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Singletons and massless, integral-spin fields on de Sitter space
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Gauge-invariant wave equations for massless fields with fixed, but arbitrary, integer spin have been
constructed. Extended to include interactions with external sources, the theory remains self-consistent and
unitary to lowest order in the couplirig. Fields describing states of one or two singletons, with the attendant
interesting gauge problems, are studied. An intertwining operator is constructed that explicitly expresses the
bilocal two-singleton field in terms of one-particle massless fields.

I. INTRODUCTION

MOItieation. The theory of massless fields with
higher spins attracts us because it is characterized
by interesting and poorly understood gauge
problems. One may hope to reach a deeper level
of understanding of gauge theories by supplement-
ing the experience gained from the conventional
vector-field gauge theories' with a study of these
unfamiliar phenomena. Lately, it has become
fashionable to treat the case of spin-2 massless
fields as an instance of Yang-Mills theory, ' but it
is not known whether massless fields of spin 3 or
higher can be squeezed into the same framework.
Alterriatively, one may approach the spin-2 prob-
lem in the'manner pioneered by Gupta, ' but the
generalized Gupta program advocated by us' for
dealing in a similar way with higher spins has
not yet been carried out. It is possible, and this
is a particularly interesting possibility, that mass-
less spin-3 fields can have no interactions without
the active participation of massless fields of all
spins.

The justification for attacking the problem in
the apparently more complicated situation of a
curved space-time is that a new interpretation
exists that has no analog in flat space. Massless
particles in de Sitter space are composite: Each
state of a massless particle, with arbitrary spin,
may be regarded as a state of two Dirac single-
tons. ' Singletons, though represented by scalar
fields, are also beset by gauge problems, but
these appear to be r'elatively easy to handle.

The past. %'ave equations of the type proposed
by Fierz and Pauli, ' for fields over Minkowski
space that describe particles with fixed mass and

spin, were obtained by. Hagen and Singh. ' The
limiting case of vanishing mass was studied by
us. ' A Fierz-Pauli program for fields over de
Sitter space was formulated and carried out by us
in the case of spin 1 (Ref. 9) and spin 2 (Ref. 10).
In a certain limit, which shall be referred to as
the massless case, phenomena appear that are

strongly reminiscent of those that characterize
massless fields in flat space. In this limit we re-
covered the correct wave equations for electro-
dynamics and weak gravitational fields in de Sitter
space.

The connection between singletons and massless
particles was studied by Flato and Fronsdal. ' lf
Rac denotes the integer-spin singleton representa-
tion of the de Sitter group discovered by

- ' ac,"
then it was proved that the direct product ac
(3 Rac decomposes into a direct sum over the irre-
ducible representations associated with massless
fields. No attempt was made to express massless
fields explicitly in terms of bilocal 2-Rac fields,
however.

The present. This paper presents, in See. II-Q7,
a derivation of the wave euqations for massless
fields with fixed, but arbitrary, integer spin. In
Sec. V it is shown that the introduction of interac-
tions with external sources yields a theory that is
self-consistent and unitary. In Sec. VI we synthe-
size all integer spins in preparation for the trans-
lation into singleton terms to be carried out
later.

Section VII deals with Rac fields and with the
novel and interesting gauge problems associated
with them. Bilocal fields describe the states of
a pair of Racs or anti-Racs. The unwanted Rac-
anti-Rac states are eliminated.

In Sec. VIII we construct the intertwining opera-
tor that explicitly relates massless fields to bi-
local 2-Rac fields. This operator is uniquely de-
fined, up to gauge transformations, on the space
of fields that satisfy both wave equations-and sub-
sidiary conditions. It is not uniquely defined on
the (larger) space of fields subject only to the
gauge-invariant wave equations. The ambiguity
must be resolved by considerations of utility and
aesthetics, but this is still an unsolved problem.

The future The case of hal.f-integral spine
should also be studied. This will bring in the half-
integral singletons Di and Di in the combinations
Di E3Rac, and raises the question whether the com-
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binations Di(3Di must be included in the integer-
spin case. The Di and the Bac may be thoroughly
integrated by regarding the pair as a supermulti-
plet. It may be possible to construct a supersym-
metric Lagrangian, including interactions, and
attempt an interpretation in terms of massless
particles. In this ease it is rather unlikely that
the singleton-antisingleton states ean be elimina-
ted. If not, then singletons would assume an ex-
istence independent of massless particles. In
any case, a theory of interacting singletons will
provide an example of interactions between mass-
less fields with higher spins. We emphasize again
that this construction has no analog in flat space,
though the final result may have a nontrivial flat-
space limit.

g = QVy
~ ~ » g ~~/ p)t ~ ~ ~ ~ (2 1)

The second trace h'=(h') is taken to vanish iden-
tically.

