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Both a constant (non-Abelian) electric field and a constant magnetic field are solutions to the sourceless
Yang-Mills field equations in Minkowski space. We discuss the stability of these solutions under small
fluctuations in the potentials. We conclude that a magnetic field B, which is constant over a region of size
L, has instabilities which grow exponentially in time provided gBL - 1. A constant electric field is unstable,
A fluctuation in. such a field will accelerate continuously in the direction of the field.

I. INTRODUCTION served energy of a configuration is given by

D.F:.= 3.F~. +gf,~A'.F'; =4 (1.2)

where J'„ is an external current. For a static
source (Ref. 6) J', (x, t) =6„0p'(x, t), Eq. (1.2) be-
comes

(1.3)

where

(D.0)'= 3.i'+ gf"'A'. 0',
and i =1,2, 3 refers to the spatial components of a
vector.

Equation (1.2) has the property of being gauge
invariant. If U(x, t) is an element of G in the ad-
joint representation [U is an nxn matrix; 3&3
for SU(2)] and if

A', (x, t)- U~A"„+2 f"(B„U)MUi,
2g

a11d

8„'(x,t) - U~J„,

(1.5a)

(1.5b)

then Eqs. (1.2) and (1.3) are inva. riant. The con-

In the past few years the theory of a classical
Yang-Mills field interacting with static external
sources has been shown to possess interesting be-
havior. ~ This theory is defined for any gauge
group G [which we shall usually take to be SU(2)]
by a potential functionA'(x, t) in the adjoint repre-
sentation of C, where p. =0, .. . , 3 are space-time
indices and a =1, . .. , n [where n is the order of G;
n =3 for SU(2)] are the group indices. A'„ is ana-
logous to the covariant vector potential in electro-
dynamics. From A. ', one defines a field strength
tensor

F'„„(x,t) =8+„'-8„A',+gf'"'AQ„', (l.l)
where f ' are the structure constants of G. [f"'
=-e"' for G =SU(2).] The Yang-Mills equations
are the analogs of Maxwell's equations and are
given by

H = d'x-,' 8'+ B', (1.6)

where

Suppose. p'(x, t) =6'q(x) so that the sources are
lined up in the same isotopic (or gauge group) di-
rection. [For SU(2) this usually can be accom-
plished by a gauge transformation. This point, as
well as its generalization to other groups, is dis-
cussed in Ref. 3]. Then with the ansatz A', (x, t)
=6,iC~(x, t) all the nonlinea. rities in (1.3) disappear
and Eq. (1.3) reduces to the usual Maxwell equa, -
tions of electrodynamics. As a.result such a
source admits fields which are simply a Coulomb
field plus an arbitrary radiation field.

Mandula' has studied the stability of these "Cou-
lomb solutions" under small fluctuations in the
Coulomb field. He considered a thin spherical
shell of isotopic charge for the gauge group SU(2)
and asked whether small fluctuations in the Cou-
lomb field have any modes which grow exponen-
tially with time, indicating an instability in the
Coulomb solution. He found that for gQ (-, (where
Q is the strength of the source) there were no un-
stable modes, whereas for gQ &2 there were un-
stable modes which tend to screen the isotopic
charge of the source. Further work on these in-
stabilities has been done by Maag. 2 Sikivie and
Weiss have found large classes of solutions to
(1.3) with lower energy than the Coulomb solution
and with the isotopic charge of the source com-
pletely screened. Some of these solutions exist
for all values of gQ and others only if gQ & (gQ)„«
which depends on the shape of the source.

In this paper we study the question of stability of
source-free Yang-Mills fields by considering sep-
arately a constant magnetic field 8,'= —,e;;+,'. , and
a constant electric field I'0; =F.,". These fields
will be constant in space and in time and they are
solutions to the field equations if P'„ is properly
chosen. We consider these configurations A'„(x, t)
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and imagine small fluctuations about A'„, A', -A',
+5A'„. The field equations (1.2) (with J, =0}are
linearized in 5A and we find the normal modes of
oscillations which satisfy 5A(x, t) =5A(x)e '"'. If
v is real for all modes, then 5A will remain small
for all time. The field will then remain essential-
ly unchanged to order 6A. This is, of course, the
case in classical electrodynamics. However, if
one or more modes have complex u, then 5A will
grow exponentially in time. Eventually, nonline-
arities will change its character drastically.

