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The calculation of masses of q"q and q'q' baryons is carried out within the framework of Jaffe's
approximation to the MIT bag model. A general method for calculating the necessary SU(6}&SU(3)e SU(2)
coupling coefficients is outlined and tables of the coefficients necessary for q'q and q'q' calculations are
given. An expression giving the decay amplitude of an arbitrary multiquark state to arbitrary two-body final
states is given in terms of SU(3) Racah and 9-kp, recoupling coefficients. The decay probabilities for low-

lying 1/2 q'q baryons are given and compared with experiment. All low-lying 1/2 baryons are found to
belong to the same SU(6) representation and all known 1/2 resonances below 1900 MeV may be accounted
for without the necessity of introducing I'-wave states. The masses of many exotic states are predicted
including a 1/2 Zo at 1650 MeV and 1/2 hypercharge —2 and + 3 states at 2.2S and 2.80 GeV,
respectively. The agreement with experiment for the 3/2 and 5/2 baryons is less good. The lowest q'q'
state is predicted to be a 1/2+ A* at 1900 MeV.

I. INTRODUCTION

A dogma of contemporary particle physics is
that hadrons are composed of quarks', all known

baryons and mesons may be constructed from
quarks of differing flavors. To ensure that the
Pauli principle is satisfied and to provide for
confinement of quarks, there being no definitive
evidence that free quarks have been observed, the
additional quantum number of color was introduced
with the proviso that all observable hadrons be
color singlets.

The lowest states of mesons and baryons are
assumed composed of qq and q', respectively, and
those hadrons not belonging to such SU(6) repre-
sentations a,s may be obtained from the states, of
two or three S-wave quarks are assumed in the
usual quark model to be constructed from a. con-
figuration in which one or more of the quarks has
a, nonzero relative angular momentum. This
approach has obtained a, considerable degree of
success with the SU(6) 80(3) (Ref. 2) and the
SU(6)~ (Ref. 3) versions of the model. Because of
the large numbers of parameters involved in the
calculati. on of the masses of the hadrons, the pri-
mary success of these models is in correlating the
large amount of data, although a, limited amount
of predictive power is possible, particularly if
some particles are missing from otherwise com-
plete multiplets.

The MIT bag model' is relativistic —a feature
from which will derive probl. ems in calculating
decay amplitudes —the quarks being either mass-
less or nearly so. 'fhe four unknown parameters
embodied in the model have been chosen to fit the
masses of certain members of the meson octet
and the baryon octet and decuplet. Thus, one has
the ability to investigate the nature of other bar-

yons without having to introduce additional para-
meters into the model, unlike for the usual quark
models. In particular, the bag model permits an
investigation of those hadrons containing more
than the canonical two or three quarks. Jaffe' has
taken an initial venture in this direction by cal-
culating properties of mesons constructed from
q'q ' and was able to argue that the results are not
necessarily in disastrous disagreement with ex-
periment. Indeed, recent work' suggests the as-
signment' of the «(700) as a q'q' meson may be
more nearly correct than assuming it to be a E'-
wave meson as is done in the usual quark models.

Calculations involving more than three quarks
are invariably tedious; Jaffe' introduced a method
which makes calculations more tractable albeit
at the cost of ignoring the A- Z ma, ss difference.
Even with this simplification, one must still mani-
pulate clusters of several quarks or antiquarks
belonging to irreducible representations of SU(6),
SU(3) as well as SU(2). Pedestrian techniques
suffice when only two or three quarks are involved,
but with a. greater number of quarks, it is prudent
to generalize to SU(6) and SU(3) the familiar
Racah algebra of the SU(2) group. The SU(3) group
ha, s been of considerable use in the shell-model
description of light nuclei, ' and in recent years a
considerable a.mount of technology for use in such
calculations has been developed, including analy-
tic expressions for certain SU(3)& SU(2) coupling
coefficients and Racah coefficients' " as well as
computer programs that allow the evaluation of
essentially any SU(3) & SU(2) Wigner or,SU(3)
Racah coefficient. " Similarly, a SU(3) 9-Xp, co-
efficient which relates unitary transformations
among nine SU(3) representations and. is the
generalization to SU(3) of the SU(2) 9-j symbol
has been discussed. '"" All these devices will be
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necessary in treating problems involving an arbi-
trary number of quar'ks.