In flat space, the wave equations for massless
fields of integer spin s are of the form'

II. COVARIANT FORMULATION

In this section, h denotes a symmetric tensor
field of rank s over Minkowski space or over de
Sitter space, with covariant components h&. . .
with s indices. Indices are raised and lowered by
means of the metric tensor g; however, indices
will be suppressed or simplified whenever con-
venient. We denote by 5,

' the trace of h, namely,
the symmetric tensor field of rank s-2 with corn
ponents

tive and the covar iant d'Alembertian defined by the
metric connection and by the metric. Indices are
shown simplified and contractions are indicated by
a center dot. The sums are over all unequal order-
ings of the indices; thus P, contains s terms and

P, contains —,'s(s —1) terms, since h and g are sym-
metric. ] This expression for L, is the only equa-
tion in this paper that is restricted to flat space.

Definition l. A symmetric tensor field of rank s,
over Minkowski space or over de Sitter space, is
called a genug& fi&fd if it can be expressed as

(2.5)

where $ is a symmetric tensor field with g =0.
Equation (2.2) is "gauge invariant" in the sense

that L,h and a fortiori Lh vanish identically for
every gauge field h. This statement holds in flat
space only; direct substitution shows that it de-
pends on the commutativity of the covariant deriva-
tives.

de Sitter space is characterized by

(2.6)

where p is the curvature parameter. In this case,
direct substitution shows that I.,A, , with X,, as given
above, does not vanish. The simplest way to ob-
tain the correct wave equations in de Sitter space
is to modify I„by adding compensating terms of
order p, to recover gauge invariance. This pro-
cedure will be justified in Sec. IV. The compen-
sating terms are determined easily and unambigu-
ously, with the following result:

(2.2)

where l. is a second-order differential operator,
-LP = a-+,V(V h)+-', P,VQ,Vh'

+(s'-2s —2)ph+2pg, gh'. (2.7)
I —= BLO,

with B and I., defined by

(Bk)„.. . =h„. . . —,'P, g„„h—'„.. . ,

(-L,h)„. . . = h, . . . -P,V„(V a)„.. .

(2.3)

(2.4)

Now (2.3) gives

Lh= h-+-, V(V h)+-,'Q, VQ,Vh'+(s' —2s-2)pa

+P,gf VV:a — a' ——,'P,V(V 0') —(s' - 3)ph'].

(2.8)
+~V»V»h». . . .

[Notation: V and stand for the covariant deriva-
I

The wave equations Lh =0 are the Euler-I, ag-
range equations of the Lagrangian

—,'gI'" v„h v, A. --,'s v h v-h +-', s s —1 vh' v h ——,'s s-1@~"v„h' v„h'

--,' s(s —1)(s —2)(V ~ h') (V ~ k') —-',p(s'-2s —2)k h+ —,'s(s —1)(s' —3)&' ~ h'](-g)'"d'x. (2.9)

In the next section we shall introduce more con-
venient coordinates, defined by the isometric em-
bedding of de Sitter space in R'. Then in Sec. IV,
we shall justify our use of the requirement of
gauge invariance to determine the operator J. In

Sec. V we begin to study the properties of the wave
equation.

III. GLOBAL, ISOMETRIC EMBEDDING

Let V denote the space R', endowed with coor-
dinates (y ), o. =0, 1, 2, 3, 5, and the pseudo-
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Euclidean metric 6 defined by

y(yg -yO —&I —~2 —&3 +V5 =y ~

The local, isometric embedding of de Sitter space
in V is given by y' =1/p. To obtain a global, em-
bedding we introduce the subspace

-L,k =tr pr(a'k —Q, a(a k) +p, aak'

+ (I/y') (s —N - 2)[(s+N+ I)k++,6k'] ).
(3 7)

Heze trpr means "the transverse" projection of,"
and

(3.8)

W -=fyCV;y'») (3.1) The degree of homogeneity of k is fixed by (3.2),
so that

and the universal covering space 5'of W. We
identify de Sitter space with the image, by the
cover map, of the surface y' =1/p in W.