In Sec. II, we write down the equations satisfied
by a small fluctuation in the presence of a back-
ground classical field. We also introduce our no-
tation. In Sec. III we discuss the stability of a
constant magnetic field B. We find that the equa-
tions of motion for a small fluctuation are identical
to those of an ordinary charged particle with a
magnetic moment moving under the influence of a
magnetic field. In particular, we find that the
lowest orbital modes are unstable. These unstable
modes are localized and have a size (gB} '-'.
We can summarize our findings crudely by saying
that if a fluctuation has a size I then it will be un-
stable if and only if gBL &1. As a consequence,
any field configuration for which 8 can be re-
garded as constant over a region of size l. @ I/
v'gB will have unstable modes.

In Sec. IV the stability of a constant electric
field 8';=85,35;& is explored. The results are
strikingly different from those for the constant 8
field. We find that all the normal modes in the one
and two isotopic directions have a velocity (V5A }
which increases to infinity as l x l -~, where x is
the direction of the electric field. The physical
interpretation is that a localized instability carries
isotopic charge. It will thus be accelerated by
the E field in the +x direction. Eventually its
velocity becomes so large (V5A -E) that nonline-
arities will appear and the field at t » 0 will no
longer be approximately a constant F. field. Jn
Sec. V we discuss our results.

II. THE MODEL

In this paper we study the instabilities for two
classes of simple classical solutions —the constant
8 field and the constant 8 field. In this section
we shall derive the equations for small field fluc-
tuations and introduce our notation.

We consider a- classical Yang-Mills system
described by

Ag~g — Apap +Anat ) i =1 2 3 (2.3)

The action principle gives rise to the field equa-
tion

(D „F „)'=—(&"8, +ge 'A'„)F' „=0 . (2.4)

Equations (2.2) and (2.4) are the Yang-Mills equa-
tions.

We now consider a small variation to a given
classical Yang-Mills solution

A„=A„+M„,

It is straightforward to see that to order 5A

6F'„„=(D„5A„)'—(D„5A„)'.
The Yang-Mills equations (2.4) become

(D ~5F„„)'+ge' 'F'„„5A =«0,

where

(2.5a)

(2.5b)

(2.6)

(2.7)

We shall see that the presence of the second term
in (2.7} is crucial for the instability of the classic-
al Yang-Mills solutions discussed in the next
section. Equations (2.6) and (2.7) are linear in 5F
and 5A. We can. thus study the stability condition
by examining individual normal modes.

III. CONSTANT MAGNETIC FIELD

In this section we consider a constant magnetic
field B,'=5; 5, 83(3E';=0) which can be "derived"
from the potential

A'; =5~F8(-y6; ( + x5;~),

Ap ——0.
(3.1a)

(3.1b)

The potentialA', and the field tensor F',„=(8',B')
form a solution to the Yang-Mills field equations.
We study the stability of this solution by applying
a small disturbance 5A,' to (3.1) and linearizing
the field equations in 5A'; as in Sec. II. We shall
work in the gauge Ap ——0 so that

gauge groups by replacing e"' by f"", the struc-
ture constant of the group. In this paper we shall
concentrate on the SU(2) gauge group.

In Eqs. (2.1), (2.2), and hereafter, superscripts
g, 5, c stand for gauge group (referred to as iso-
topic spin) indices, and subscripts p, v, . .. , stand
for Lorentz indices. Repeated indices are summed
over, and

with

&+gv+pv & (2.1}

(2.2)

5Ap ——0.
The unperturbed electric and magnetic field
strength are

(3.2)

We can generalize our consideration to other gG gc 0 (3.3a)



20 INSTABILITY OF CONSTANT YANG-MILLS FIELDS 871

(3.3b)Z,', =e...B (f,j=1,2, 8),
and the field fluctuations are

gz,'. = ao

gz', , =a. '- a

(8.4a)

,5g) )6A,

+hB&"[5A,'. (-y5;, +«, ,)

—5A, (-y5,.( +x5, 2)] + 0(5A ) .
(3.4b)

In the Ao ——0 gauge the field equations are [see
Eqs. (2.4} and (2.5)]

have

~P $(d ~3 ik3

and consequently,

(-(u +kg')6A, = V, '5A)+2gBSx(5qi5A2 —5,25Ai)

2B2 2

+gBSx(8,5A, ) + -Sx(3x5A, ) .