The SU(6) group is also familiar to nuclear
spectroscopists as a transformation among the
six degenerate levels in the nuclea. r 1s-Od shell,
although in this case, the coupling coefficients are
not useful as the relevant subgroup in the shell
model is SU(3) rather than SU(3) 8SU(2). However,
much of the formalism is almost identical and may
be borrowed with minimal change; the necessary
SU(6) ~ SU(3)8 SU(2) coupling coefficients have
been either already calculated" or may be obtained
in a straightforward manner. "

'The purpose of this paper is twofold. 'First,
more general techniques are developed to calculate
the energies and decay amplitudes of multiqua, rk
states. This necessitates introducing recoupling
coefficients connecting six and nine SU(3) repre-
sentations and SU(6)& SU(3) 8 SU(2) coupling co-
efficients which may have outer multiplicity. This
in turn requires a more precise notation to label
the representations of SU(3) than its dimension.
This will be done in Sec. II.

Secondly, the application of these techniques to
the calculation of masses of baryons constructed
from the configurations q'q and q'q' and the decay
amplitudes of the q'q states and -a comparison with
experiment will be done in Secs. III, IV, and V.

II. MASSES AND DECAY RATES: METHOD OF
CALCULATION

In this section. the MIT bag model will be very
briefly discussed to establish the notation for the
SU(N) operators and for the basis states. The
method of calculating the energy and the decay
amplitudes of a, several quark state will then be
discussed.

In the MIT bag mode14 the ma, ss of a hadron is
assumed composed of the contributions from the
rest and kinetic energies of the quarks, E„ the

contributions from quantum fluctuations (a volume
term, E„, and the zero-point energy, Eo) and the
so-called color-magnetic energy arising from the
exchange of colored gluons, E:

E=E +E„+E +E

E,=—P [y(m,R)'+m 'R']' ', m, =279 Me&,
1~1

E 3 mR'B, . 8'
. = &46 MeV

1.84
0

a~~~mR mR
R f/) g

In Eq. (1) R is the bag radius and M(m, R, m&R) is
the color-magnetic interaction energy obtained by
integrating the quark wave functions over the bag.
Jaffe has shown that if M(m, R, m~R) is replaced
by

M(m, ~R, m, ~R
I,

'N ' '& )'
where m, is the mass of the s qua, rk, n, the num-
ber of s quarks, and N is the total number of
quarks, the color-magnetic contribution to the
energy of an n-q uark-m- antiquark state may be
expressed solely in terms of the quadratic group
invariants (Casimir operators) of SU(2), SU(3),
and SU(6). The kets are thus naturally labelled by
the irreducible representations of SU(3)8 SU(2)
& SU(6). Throughout this paper the subscripts f
and c shall refer to the flavor and color degrees of
freedom and SU(3)8 SU(2) will be a group of
transf ormations among color- spin variables. 'To

ensure antisymmetry of the total wave function
of identical particles, the SU(3)& representation
must be the conjugate of the SU(6) representation.

The basic SU(3) 8 SU(2) n-quark-m-antiquark
product ket will be written as

(2)

The quarks and antiquarks are all assumed to have
angular momentum one-half which shall be loosely
referred to as spin; the quantities S„S„And S,
are the spins of the n-quark configuration, the m-
antiquark configuration, and of the total state, re-
spectively. In the following, as in the ket above,
[f]=[f,f, ' ' ' f,] will denote the Young tableaux
which labels an irreducible representation of SU(6)
and —f rom the relation between the irreducible
representations of SU(N) and S~ (Ref. 17)—also
the representations of the symmetric group of k
particles. ~=g'2 -8'3 )

(3)

Young tableaux may also be used to label repre-
sentations of SU(3);, however, if it is recalled
that a. column of three boxes in a Young tableaux
transforms as a scalar under transformations
belonging to SU(3), it is apparent that two labels
will suffice to label a representation of SU(3)
rather than the three indices of a Young tableaux.
If [g,g~, ] denotes a Young tableaux labelling a re-
presentation of SU(3), then the quantities'
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TABLE l. Allovyed SU{3) SU(2) representations contained in all SU(6} representations for
three, four, and five quarks. The notation for the SU{3) SU{2) representation is {A,p)S,
where ~ and p, are given by Eq. {3).