There exists a natural bijection between tensor
fields over de Sitter space and a certain space of
tensor fields over W. Let U be a domain in TV,

invariant under the dilations y„-Ay, A in {R, and
let U, denote the intersection of U with the hyper-
boloid y' = 1/p. Let N be fixed in C, and let k be
any tensor field over U that satisfies

y k. . . „.. . (y) =0, k(~y) =X"k(y), (3.2)

kq. . . (x) =y„~ ~ ~ k . . .(y(x)},

k„. . . (y) = (py')"" x " k„.. .(x(y)), (3.3)

where x- y(x) is the embedding map, . y- x(y) the
dilatation-invariant projection map, and

y„=ay /ax", x„"=ax" /ay .
Now we can reformulate the results of the pre-

ceding section. Let A, be a symmetric tensor field
over de Sitter space, with 0 =0, and let k be the
symmetric tensor field over W that is related to
k by (3.3). Let the trace k' be defined in analogy
with (2.1):

e8ky. . . =-5 k By. . . ,
'

then the double trace k vanishes. The wave equa-
tion (2.2) takes the form

Lk:0 with L:BLo (3.4)

Here we abuse the notation by using the same let-
ters B, L, and Lp to denote the transforms of
these operators by the correspondence (3.3). We
find

Bk =k —2+, ak (3.5)

gas =ans ynys/y (3.6)

for X in R. Let h be the projection of k on Uo, then

k is determined by h. One easily extends this bi-
jection to the space of tensor fields over de Sitter
space. Locally, the components are related by

(N —N)k =0.

This condition is consistent with (3.4).
For the operator L BLo we find

-Lk = tr pr(a'k-Q, a(a ~ k) +Q,aak'

(3 9)

++26[aa:k —a'k —zQ ia(a k )1

+(1/y')(s —N-2)(s+N+1)(k -+,5k )).
(3.10)

This operator is formally self-adjoint, and the
equations Lk =0 are the Euler-Lagrange equations
of a Lagrangian that contains only first-order
derivatives.

If k is a gauge field, of the form (2.5), then the
corresponding field k on %" has the form

k . . . =Q, [a y'+(s-N —2)y ]g (3.11)

1V. GROUP-THEORETICAL MEANING OF THE EQUATIONS

The' group of. motions of de Sitter space is the
universal covering of the connected part of SO(3, 2}.
The group SO(3, 2) is the group of linear trans-
formations of R' that leaves the hyperboloid y'
=1/p invariant; the I.ie algebra is generated by a
basis (L s), a & il = 0, 1, 2, 3, 5 satisfying standard
commutation relations. Any irreducible represen-
tation that can be associated with the states of an
elementary particle is characterized by an extre-
mal weight (L», L„)-(E„s). If E,)0 (E,&0),
then the spectrum of L» is positive definite (nega-
tive definite) and we speak of irreducible repre-
sentations with positive (negative) energies.

The representation D(E„s) may be constructed
by reduction of the tensor product D(E„O)SD(s),
where D(s) is a suitably chosen finite dimensional

with y. g =0, g =0, and Ng = (N -1)g.
Definition 2. A symmetric tensor field of rank

s over W is called a gauge field if it can be expres-
sed in the form (3.11), where g is a symmetric,
traceless, transverse tensor field.

Equation (3.4) is gauge invariant in the sense
that L,k and a forteriori Lk vanish identically for
every gauge field k.
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Q = LL—~8,

Qk = [N(N + 3) —y'8' + s(s + 1)]k

(4.2)

-2+,y(e k) +2+,a(y k) -2+,M'. (4.3)

The case s =0 has been investigated already. "
In this case the other Casimir operator vanishes
identically and one expects that the essential step
towards the construction of an irreducible repre-
sentation consists of requiring that Q reduce to a
scalar; that is, one imposes the wave equation

(Q-(Q))k=o, (4 4)

where (Q) is the value of Q in D(E„O). The value
of Q in D(E„s) is

(Q) =E (E —3) + s (s + 1),
and (4.4) reduces to

[(N+E,)(N- E, +3) —y'8'] k =0.

(4.5)

(4.6)

The operator N is also an invariant, and has to
be fixed by imposing (3.9): (N —N)k =0, the value
of pf being completely arbitrary. It was found"
that (4.1) induces, on a space of solutions of (4.6),
the unitary, positive-energy representation D(E„O),
provided that E,& 1. [The corresponding negative-
energy representation D(-E„O) also appears. ]

Let us return now to the general case. When s
c0 it is not enough to fix the values of Q and N.
If E, is large enough, then the representation
D(E„s) is carried by the subspace of fields that
satisfy

(Q —(Q))k=0, (N-N)k =0,

8 ~ k=0, y ~ k=0. (4.7)

The last two equations imply that k' =0. The other
Casimir operator is fixed by these equations and
need not be considered separately.

