zero is an essential zero. P If such
is the case then BH/Bn as n —np will also develop
an essential zero. Otherwise, if P has a simple
zero at n = np the properties of BH/Bn as n -np
will be the same as in the previous section.

What we have gained by adding an additional term
in Eq. (4.11) is that now the full domain up to the
first zero 0 & e & ap is mapped in a nonsingular
manner onto 0 & nR & n~, where a~ is now the
positive zero of the three-term Ps(n~) given in
Eq. (4.10). The properties of K(n) in the case
where P has no finite zeros can be deduced as be-
fore.
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p(n) =a2n + a3n + O(n4),

where for the standard case

a2&0, a3&0, and b =a3/a& &0.

(5 1)

(5 2)

by

1 bl 1blnb= dx ' ——,+ —
~

——-b inn +r
p(x) x' x) n,

(5.5)

In the notation of Ref. 1

a2= (8w') '(-,'N~ —11),

a, = -(8v') '(51- —", N,),
(5 8)

where N& is the number of flavors, and we consi-
der the case

N( & —",
3 (N) & 8),

so that we not only have asymptotic freedom but

(5 4)

b=a, /a, &0.

For N& such that 323 &N& &—', 3 we still have asympto-
tic freedom but b = a,/a, &0. We shall briefly only
discuss the standard case, N& ~8.

This is already covered by the case of QED
given in Eq. (4.7). Note that the ratio a,/P(x) is
always positive in the neighborhood of the origin
regardless of asymptotic freedom.

One obtains ns ——Q(n) given essentially by Eq.
(4.8) and ps(ns) = aqns + a,ns'. In QCD it is at
least hoped that P(n) has no finite zeros. We dis-
cuss this possibility first. Then, as before, Q(n)
will increase monotonically as a increases from
zero. It could diverge at some point, n = n„given

where r, is an arbitrary integration constant.
Thus, if f,

"
dx/P(x) is divergent, one can always

find a solution of (5.5) for any finite r„ for some
positive a, . The region in which the 't Hooft
transformation is nonsingular is 0 & e & a„and as
before as n-n„G(x) =(n, —n) ' '.

On the other hand, if J,
"

dx/p(x), e &0, converges
then one can always choose ~r2~ large enough so
that Eq. (5.5) has no solution. Then one obtains
a 't Hooft mapping which is nonsingular for the
whole interval 0 & g (~.

The case in QCD where P(n) develops a zero for
some +=no can of course be easily handled and
the results are almost identical with the discus-
sion in the previous section following Eq. (4.8).

Finally, for —"
, &N& &~ we have b &0, and a situa-

tion analogous to the (P )4 case.

ACKNOW I.EDGMENTS

This work was supported in part by the U. S.
Department of Energy under Contract No. EY-76-
C-02-2232B.*000. The work of Oliver A. McBryan
was supported in part by NSF Grant No. DMR-77-
04105.

+Permanent address: Department of Mathematics,
Cornell University, Ithaca, N. Y. 14853.

~G. 't Hooft, Erice Lectures, 1977 (unpublished).
2One can use some of the identities obtained via the

' t Hooft transformation to check the self-consistency
of approximate Borel summation methods such as the
one recently given by the first-named author. See N. N.
Khuri, Phys. Lett. 828, 83 {1979).

3G. A. Baker, Jr. , B. G. Nickel, and D. I. Meiron, Phys.
Rev. B 17, 1365 {1978).

4J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. Lett.
39, 95 (1977).

David J. Gross, inMethods in Field Theory, edited by
R. Balian and J. Zinn-Justin (North-Holland, Amster-
dam, 1976), pp. 177-179.

N. N. Khuri, Rockefeller University Report No. CPO-
2232B-169, 1979 {unpublished). The assumption
C' (g) &0 at g= g„was made in that paper. Without
that assumption the identification of cu with co+ cannot
be made. However, for the specific Borel sums con-
sidered ~= co~, to about 15%, so G ' (g) vanishes
slowly as g g„. One of us (N.N.K.) would like to
thank C. Itzykson and M. Creutz for helpful comments
on this point.

See for example R. Oehme and W. Zimmermann, Phys.
Lett. 79B, 314 (1978).
E. De Rafael and J.L. Rosner, Ann. Phys. (N.Y.) 82,
369 {1974).

9S. L. Adler, Phys. Rev. D 5, 3021 {1972).