[3]

[21]

(30)~2, (11)~2

(30} (11} (1 1} (00)

(11)~ (00)~

[4]
[31]
[22]
[211]
[1111]

(40)2, (21)1, (02)0
(40)1, (21)0, (21)1, (21)2, (02)1, (10)0, (10}1
(40)0, (21)1, (02)0, (02}2, (10)1
(21)0, (21)l, (02)1, (10)0, (10)1, (10)2
(02)0, (10)1

[5]

[32]

[311]

[221]

[2111]

[11111]

(50}2, (»)2, (12)2

(50)2, {31)2, (31)2, (31)2,

(01)~

(50)~~, (31), , (31), , (12), ,

(01)+ (01)+

(31)+2, (31}+2 (12}+g (12)+2,

(20)~2 (01}~2, (01)~2

(31)2 (12)2, (12}2, (20}2,

(12)2) (20)2 (20)g~ (01)p~

(01)~2

(12)&, (12), , (2O), , (2O}, ,

(12},, (»), , (20)&, (20)2,

(20},, (20), , (20), ,

(20},, (01)„(01),, (01),

(01}~2

provide an equivalent, al.beit more convenient,
labelling scheme. The dimension of the SU(3) re-
presentation (Xp) is simply

g(~u) = 2(~+ I)(p+1)(~+ v+2). (4)

This labelling scheme has certain advantages
over the method of labelling a representation by
its dimension. First, the use of (A.p) provides a
unique labelling scheme, whereas inequivalent
representations may have the same dimensions
[a. trivial. example of this is provided by the repre-
sentations (01) and (10), both of which have dimen-
sion three, although the first is the representation
for an antiquark and the second for a single quark].
Second, it provides a simple scheme of relating
the representations of particles to those of anti-
particles: If (Ap, ) denotes an SU(3) representation
of n quarks, then (pX) is the equivalent repre-
sentation of n antiquarks. In particular, since
the total SU(3), representation must be (00) or a
singlet, one has (A,p, ) = (P,X,). Third, powerful
group-theoretical techniques —such as the %igner-
Eckart theorem —may be more easily introduced.
This is of particular importance when corrections
to the Jaffe approximation are calculated. Finally,
this labelling scheme is in common usage among
nuclear theorists, from whom one may borrow a

vast amount of technology developed for the SU(3)
shell model of light nuclei.

The total ket is necessarily a color singlet (00)„
but it does not in general belong to a specific SU(3)
flavor or SU(6) representation.

Because SU(3)cgI SU(2) is not a canonical subgroup
of SU(6), the group labels of SU(3) SSU(2) will not,
in general, provide a sufficient number of quantum
numbers with which to label a state uniquely. In
these instances the states are arbitrarily ortho-
gonalized and a label u is introduced" to dis-
tinguish the kets. 'This multiplicity first occurs
for the five-quark state [311](20)-,'. In Table I
are listed the allowed SU(3) S SU(2) representations
which occur for SU(6) representations of up to five
particles. A compilation has been given earlier
by Eiagen and MacFarlane, " although their tabu-
lation contains several errors.

The label p which appears in the ket, Eq. (2),
provides a labelling for orthogonal states which
appear iti cases of outer multiplicity (the familiar
example is in the product 8 & 8, for which the
representation of dimension 8 appears twice). In
the present work p will not be needed to label the
basis states since for the SU(3) representations of
states of one or two antiquarks either A. or p is
zero, and one may easily show that in these in-
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stances there is no outer multiplicity. However,
it is necessary in the q'q' states and more com-
plicated states and in the recoupling calculations
which occur in the calculation of decay amplitudes.