Another invariant subspaee consists of all tensor
fields of the form

k =Q, (ay'& +yq), (4.8)

representation with highest weight (0, s). We limit
ourselves to integer s and take D(s) to be the ir-
reducible component with highest weight contained
in 8 D(1), where D(1) is the irreducible 5-dimen-
sional representation of SO(3, 2).

Consider a symmetric tensor field of rank s on
W. The action of SO(3, 2) on k is determined by the
expressions for the operators L, ~ of the Lie alge-
bra:

L qkq. . . =i(y 88-yss )ky. . .
+i+,(6.,k„.. . —5,,k., ). (4.1)

The second-order Casimir operator is

where p and q are symmetric tensor fields of
rank s —1. The crucial question is now whether
these two invariant subspaees have a nontrivvial
intersection, that is, whether (4.7) admits solutions
of the type (4.8). Direct substitution easily yields
the following results:

(1) If E, + s+1, then the two subspaces are dis-
joint. The analysis of (4,7} is a straightforward
extension of the special case s =0 (Ref. 13) and
the result is similar. One finds a s'pace of solu-
tions that carries the irreducible representation
D(E„s}along with the corresponding negative-
energy representation. These are unitary if
E, & s+1; we refer to this case as the "massive"
case.

(2} If E, =s+I, then there exists a space of
fields of the form (4.8) that solves (4.7). This is
precisely the space of special gauge fields.

Definition 3. A gauge field (definition 2), repre-
sented by (3.11), is called sPecial if it is conserved
in the sense that 8 ~ k =0.

The special gauge fields form an invariant sub-
space of the space of solutions of (4.7) and the
unitary representation D(s +1, s) S D(-s —1, s)
is induced in the quotient space. We refer to
this case as the massless case. (4.9)

We are now ready to justify our use of general
gauge invariance as a means to discover wave
equations for massless fields in de Sitter space.
We assume, for the sake of this argument, that
the equations already obtained for the special
case of flat space are the correct ones, and that
these equations must be recovered in the limit
p-0. In this case the additional requirement of
general gauge invariance was seen to imply a
unique set of wave equations for each integer
spin. We have identified the case Fp s+~ as the
"massless" case because of the appearance, in
this case only, of a phenomenon that is a familiar
feature of the theory of massless fields in flat
space. The results of this section show that any
eorreet set of wave equations for this case must
be solved by the special gauge fields; it remains
only to justify the strengthening of this require-
ment by removing the qualifier "special."

The wave equations of electrodynamics in flat
space are not unique. Maxwell's equations admit
general gauge invariance, but alternative formula-
tions admitting only special gauge invarianee are
also possible. We believe, nevertheless, that the
existence of wave equations with general gauge in-
variance is crucial to a consistent physical inter-
pretation, though one may prefer not to make direct
use of them. In flat space we found that generally
gauge-invariant equations exist for arbitrary
spin'"; these equations also allowed interactions,
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((Q) —Q)k=y'8'k+2+, y(8 k)+2+,5k'

+ (s -N - 2)(s+N+ 1)k,

-y'L, k= ((q) - Q)k+5, [8y'+(s-&- 2)y]C,

(4. 10)

self-consistent to lowest order in the coupling to
external sources. In this paper we have demon-
strated that generally gauge-invariant equations
exist in de Sitter space as well, and these are very
likely to play the role of Maxwell's equations,
generalized to arbitrary spin and to nonvanishing
constant curvature. We do not pretend to have
proved that our equations are the only correct
ones; no a priori argument can be complete. The
real test is the development of a consistent theory
of interacting fields; a beginning will be made in
the. next section.

Remark 4. We have to verify that every solution
of (4.7) actually solves our wave equations (3.4),
Lk =0, or equivalently L,k =0 with L, given by
(3.7). That this is indeed the case can be seen by
means of the foHowing formulas, obtained from
{3.7), (4.3), and {4.5) with Z, =s+1 a.nd y ~ k=0:

of 8 ~ t must vanish, that is,

8 t= )+,88 t'- (1/y')P, yt', (5.3)

12k=k
2(s 1) +28k,

and rewrite (5.1) as

L,k =At ~

Now. Eq. (4. 11) shows that

(5 4)

(5.5)

y'Lok =(Q- (Q))k-k,
where k is a gauge field, and (5.5) thus becomes

This is equivalent to (5.2) and ensures that the
complete Lagrangian is gauge invariant.