(3.12)

In the following we shall consider various compo-
nents of (3.12) separately.

S,z',. +g(A, xz,.)'= 0, (3.5a) A. a = 3 and j arbitrary

dt
' =(Dp",, )' = 8,.p;, +g(A,. xp,.~)', (3.5b)

where the symbol x denotes a vector product in
isotopic spin space.

We shall start with Gauss's law Eq. (3.5a) which,
in our case, is equivalent to (2.7) with v=0:

a,.a,5A,'+-,'gB[Sx( y8, 5A, +xe, 5A, )] =O, (3.6)

where 3' =—~,3 is a unit vector in the third isotopic
direction. Since (8.1) has no explicit time depen-
dence and since our equations will be linear in
5A. , we shall look for the normal modes of oscilla-
tion by setting 80--i~ So that (3.6) becomes

B,&A;= ,'gBSx( -y-5A&+x5-A2), (8.7)

where we have used the vector notation to denote
the isotopic spin. Equation (8.7) is a simpler form
of Gauss's law (3.5a).

We now turn to the time evolution equation (3.5b)
which is equivalent to (2.7) with v=j. Using (3.3)
and (3.4) and substituting (8.7} for 8; 5A;, we find

80 5A; = V 5A,. +2gBS x(5,.)5A2 —5,.25A()

+gBSx(-ya, 5A, + ~8,5A, )

2 2 2 + 2

+g (" y ) Sx(Sx5A,). (3.8)

The third isotopic component of (8.12) is

(- u) + k3 )5A", = V, 5A, =- k, '&A, ,

which gives rise to the eigenfrequency

~2 $ 2+/ 2

(3.13)

(8.14)

Thus, the normal modes corresponding to 5A. &3 10
are all real and stable, and small fluctuations do
not blow up in time.

gg4) gg ()) ~ gg (2)
3

—
3 Z 3

so that

( —(u + ka )5Ag ——V~ 5A3 +gBihg5Ag

2@2 2p~ (a)
3

(3.16)

(3.17)

B. a = 1,2 and j = 3

The j=3 component of (3.12) with n =1,2 is

(—u) + ka )5A 3
——V~ 5A ~

—gB 8 g6A ) —~ B p 5A 3,
(3.15a)

(-(a) +ks )5A~ ——V, 5A~+gB885A~ —~ B p 5A~.

(3.15b)

This can be diagonalized by defining

In cylindrical coordinates,

x = p cos6), y = p sin&,

we have

+g =p p
x'82 —QB) = Rg ~

2 2

and

(3.9)

(3.10)

and

m
'Ij7 — ~g

P ~P ~P P
(3.18}

(
2@2 2

—V,'+ p 5A,"=(~'-k,'+gBm)5AS'.

(3.19)

In the state of a given angular momentum I 3 vl,
we can replace R, by im, obtaining

with

1B 8 1 B~
V~ =——

p
—+~

p ~p ~p p &8
(8 11)

In the Fourier-transformed space of xo and x3 we

This is the equation for a two-dimensional har-
monic oscillator. Physically, Eqs. (3.17) and

(3.19) describe precisely the motion of a charged
particle with spin S3 ——0 in a constant magnetic
field. ' In either case, for M3 to be bounded, we
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must have

(&u —km +gBm)=(2n+ Iml +1)gB, n=0, 1,2, . .. .
with time to ensure that our instability is not

gauge dependent. For the case m =0, k3 ——0, the
unstable mode is

Thus,

(3.20) -g~ p2/4(=Ee 8

~A
a -gBP /4 ~gBtg2

2
—-Ge e a2 ~

(3.27a)

(3.27b)

C. a = 1,2 and j= 1,2

Finally we turn to Eq. (3.12) for j=1,2 and a
=1,2. The algebra is similar to that for 6A3. We
define

and

6A', = 6Ag +i6A2

6A,'=5A; +i5A, .