The remaining quantum numbers appearing in
the basis ket, I and Y, are the isospin and hyper-
charge. Throughout the main body of this paper,

the quantum numbers of the antiqua, rks will be
written with a bar, as in Eq. (2).

As already indicated, the basis ket, Eq. (2),
does not in general belong to an irreducible repre-
sentation of SU(6). To obtain such a state requires
the use of appropriate SU(6) & SU(3)S SU(2) vector
coupling (Clebsch-Gordan) coefficients. "

Iq"[f,](&,p, )yI, Y ~ q "[f](&,v, )yI Y, ', [fg](&t&~)P&pIY&

(X1V1)~~ l~,
&[f,](&,~,)P,~, x [f,l(&,~,).S,~, Ilf&](~&~&)P~P&

~~ l~l~C l l
x Iq"[f,](X,p, , )~(A.,p, ,)P, (o, I,Y, xq~[f, ](X,Ti, )~(A,P,)P, (u,I,Y„(X)p,,)P(uIY) . (5)

The ket on the right-hand side of Eq. (5) is just the basis ket from Eq. (2). A method of calculating the

necessary vector coupling coefficients is given in the Appendix.
The magnetic-color contribution to the n-quark-m-antiquark state (5) may be written as

E =MI m, ~A, m, —'R
I

—a(8(n+m)+ 28, '"(tot) --', S,(S,+1)'N iR
+ 4[8',"(q), —8,'"(q) —8,'"(q)]+-,'[S, (S,+ 1)+S,(S,+ 1)]],

(6)

where 89' and 8,'" are the Casimir invariants of SU(6) and SU(3), respectively, the eigenvalues of which
are"

and

(fflII'."'IN)=Zft
I Zf) +3(f fj f f +5(f f)

&(~u) I
8'."

I
(&p)& =-'(~'+ &u+ u'+»+ 3u). (8)

The values obtained using these expressions differ from those of Jaffe by factors of 4 and 2 for SU(6) and

SU(3), respectively, and account for the difference in the coefficients appearing in Eq. (6) and the analo-
gous formula in Ref. 7.

The basis states, Eqs. (2) and (5), do not belong in general to a specific representation of SU(3)&. This
is often advantageous because of the appreciable amount of SU(3)&-symmetry breaking induced by the s
quark having a nonzero mass. However, the calculations of the decay amplitudes of the q4q states into
(q')(qq) states are performed most easily if the multiquark states have a. specific SU(3)z representation.
Fortunately, the unitary transformation is easily performed,

(9)

Y =p + q —-', (2Xq+ p, q),

I = a(P y+p —q),
(10a)

where the indices P and q are restricted by

the SU(3) & SU(2) Wigner coefficients may either
be taken from de Swart" or from Akiyama-
Draayer. " The square bracket on the left-hand
side of Eq. (9) indicates the usual angular momen-
tum coupling to I and I~.

The allowed values of hypercharge and isospi:n
occurring in the SU(3)& representation (X&p,&) are

O~p~ A~,

P~&q~& p, y.
(10b)

(11a)

where N is the total number of quarks, and the
number of s quarks which occur in the state
(X~/~)YI is

These relations hold for systems of both quarks
and antiquarks. 'The number of s quarks which
are allowed for (A&p&) is

1
n~ = 3 (N+ 2X~+ p, y) —p —,q,
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n, =p+q+ 3 (N —2P~ —X~) . (lib)

'These restrictions have important phenomeno-
logical implications on the mass of the lightest
q'q and q'q' baryons. "

The Pauli principle requires that for a group.
of identical particles, the SU(3)& representation be
conjugate to the representation of SU(6); thus the
imposition of an SU(6) symmetry on a system of
n quarks or n antiquarks immediately restricts the
allowed values of hypercharge and isospin which
may occur for that SU(6) representation. Similar-

I

ly, the number of s quarks or antiquarks is also
restricted. E.g. , the SU(3)& representation con-
jugate to [31] is (10)&, from Eq. (11a) this state
has at least one s quark. It is important to realize
that this restriction only exists for identical
particles and does not impose any relation what-
ever between the SU(6) representation and the
allowed SU(3)z representation of the total state of
n quark and rn antiquarks.