Definition 5. A linear functional t will be called
an allowed source if t"=0 =y ~ t and Eq. (5.3) holds.

Next, it will be shown that the operator L in
(5.1) can be replaced by the Casimir operator Q.
Let A denote the inverse of the matrix operator jP

that was defined by (3.5),

(4. 11) (Q —(Q))k = y'd4t+k. (5.6)

g = —,'p, [8y'+(s-ti'-5)y](1/y')k -8 ~ k. (4.12)

One checks that y ~ g =0 and g' =0.

Let (Q —(Q)) ' denote an inverse of Q —(Q), that
is, a propagator incorporating appropriate bound-
ary conditions, " and replace (5.6) by the integral
equation

V. EXTERNAL SOURCES
k = (q —(Q)) -'(y'~t+ k) . (5.7)

Equation (3.4), Lk =0, with L given by (3.10),
is derivable from a real Lagrangian. We now add
a term -t k to the Lagrangian density, "deter-
mined by a fixed liriear functional t thai is called
the external source. Since k"=0 =y. k, there is
no loss of generality in taking t" and y ~ t to
vanish; then the Euler-Lagrange equations take
the form

Lk =t. (5.1)

The effective interaction, to lowest order in the
coupling, is t k, where k is a solution of (5.1).
Vile must study this interaction in order to deter-
mine the nature of the long-range correlations
of the theory.

Besides the conditions t"=0 =y t, self-consis-
tency of the theory requires that the linear func-
tional t vanish on gauge fields

t(k)-=f t k(dy)=d (5.2)

for every gauge field k. Indeed, the fact that Lk
vanishes identically [see (3.12)] and the fact that
L is self-adjoint imply that the transverse, trace-
less part of 8 ~ (I.k) vanishes identically. This in
turn implies that the transverse, traceless part

8 (d4t + k) = ((Q}—Q) f

2 1+yp8 8 ~ ( — t + ~ ~ -,2s —1

where the unwritten terms vanish on t by virtue
of y ~ t =0. We choose our gauge field k by taking
for P any solution of

1 f
8 r

2( 1)t ~ y /=0'

then g' =0, and the fields k in (5.7) satisfy

(5.8)

Now k is a gauge field, and so is (Q —(Q)) 'k;
therefore this term makes no contribution to the
effective interaction between allowed sources. In
other words, the gauge field k in (5.7) can be
chosen to suit our convenience. We shall now
attempt to find a choice of k such that 9 ~ k van-
ishes; this will make the physical interpretation
transparent and allow us to show that the nonlocal
part of the interaction is mediated by the states
that belong to the unitary representation D(s + 1, s)
SD( s 1, s). -—

Using the representation (3.11) for an arbitrary
.gauge field, with y ~ ( =0 =(, as well as the con-
dition (5.3) satisfied by any allowed source, we
find
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8 ~ k=-(. (5.9) K=[(z e )y'+(n-N-2)(z. y)]A, (6.3)

VI. SYNTHESIS OF ALL INTEGER SPINS

Fields thai describe composite states are ex-
pected to be fields over W x W; or perhaps W x I,
where I is some "internal space. " The internal
degree of freedom corresponds to the spin. We
must replace the discrete spin label by some new

set of variables that will facilitate a bilocal field
interpretation.

To this end let (z ), n =0, 1, 3, 5, be a set of
indeterminate quantities and let K(y, z) denote the,
formal series

K(y, z) = Q z "& z "~k„.. .„(y).
S

(6.1)

The complete set of wave equations and subsidiary
conditions for all integer spins can now be re-
expressed in terms of the "field" K. Thus

y ~ k=0 =. —.- y e,K=0 (transversality),

e ~ k=O —. —.-e, ~ e~=0 (conservation),

k'=0 =. — =. e,'K=O (tracelessness}.