(3.22a)

(3.22b)

After some algebra, we find

(-V, + &g B p )5A', =(u —kq +mgB +2gB)5A,',
(3.23a}

(-&, + 4g B p )6A-'=(e' —k& +mgB +2gB)/}A'.

(3.23b)
Equations (3.23} have the same structure as those
of charged particles with spin S3 =+1 and magnetic
moment 2g moving in a constant magnetic field.
The eigenvalue conditions for the Schrodinger
equations for 6A, and 5A, are, respectively,

&u =km + 2ngB+gB(1 v2) +gB( Im I +m) (3.24a)

and

e =k3 +2ngB+gB(1+2)+gB(lm I -m).
(3.24b}

Thus, if we choose n =0, and if we choose only
5A'W 0 for m & 0, or only 5A 0 for m & 0, then

~ =k3 -gB.2 2 (3.25)

Hence, & is negative if k3 &gB. Thus, for k3
&gB, we have unstable modes. The spatial depen-
dence of the wave function is

im8 ImI - Bp /45A =constxe' p 'e ~ ' /4. (3.26)

For m =0 the unstable-mode wave function has a
size L -(gB) '/2. For m e0 the unstable-mode
wave function forms a ring of radius p-(2 I m I/gB)' /'

and a width (gB)-
To be sure we really have a solution to the field

equations we need to check if Gauss's law (3.7) is
satisfied by the unstable mode. We should also be
certain that the field strengths grow exponentially

&u =k& + (2n+ 1)gB + ( Im I +m}gB & gB & 0.
(3.21)

As a result, all normal modes with 5A&' 10 are
stable since & is always real for them.

F3——0. (3.2Vc)

-Bp /4Here & is an arbitrary small parameter and e ' '
is the ground state m =0 solution. It is easy to
check that (3.27) obeys Gauss's law (3.7). The re-
sult can be generalized to other n =0 solutions
with m0 and k30.

The electric and magnetic fields q,re

E'=evgBe "' /'e ' '5 (3.28a)

Ec qgB 8 -gB p /48 ~g tg
2

(3.28b)

8( ——82 =0,
2

Ba 6 (B ge2 rBP /-2 2~&Bt)
3 03

(3.28c)

(3.29a)

(3.29b)

Notice that the magnetic field for this mode is
unchanged to order &. It is easy to check that Eqs.
(3.27)-(3.29) obey the Yang-Mills field equations.
Note that E is a gauge-invariant quantity which
grows exponentially in time. Thus, thy instability
is present in any gauge. The energy density H
=-,'(E +8 ) is given by

H=2B +O(e ). (3.30)

This exponential growth cannot go on indefinitely
since eventually ]32 will reach zero. The nonlin'-

earities must stop the exponential growth of the
potentials.

The physical meaning of the m+ 0 states is
simple. The field configuration B =constant is
translationally invariant. The unstable state with
n=0, m =0, corresponds to a localized exponential
growth at the origin. Obviously, there is other
localized exponential growth located at different
points (x,y). The m o0 states are those localized
states expressed in terms of an angular momentum
basis.

Ap =-Ex6~,
A'; =0.

(4.1a)

(4.1b)

We shall work in the gaugeA3 ——0 and let p, , v, ...
We consider a fluctuation 5A„ in the potential
which satisfies

IV. CONSTANT ELECTRIC FIELD

Consider a constant electric field E'; =5,35,.&E in
the x direction which can be derived from the po-
tential:
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~A, =O (4.2)

due to our gauge condition.
The field equations D„I„„=0can be divided into,

v = 3 and v = n so that

[-&,
' —(gEx +(u„~i(u, )']6A~z" ———k, '6A',", (4.10a)

[-6~' —(gEx —&uz -z&uz) ]6A',"=(-k, +2zgE)6A',",
(4.10b)

(D&p O.p)'=60@'p~+g(A~xFp~) 0 ~

68F3u D8 pa; i

(4.3a)

(4.3b)

[-&,
' —(gEx+~„+ipse, )']6A'" =(-k,'+2igE)6A'".