The matrix elements of &„„in a basis of s-
quark-m-antiquark states labelled by irreducible
representations of SU(6) are

(q"[f ]I Y, ; q [f]I,Y, ; [f ](00) cu SIp/H~ /q"[ f ]I Y„.q [f,]I,Y„[f'](00),~ S IYp)

([f,](X,p, ,),S,u), x [f„](7,p. ,),S,2, ~[f,](00),S,(u, p)
8 td (i Wr)I 1
S id(XP)

&& ([f,](&,u, ),S,~, && [f,](&,Ti, ).S,~, i [f(](00).Sg~ p)

&&][8(n+ m)+ 26, (tot) —', S,(S-., + 1) —46, (q) —4@,(q)+E, +&„+&,]6([f ], [f'])
+48, (q)+-', [S,(S, + 1)+S,(S, +1)]]. (12)

The SU(3)& representations of the quarks and anti-
quarks are not explicitly written as they are deter-
mined by the SU(6) representations. The evalua. —

tion of the relevant SU(6) & SU(3)8 SU(2) coupling
coefficients from known coefficients is described
in the Appendix and the ones needed for the pre-
sent calculations are given in 'Table II for the q'q
baryons and in Table VIII for q'q'. For given
SU(6) representations [f,] and [f,] the matrix is

' constructed from contributions of all allowed [f,]
and diagonalized, the eigenvalues being the pre-
dicted masses.

Clearly, the eigenvectors can be expressed as
linear combinations of either the irreducible re-

TABLE II. The SU(6) &SU(3) @ SU(2) vector coupling
coefficients necessary in the q q calculation.

[31]x [11111]
(10)0x(01)2 (10)1x(01)2

presentations of SU(6) or of the SU(3) 8 SU(2) basis
states of Eq. (2). Although the eigenstates of H~,
are nearly pure SU(6) states (the worst admixture
for a q'q state is less than 4%), it is in terms of
the SU(3) 8 SV(2) basis states that the decay ampli-
tudes are most easily calculated and it is in terms
of these basis states that the eigenvectors of IIb„
are given in 'Table III.

For a given SU(3) 8 SU(2) basis state, Eq. (2), it
is straightforward to calculate the overlap with a
particular baryon && meson state. When the proper

TABLE III. Eigenfunctions of the color-spin interaction
of q q baryons in the SU(3) SU(2) basis. Allowed states
of q q not listed are automatically eigenstates of the
color- spin interaction.

[31]x [11111]8=-&2

(lo) o (10)1

[42111](OO)",

[21](00)2

[f](Ap)S
[22] x [11111]

(10)0x {01)+2 (10)1x{01)+2 (10)2 x(ol)2

—6.486
-36.181

0.824 38
0.566 03

—0.566 03
0.824 38

[211]x [11111]S =-+2

(10)0 (10)1

[32211](OO),

[21](00)+2

[32211](00)+2

[111](00)~2

—&/v 2

(4) i./2

. (&)i/2

all others +1

(Q) i/2

(X) i/2

11.099
—5.766

13.333
—12.000

0.584 71
0.811 24

—0.81124
0,584 71

0.725 48
0.688 25

—0.688 25
0.725 48

[211]x [lllll] g=2
(lo) 1 (lo)2
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linear combinations of the SU(3) 8 SU(2) basis
states are taken to produce eigenstates of H~, in
both initial and final channels, this overlap is the
decay amplitude of the baryon into that particular
baryon x meson channel.