(6.2)

If each of the fields k (for s =1,2, . . . ) is a gauge
field, then we call (6.1) a gauge field. In other
words (see definition 2) we have the following de-
finition:

Definition 6. A formal series (6.1) will be called
a gauge field if it can be expressed in the form

Vo inte rpret this result let t = t, + t» where t, and t,
have supports in disjoint regions U, and U, of de
Sitter space. " To fix the ideas let us regard ty

as the emitter and t, as the absorber"; then t, is
the source for the field k = (Q —(Q)) '(y'At, + k, )
and this field is detected by the value t, (k) of the
linear functional t, at k. Now t, (k) = f t, k(dy) de
pends on the values of k in the region:U, = supp(t, )
only. We choose the solution f of (5.8) so that f
vanishes in ft„ then (5.9) shows that e ~ k vanishes
in U, . In other words, the field k, = klU2 that is
measured by t, (k) satisfies e ~ k, =y ~ k, =0. This
means that the observation of freely propagating
fields is given by a gauge-invariant linear func-
tional on the space of solutions of the set (4.7),
that is, by a linear functional on the quotient space
described in (4.9). This quotient space carries
the unitary representation D(s+1, s) SD( s —1, s-).
Thus we conclude that this representation describes
the propagating quanta and that the theory is uni-
tary to the lowest nontrivial order in the coupling.

This concludes our investigation of the physical
interpretation of the wave equations (3.4}-(3.10).
The next section is a reformulation that prepares
the way for the interpretation of massless particles
as composite states of Dirac singletons.

where A is a formal series satisfying y ~ B,A =0
=8,'A and where

R =8' ~gp (6.4)

The gauge field (6.3) is special if in addition it is
conserved in the sense that 8, B,K=O.

The Casimir operator (Q)- Q, given by (4.10),
takes the form

((Q& —Q)K=[y'e„'+2y ze, e, +z'e, '

+(n -N —2)(n+N+1)]K. (6.5)

There is simplification to be gained by taking the
degree N of homogeneity of the spin-s field equal
to -s —1, for in that case

(n+N+1)K=O. (6.6)

To conclude: The representation D(s+1, s)
8D(-s —1, s) was induced by (4.1) on the space of
solutions of (4.7), modulo the space of gauge solu-
tions. Therefore, the representation $,[D(s+1, s)
SD(-s -1,s)] is realized on the space of solutions
of

((Q) - Q)K=0, (n+N+1)K=O,

e ~ a~=0, y ~ e, K=O,

modulo the space of gauge solutions.

(6 7)

VII. RAC FIELDS AND COMPOSITES

lim r"'y(y)&~.
y ~en, y 2fjXed

(7 3)

The solutions for which this limit vanishes form
an invariant subspace and the representation Rac
QRac is realized on the quotient space. The Rac
states are thus represented, not by fields, but

The +ac is the unitary, irreducible representa-
tion D(1/2, 0); it is one of the four remarkable rep-
resentations discovered by Dirac. " The anti-Rac
or Rac is the corresponding negative-energy repre-
sentation D(-1/2, 0). These representations are
related to the "massless" representations D(s+1, s)
by the formulas'

Rac 8 Rac = SD(s +1, s),
S

Rac8Rac =8D(-s-1, s},
which tell us that the space of states of 2 Racs
can be identified with the space of states of one
massless boson.

The Rac field p on W is a scalar field with a
fixed but arbitrary degree of homogeneity —that
satisfies the wave equation

(7 2)

and the boundary condition (r' = y, '+y, '+y, '—)
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by equivalence classes of fields. This is a novel
and striking example of a field theory with gauge
problems. We shall find a convenient method to
deal with those problems.

I.et us take the degree of homogeneity to be ——,';
then the field satisfies

(g+-,')y =0, e,'y =0. (7.4)

In this case the boundary condition (7.3) ensures
the existence of the limit

g(a) = lim Q(Xa, a, A.a, ) (7 5)

for cP =0, aW 0, which allows the definition of &f& to
be extended by continuity to the universal covering
C of the cone —compare (3.1)—

C=—lyE V;y'=O, y 40) . (7 5)

The limit (7.5) defines a mapping from the space
of fields on W satisfying the boundary conditions
(7.3) to a space of fields on C. The kernel of this
map consists of all the fields for which the limit
(7.5) vanishes. The Rac states are represented by
the restriction to C of fields on W U C that satisfy
(74)"

The unitary representations Rac and Rac are de-
fined by (i) the formula L 8P =i(y „88—yBB„)P for
the generators and (ii) specification of a dense,
invariant set of analytic vectors for each repre-
sentation. For the Rac we shall use the space S,
of analytic vectors that consists of the finite lin-
ear combinations of the energy-angular-momentum
eigenstates"

(7.7)

(Rac 8Rac) 8 (Rac 8 Rac) (7.10)

and two copies of Rac8Rac. According to (7.1),
it is the part (7.10) that describes massless parti-
cles, while Rac tI Rac has no such interpretation.
We choose a space of analytic vectors that is
adapted to the separation of (7.10) from the rest.