(4.10c)

where' 8 -=-P,B,+g,a, +g,a, .
Equation (4.3a) is the analog of Gauss's law and

when linearized implies

()3(j~QA ~ =-ggg3 x $3QAO . (4.4)

Since (4.1) is independent of z we will be able to
replace 83-ik3 for a normal mode to find

8 5A =-gE~3xgA, . (4.5)

We now proceed to solve Eq. (4.3b). Using (4.2)
and (4.5), and after some algebra, we find

—6,'6A =(- ap'+ 6,'+ 6, ')6A.

+ 2gE3 x(6 p&6Ap + 6 pp6A&)

+ 2gEx(3 x &p6A p)
'gE zx3-x (3 x 6A p ) . (4.6)

As in Sec. III, we replace ~3-ik3, 82-ik2, and ~0

--i+, and with k =02 +03 we have

(k~ (gp )6A + Rg 6A & + 2gE 3x(6 p~6Ap + 6 pp6A~)

+ 2iu&gEx(3 x 6A p)

g'E'x'(3 -x(3x6A p)). (4.7)

gg(d gg(f) ~ g~(2)

~A. ', =- ~A. () +&A, ', ,

(4.8a)

(4.8b)

Then we have

[-3, —(gEx wu)) ]6Az" —-k, 6Az',

(4.8c)

(4.9a}

[-8( —(gEx-up) ]6A' =(-k, +2igE)6A',

(4.9b)

[-&) —(gEx+ (u) ]6A'" =(-k,z +2igE)6A'" .

As for the constant 8 field, the 64~ component
has no unstable modes. To analyze the 5A' ' com-
ponents we define

The key observation is that if cg is real (&uz
——0),

Eq. (4.9) [or (4.10}]is a Schrodinger equation with
an inverted harmonic-oscillator potential. Thus
it has no solutions which vanish at x=+~. This
observation has an interesting physical interpre-
tation. A fluctuation 6A. in a constant electric field
carries a certain isotopic charge. The background
electric field will act on this charge causing it to
accelerate to x=+. This in itself is a form of
instability under small fluctuations. Although (d

is real and 6A. does not grow in time, it will
spread up in x. Eventually 66A/Bx will be large
owing to the potential V(x}~-x and nonlinearities
will start to come into play.

We encounter a similar instability in QED. Un-
der the influence of a strong electric field, elec-
tron-positron pairs can be spontaneously created
via quantum tunneling. Once produced, the elec-
tron and positron will move under the influence of
the F. field and be accelerated to ultrarelativistic
speeds. The final kinetic energy of the electron
and the positron are limited only by the size of
the system. The initial quantum tunneling effect is
needed to overcome the rest masses of the pair.
In the present system the classical Yang-Mills
fields are massless. Thus, no quantum tunneling
is needed to initiate the instability. A small
classical disturbance can become unstable under
the constant F. field. .

V. DISCUSSION

A. Magnetic moment

In Sec. III, we showed that 6A obeys the same
equation as a charged particle of magnetic mo-
ment 2g moving under the influence of a magnetic
field. In this section, we wish to verify that 5p
indeed. carries a magnetic moment 2g. I et us
look at the equations of motion for 5A. '„ in the
presence of a background field 4'„. They are given
by (2.6) and (2.7):

(4.9c}

Equation (4.9}depends explicitly on &u rather
than on & alone. We should thus consider real
and imaginary & separately. In general we divide
~ into its real and imaginary part & =(d„+i&, and
obtain

6F'„„=(D „6A„)'—(D„6A„)',
(D„6F„„)'+ge' 'F', „6A„=0,

where

(D„)"-=6"&„+go''A„.
Substituting (2.6) into (2.7), we have

(2.6)

(2.7)

(5.1)
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[D„(D„6A„-D„6Aa)] '+ge"'F'av 6A '„=0 . (5.2)