'To calculate the overlap of an n-quark-m-anti-
quark basis state with a particular (q" oq o)

(q Oq "o) baryon-meson state, one must first de-
couple the mp quarks from the remaining n —mp

quarks, decouple the pRp antiquarks from the m-
antiquark configuration using SU(6) ~ SU(3) 8 SU(2)
coupling coefficients, and then recouple the
SU(3)&, SU(3)„and SU(2) representations to obtain

I

the appropriate final state. Although one could
decouple mp quarks from the n-quark configuration
and then recouple them to the m-mp antiquarks by
a number of SU(3)&SU(2) coupling coefficients,
there is a great advantage to first express the
basis state as a sum of SU(3)1' states by applica-
tion of Eq. (9), for one is then able to exploit
properties of SU(3) 9-Xp. coefficients. The overlap
between a particular n-quark-m-antiquark baryon
basis state and the product of a (n —m, )-quark-
mp- antiquark baryon and a mp-quark-mp- antiquark
meson basis state may be evaluated f rom

&q" "[f.](~.p'. } S.(() q" [f'](~'l1')p'~'l[f ](& )u». S "»
(X 2l 2)C(X 2''2) C

~q"[f1](~ i1 )yP p } S» "q [f ]p, (u 4( p, ,).S,(d, ; (~,u, ,),(00),SIY)

2 2

r (";-")"
727~

&q -"[f,](~,u, ,),S,((),q"[f,'](X,'i1,'),S,'()1l
I [f ](p.,z, ),S,(d,)

(X2l 2) (X'2l 2)&

(~q)(x,',&,'), (~,g, )) (z,v. ) (&lvl) P,v, )

x g II, (X,p, ) (7,'p,') (P,.,A.,) II1 ()1,p, ) ()1,'p,') (A,,p, ,

(XBl B )
()tN IIN ) OO Oo 00 ~B O'B ~N +N

S S' S',

(»)"ZU ' S2 S2 S2 2 &())»s4I1)Ys" (~»~4I~Y~ 1(~1p,1)sIY&.
IB IN

SB SN S rBrN

In Eq. (13) the subscripts f and c on the SU(3) 9-A.p, symbols imply that all the representations within that
symbol are SU(3)~ or SU(3), representations, respectively. n& is the dimension of the representation [f] of
the symmetric group, and (Xsl"s)1' and (X„p'11)z are the SU(3)z representations of the baryon and meson
states. Although the SU(3) 9-Ap, and SU(2) 9-j symbols are unitary as are the SU(6)& SU(3) 8 SU(2) co-
efficients, the transformation represented by Eq. (13) is not a unitary representation, since the only
SU(3), representation allowed for the hadrons are color singlets„(00), . This immediately implies that
(&,P, ), = (P,&,), and (X,'P,'), = (p, ,'X,'),. Using Eq. (A13) from the Appendix, the SU(3), 9-A.p, symbol may be
expressed in terms of the dimensions of the SU(3), representations. Further, there is no sum 111 Eq (13)
over (A, p.,)&, (A,,'p, ,'}1, (X,p, )1, or (A.,'p,')& as the SU(3)& representations are fixed from the requirement of
antisymmetry once the SU(6) representations [f,], [f,'], [f,], and [f,'] are determined.

For the q q case which is of greatest interest, m = m, = 1, (X,p, ,), = (A.,l, )z = (00), S, = 0, and the 9-Al and
9-j symbols reduce to Hacah coefficients. Equation (13) then simplifies to

~q'[f ](10),(X,l1, )1 S, x q[1](01),(01)~; (00), (A. ,p, ,)~IY)

= Z &If2](00},S2 x [1](10).a ~[f,](1o).S,&~
—"

f28 2

&& Ug[(&1)p1))(10)(X,l, )(61); (X,p))(A„I )1]1, (US. '1S),,';S,S11)—
x Iq'[f2](~»3)r(00), Sa x qq(Z~ p11 )1 (00),S„;(00},(A, P,)~SpIY). .