A dense set S„ofanalytic vectors for Rac 8Rac
is given by the set of finite linear combinations of
vectors obtained frond the set

goo (u) yz„(v) (7.11)

by repeated application of the generators I. 8.
Similar spaces S for RacSRac, $, for Rac
Rac, and S, for Rac Rac are defined in a self-
evident manner. These choices of analytic vectors
are not unique —see remark 7—but they permit a
neat separation of (7.10) from the rest. Indeed, it
is evident that all bilocal fields of the form (7.11),
and therefore all bilocal fields in the space $„
SS that carries (7.10), satisfy the equation

8„~ 8„4 =0. (7.12)

This equation is not satisfied by the fields y„(u)
P~„(v) that generate S, . By a close examination
of the eigenstates of energy and angular momentum
in Rac Rac it may be proved that, in fact, the
subspace of the space of solutions of (7.9)., char-
acterized by the additional condition (7.12), carries
no irreducible component of Racg Rac. Thus we
have the following:

Proposition 8. The space of scalar fields on

(WUC) x (W lJC) that satisfy
for the Rac we use the space S similarly con-
structed from

(7.8)

(u ~ a„+-,')e =0, (v s„+-,")4 =0,

8u @ 8 @' 8„~ 8„4=0, (7.13)

Here y, =y,aiy, and the pz„are the solid spherical
harmonics in the variables y = (y„y„y,).

Remark 7. The eigenfunction p~„ is unique up to
additional terms that vanish on C, so P~„~C is un-

ique. The choice (7.7) therefore involves a special
choice of "gauge. "

The 2-Rac field 4 is a scalar field on (W UC)
x (W UC) or, what we take to mean the same thing,
a bilocal, scalar field on WUC. 'The representa-
tion (Rac SRac) 8 (Rac SRac) is induced on the re
striction to CX C of solutions of the system—
compare (7.4)—

(u s„+-,')e =0 =(v 8„+-,')e,
8 4 0 —8'4

u v

Here (u, v„) are coordinates for (W UC) x(W UC).
This representation is equivalent to the direct sum

4=. Q 4'~+v 42,

where +, and +, are bilocal fields on WUC.

(7.14)

restricted to C x C, carries the unitary represen-
tation (Rac8Rac) $(Rac8Rac).

Remark 9. Of course, (7.13) is not gauge in-
variant, in the sense that if 4, satisfies (7.13) and

(4, —4,) ~Cx C =0 then 42 does not always satisfy
(7.13). This reflects the special choice of gauge
implied by our definition of S, in terms of (7.11).
Compare remark 7.

In anticipation of an intimate relationship be-
tween the gauge freedom encountered here and
the gauge fields associated with massless particles,
we make the following definition.

Definition 10. A bilocal field that satisfies (7.13)
is called a special, bilocal gauge field if it has the
form
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VIII. THE INTERTWINING OPERATOR

We shall construct an operator I' K-4 that
intertwines between the representation (7.10),
realized on bilocal fields satisfying (7.13), and the
representation 6J[D(s+I, s) SD(-s-1, s)], realized
on a formal series that satisfies (6.7). The final
goal is to express our gauge-invariant wave equa-
tions in terms of the 2-Rac, bilocal field C.

The internal variables (z„}were introduced in
Sec. VI as indeterminate quantities; it is now

- natural to interpret them as coordinates for an
"internal space" I, so that the formal series (6.1)
can be regarded as a field over tT'x I, and to ex-
press the intertwining operator with the help of a
mapping between Wx I and Wx F. We identify I
with a pseudo-Euclidean space V @ec. III). The
physical picture suggests that the position coor-
dinate y of the massless particle be related sym-
metrically to the constituent coordinates u and v,
and the internal coordinate z to the separation be-
tween the constituents; thus

g =8+v, 8 =u —v. (8.1)

This does not map W'x tT' on tT/'x I globally, but
we do not need a global mapping and simply re-
strict ourselves to a domain in which (u+v)'&0,
u'&0, v') 0.