Changing the order D„D„ in (5.1), and making use
of

6"&& =- —.'(5"F,„)'--.'(6"&F,„)F„„
b(Da6A } + zDa6A+ 6Aa

(5.15)
[D D ]ac DabDbc DabDbc + abcFb

we have

(5.3)

[D„6A„-D,(D „6A„)]'+2'�"'F„'„6A'„=0 . (5.4)

The result will be simple if A'„ is time indepen-
dent. In this case we can Fourier transform (5.4)
in time by setting 80--i+. In the temporal gauge
5AO ——0, and by the use of Gauss's law, we find

=- b(Da6A„) ge' -'F'„„6A,6A„', (5.16)

Moving D„ in the second term from M.„ to 5A„
and ignoring a total divergence in the action, we
have

6n&2 =- p(Da6A„) -b6A+„(D„6A„)
—b6A„[D, &Dv]6A „—age"'F'a„6A „6A„'

(D, 6A;)'-=3;6A,'+g~"'A,'6A'; =0,
so that

D, M„=0.
Equation (5.4) then becomes

(D „26A„)'+2'"'F„'„6A'„=0.
We can rewrite (5.7} as

(D„6A„)'+2ige"','F'
t&(S b—)„„6Aa=0,

where

(5.5)

(5.6)

(5.7)

(5.8)

For a static magnetic field in the third isospin di-
rection, we can write (5.17) as

6"V =-(8, -igA',")6A';(3„+i''„')6A;
—2gB'; '6A', (S;),be b. (5.18)

where we have made use of (5.3) and (5.6} to sim-
plify the result. Using the definition of S „ in

(5.9), we find

6'2&2 =- ,'(D „6A-„) ig 2g"-'Fa—„6A (Sa„) b 6A'b.

(5.17)

i(Sa»)va —=- i(gavel'»a gnaws-v) (5.9)

6A =-(6A' ' -HA' '}//W2,

we can reduce (5.8) to

(5.10b)

is the spin angular momentum operator for a vec-
tor particle.

Suppose we have a constant magnetic field (as in
Sec. III) so that the only nonvanishing field vari-
ables are E&2' ——8 e 0 and A';". If we define

6A; —= (6A';" +i6A'; ')/W2, (5.10a)

The first term in (5.18) is the usual Lagrangian
for a charged particle in a field A'„'. Obviously,
the second term in (5.18) corresponds to a mag-
netic moment coupling -p.S'B with p, =2g.

Knowing p, =2g, it is now easy to understand the
instability. The lowest orbital magnetic moment
is g, and is always opposite to the B field so that
it increases the (energy) by gB. If the spin mag-
netic moment points in the same direction as the
B field, it will lower the (energy)' by 2gB. Hence,
we have

(6 +'i''„&) 6A, —2gB3(S3),, 6A,. =0,
(3„—i''„&) 6A; - 2gBb(S3);q6A, =0, .

(5.11a)

(5.11b)

4g =k3 +gB —2gB =k3 —gB .
Instability occurs at k3 —gB & 0.

with Sb =S„. From -(5.11)we see immediately that
6A j 'has a magnetic moment 2g.

Another way of obtaining this result is to work
directly on the Lagrange function Z. We shall
have to keep second-order variations in I'. Con-
sider the Lagrange function (2.1) and the field
variables

B. The size of the fluctuation region

(3.26)

Thus, the magnitude of 5A is
(m[ - Bp /4

I 6A I
=p' "s "'"= exp[f(p)], (5.19)

In Sec. III we showed that the spatial dependence
of the instability modes (at k3 ——0) is given by

5A =construe ™p

A „"=A '„+6A '„, (5.12)

(5.13)
where

f(p} =——~Bp' + I m I lnp . (5.20)
where 6'»F'„„ is given in (2.6), and

=go' '6A 6A' (5.14)
For m e 0, I 6A I vanishes both at p = 0 and p =~.
It peaks at the zero of

Now consider the perturbation in 8 due to (5.12).
Owing to the action principle, the first-order per-
turbation in Z will not contribute to the action.
The second-order perturbation is

f'(p)=-brBp+ Imj/p=o,
or at

p= p =—(21m I/gB) ~ (5.21)
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In the neighborhood of p=p

f(p) =f(p )+ 2f"(p.)(p p-.) +

=f(p.) '-g-B(p —p4'+
Hence, we have

l» l
= l5&(p.) l exit--'gB(p —PA'].