2 1 ~N ~N f ~tP' g f SB SN SySgP

Iq'[f, ](& P, } (00) S x qq(AP)(00) S; .(00, ) (A. 9, ) 8pIY) . (14)
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TABLE IV. Decay amplitudes of selected
& q q baryons; the quantity p is defined by Eq.

(15).

[fg] = [31], (~gag) —(11), Sg =
p

p y([42»1]; g ) y([32»1];p) y([42»1] +)

(00)
(11)
(11)
(11)
(00)
(11)
(11)
(11)

0
0
0
0
1
1
1
1

(11)
(00)
(11)
(11)
(11)
(00)
(11)
(»)

0.184
0.521
0.391
0.291

—0.088
-0;249
-0.187
—0.139

-0.088
—0.249
-0.187
—0,139
-0.184
-0.521
-0.391
—0.291

0.204
0.577
0.433
0.323

[foal= [22], (A,gp,g) =(11), Sg=)
(~tI t) P 'Y([21]'p ) q([33»1] ~)

(00)
(00)
(11)
(11)
(11)
(11)
(11)
(11)

0
1
0
0
1
1
0
1

(11)
(11)
(11)
(11)
(11)
(11)
(03)
(03)

1
1
1
2

1
2
1
1

0,250
0.144
0.177

-0.395
0.102

-0.228
-0.500
-0.289

—0.289

-0.204
0.456

0.577

[f(] = [211], (Xg)Lfg) = (11), Sg =
p

(~t&t) P 'Y( [32211];p ) y( [21];p ) y([»1];,)

(00)
(11)
(11)
(11)
(11)
(00)
(11)
(11)
(11)
(»)

0
0
0
0
0
1
1
1
1
1

(11)
(11)
(»)
(22)
(30)
(11)
(»)
(11)
(22)
(30)

1
1
2
-1

1
1
1
2

1
1

-0.319
0.225

-0.101
—0.403
-0.403

0.124
—0.088

0.039
0.157
0.1,57

-0.052
0.037

-0.016
—0.065
-0.065

0.398
—0.281

0.126
0.503
0.503

-0.181
0.128

-0.057
-0.229
-0.229

[f(]= [211], Q,gp,g) =(30), Sg =
p

p Y([3222»]; p ) Y([21];p ) y( [111];p ) y( [32211];p )

(00)
(11)
(11)
(11)
(11)
(11)
(11)
(00)

0
1
1
1
0
0
0
1

(30)
(11)
(22)
(30)
(11)
(22)
(30)
(30)

0.382
0.382
0.270

-0.270

—0.275
—0.275
-0.195

0.195

-0.094
0.513
0.513
0.363
0.132
0.132
0.094

-0.363

-0.577
—0.577
—0.408

0.408

Combining the y s with the coefficients of the SU(3) S SU(2) basis states in the eigenstates of H~„one has

&(If l, If 1, (&~« ~)y, (&«&«)g, Ss, S~ S«»=~C(&, S«)Y(lAl, If ), (4« ~)y (&«I «)y, Ss, S~, S«, S„p),
f

where ~ labels the eigenfunctions of Hb„. %ith a
knowledge of the y's which are tabulated in Table
IV, the overlap between any q4q basis state and a
q' baryon qq meson product state may be calcu-

lated using only readily available SU(3) & SU(2)
coupling coefficients. '"" 'The outer multiplicity
p enters only in the octet-octet example; the de-
finition used in 'Table IV is that of Ref. 12.
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III. THE —' BARYO.NS FROM q4q

In this section a comparison between the masses
and partial decay rates of the —,

' baryons calcu-
lated within the q'q configuration and experiment
will be given. A comparison when possible will
also be made with predictions of Horgan et al.""
who describe these same baryons as P-wave ex-
citations in the SU(6) 80(3) quark model in which
a phenomenological form for the mass operator
containing a number of parameters is postulated
and the parameters a.re then va.ried to obtain a,

reasonable fit to the experimental input. As al-
ready mentioned, the present calculations using
the MIT bag have no free parameters, the para-
meters being fixed from other hadrons. 'The

masses of all states which can be constructed
from a q'q configuration are given in 'Table V.