Consider the lowest-energy eigenspace associa-
ted with the component D(s+I, s). We write down
the corresponding bilocal fields 4 „ in a gauge
compatible with (7.13), and the corresponding
series If'„ in a gauge compatible with (6.7):

C,(u, v) =(u, v, ) ' "'M, (u, v- v, u),
Z', (y, z) =(y, ) "-'M,(z,y-y, z),

where M, is an s-linear, traceless form:

(8.2)

(8.3)

M (~)=M 1''' s(y1. . .~1 (i„.. . ,i, =1, 2, 3).
(8.4)

To relate (8.2} and (8.3) we use

1—S —2
'

(4uv)s 1/2+(1)2(z /y)22y2s1

(8.6)

Let us now consider the formula

(8.5)

Using the fact that u ~ B„M,(u, v —v, u) =0 one finds
that C,(u, v) can be written, in the domain of con-
vergence of (8.5), as (E+)(y, z) with

E = Q (4'k!) '(z ~ 8„)'"/(n+1)(n+2) ~ ~ ~ (n+k) .

IX. PROPERTIES OF THE INTERTWINING OPERATOR

Let K be any formal series of the form (6.1),
with coefficients that are symmetric tensor fields
without any a priori subsidiary conditions. For
the moment we impose neither transversality,
homogeneity, or tracelessness, but suppose only
that the series (6.1) converges for all z and that
EK exists. This is certainly the case if (6.1) has
a finite number of nonvanishing terms and each
tensor field satisfies some mild regularity condi-
tions. In this general context we seek the equa-
tions for 4 that characterize the image by I of the
subspaces defined by the subsidiary conditions and

by the wave equations.
To begin with we note the identity

(9.1)Ez y a, =(u- v) (u 8„-v B„)E.

This shows that our a Priori condition of trans-
versality, y k =0 or y ~ &,K=O, together with the
conventional choice (6.6) of the degree of homo-
geneity, is equivalent to the conventional choice
of the degree of homogeneity of lac fields:

y ~ B,K=0 (u 8„+-,')C =0,

(n+X+I)II =0 (v 6„+-',)4 =0. (9.2)

From now on we take these conditions for granted.
Next, we record the two expressions for the

wave operator (Q}—Q. From (6.5) and (6.6)

((q}—Q)K = (y28, 2 +2y ~ z S,~ S,+ z2S,2)K

from which we find, using (8.8),

(9.3)

E((Q) —Q)II = (u'8„'+ 2u ~ vs„~ 8„+v'8„')4 . (9.4)

(8.S)

When &=g, the operator pg reduces to multiplica-
tion by s and (8.7) expresses 4, in terms of K„ in
some domain consistent with (8.1). Thus (8.7)
gives us 4, in some domain of 8'x 8' with local
coordinates (u, v ) in which u'&0, v'&0, and
(u+v)'&0, and in all of Wx IT' by analytic continua-
tion. Furthermore, the mapping (8.7) and (8.8)
evidently extends to a dense set of analytic vectors
for the representations 8[D(s+1, s) SD(-s —1, s)]

8
on the' one hand and for the representation (Rac
SRac) $(RacSRac) on the other hand.

The domain of applicability of (8.7) and (8.S) can
be extended by expressing I' as an integral opera-
tor, for example, by making use of Fourier and
Mellin transforms, but our present purpose does
not require it.

C(u, v) =(EK)(y, z), (8.7)
The subsidiary conditions 8 ~ k =0 do not seem to
be expressible in a simple way in terms of @, but
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on the solution space of the equation ((Q) —Q)K=O
we find a simple result:

l

(&9) —Q)& = '4 =o=B 'C
Q V

By' Bg+ „B„C=0. (9.5)

Proposition 11. The operator F defined by (8.7)
and (8.8) maps the space of solutions of (6.7) into
the space of solutions of (7.13). The mapping is
bijective modulo special gauge fields.

Recall —definition 6—that if K is a special gauge
field, then it has the form

p (4 k!) '(z 8,)' I (n+2) ~ ~ ~ (n +k+1) A.

(9.9)

The conditions on A enumerated after (9.6) imply
that B„'y=B„'4= B„~ B„4=0. These conditions on

+, and +, are sufficient conditions for (9.7) to be
a special, bilocal gauge fields, but they are prob-
ably not necessary. Thus I' maps the special
gauge fields into a (probably proper) subset of the
special, bilocal gauge fields.

2 =[(z s,)y'+(2n —1)z y]A, (9 6)

4-u 4, +v 4,
with rather special factors

0, =V- B„4, 4, =-Q

(9 7)

(9.8)

with y B, A = B,. B, A = B,'A = 0. %e expect that 4
=I'g has the form of a special, bilocal gauge field—
definition 10—and find that indeed
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