(5.22)

(5.23)

Thus, (») forms a ring peaked at p =p, and its
value drops to zero rapidly for both p & p and p
&p

Now let us count how many unstable modes exist
inside a region of radius p»(l/gB)' . We only
need to include those modes whose peak radius p
is smaller than p, i.e. , we only include those un-
stable modes which obey

p =(2lm I/gB) ~ & p.
Thus, the number of unstable modes is

N=(2lm l)~,„=gBp

(5.24)

(5.25}

Equation (5.25) tells us that the number of unstable
modes increases linearly with the area mp . (Re-
call that we have kept k3 ——0, and hence, have not

yet taken the longitudinal space into account. ) The
area per unit unstable mode is

'Fp w

2 Im I gB
' (5.26)

When we take the longitudinal space variation into
account and keep k30 modes as well, we find
that a typical unstable mode also requires a longi-
tudinal dimension of L =v/vgB. This result indi-
cates that if B 10 only in a small region of size L,
and if L is smaller than the required size -I/v'gB,
then no unstable mode can exist. In a sense, the
parameter V'gBL plays a role similar to that of the
Reynolds number in a fluid. The instability occurs
only when v'gBL is large compared to 1. It is in-
teresting to see how the above idea can be applied
qualitatively to the Coulomb field of a magnetic
source. Consider the Coulomb field due to a mag-
netic source,

8 =~.r
Since a Coulomb field has no intrinsic scale, it
is natural to- choose L =r. Thus the Reynolds num-
ber becomes

v'gBr = vgQ,

which is independent of r. Hence, we expect a
stable configuration for gQ « I, and an unstable
configuration for gQ»1; we expect that the critical
Q is gQ= O(l}. This is analogous to what Mandula
found in the case of an electric source. However,
our method is too crude to give the exact transi-
tion point.

C. Concluding remarks

The instabilities in constant field configurations
have implications to other physical situations as
well. For instance, we can study qualitatively the
stability condition for a plane wave of amplitude
B (or E) and wavelength X. If B and X are large,
the B field changes slowly. We then have effective-
ly a constant B field within a region of size L =X.
Thus, for v'gBX»1 we expect the system to be un-
stable. We can also apply the above considerations
to bag and tubelike configurations which are the
suggested structures of hadrons.

The instabilities may also have important impli-
cations to the nature of the ground state of quantum
chromodynamics (QCD). Owing to quantum fluctu-
ations, the physical ground state contains all kinds
of field configurations. The relative amplitude for
the existence of a given field configuration is
measured by the exponential of its action e
Thus, large-scale but small-8 fluctuations are
possible if B L4-1. For sufficiently large Z the
effective running coupling constant g can be very
large, and hence the Reynolds number v'gBL may
be much larger than 1. Such fluctuations will be
unstable, and could give rise to a disordered
vacuum. Hence, if we look at the physical ground
state on a large space and time scale, the ground
state may appear as an ocean of turbulence.

There are many important problems to be
solved. From our work we found that the insta-
bilities are characterized by a number which is
similar to the Reynolds number in fluid mechanics. '

It would be interesting to know whether other phe-
nomena in fluids, such as the onset of turbulence,
and their associated scaling properties also have
analogs in non-Abelian gauge theories. Finally,
we would like to know whether the instability asso-
ciated with B field has a quantum-mechanical in-
terpretation. The instability associated with 8
field certainly exists in the quantized theory.

Note added in proof: Nielsen and Olesen have
demonstrated the existence of an unstable mode in
a Yang-Mills field theory associated with asymp-
totic freedom. However, their motivation and ap-
proach are different from ours. See Ref. 8 for
details. After submitting this paper, we were in-
formed that similar results were also obtained by
Sikivie. '
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