Surprisingly, it will emerge that the agreement
for the masses is often as good, and in some
places better, than with the predictions of the
SU(6) 80(3) model. Admittedly, the SU(6) 80(3)
calculations were concerned with more than just
masses, but nevertheless, this apparent agree-
ment with experiment is certainly very encourag-
ing. It will also emerge that while SU(3)z is often
badly broken [the admixtures due to the nonzero
s quark mass being determined in this model by
Eq. (9)], the SU(6) color-spin symmetry is very
good with the worst admixture being less than 4%%uo.

All of the 2 hadrons with mass less than 1900
MeV belong to the single SU(6) represenation [21].
(Because a column of six boxes in a Young table-
aux transforms as a scalar under SU(6), [21] is
equivalent to [643333] which would be the appro-
priate U(6) representation for the baryons. ) The
masses of states which can be constructed
from a q'q configuration are shown in Fig. 1.
Because of the approximation made in passing
from Eq. (1) to Eq. (6), the masses are quoted to
the nea. rest 50 MeV.

'The comparison between the experimental
partial decay ra, tes a,nd the calculated decay pro-
babilities must be taken sum grano salis; all
dependence on the dynamics, e.g. , phase space or
coupling constants, has been ignored. Further,
the possibility that some decays would either vio-
late the Zweig rules or decay via the emission of
an extra gluon ha, s been ignored, although it is
anticipated that such decays should be hindered.

A. /=0, Y=o states

According to the rules enunciated by Jaffe, ' the
lightest-mass baryons constructed from a q q con-
figuration will ari. se from states for which the four
quarks have SU(6) symmetry [31]. The conjugate
SU(3)z representation is (10)z and, as already

[31]
$ —2

(0, o), (1, 0)

(2, -1), (2, 1)

(o, o)

1.40, 1.85

1.65, 2.05

1.90, 2.25

1.85

2.05

2.25

I.22]

2 $ —X

(o, o), (1,0), (0, 2)

(~2 -1), (~2 -1),{~2,1)

(1, o)

1.50

1.70

2.10

2.00

2.15

(~2 1)(~2, 1)

(0 0) (1,0)2,
(2, 0), {1,2)

(2, -1)', (2, -1),
(j2-, 1), (~2, 1)

(0, -2), (1,-2),
(O, 0), (1, 0)

1 ~ 70, 1.95

1.90, 2.10

2.05, 2.30

2.25, 2.45

2.45, 2.60

1.60, 2.00

1.80, 2.15

2.00, 2.30

2.20, 2.45

2.40, 2.65

2.00

2.15

2.30

2.45

2.65

S=

(1,O), (2, O), (2, 2)

(2, —1), (2, -1), (2, 1)

(O, -2), (1,-2), {1,0)

(2, -3), (2, -1)
(0 -2)

2.25

2.35

2.50

2.65

2.80

2.00

2.30

2.45

2.80

noted elsewhere, "this requires that all states
which belong to the nonet constructed from q'[31]q
contain at least one s quark. As the construction
of a hypercharge-0 state requires either one or
three (i.e. , s s) s quarks, it immediately follows
that the lowest member of the nonet has hyper-
charge 0. 'The mass and decay probabilities for
this and other A* states are given in I'able VI.

'The calculations obtain a A* particle near 1400
MeV, tantalizingly near a known resonance at 1405
with the appropriate quantum numbers. This

TABI,K U. The masses (in GeV) of all baryons which
may be constructed from a q q configuration as calculated
using the Jaffe approximation to the MIT bag. The SU{6)
representation given is that of the four quarks. The
masses are given to the nearest 50 MeV.
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assignment is not completely uncontentious; the
A* (1405) is near the NK threshold and it has been
suggested that it is a virtual bound state of the
le system. The wave function of the lowest parti-

cle in this calculation does have an appreciable
amount of a NK component, although the Zp com-
ponent and components involving vector mesons
are more important:

( q [31]q I = I = Q) =- (I/~3) $0.32
[ Qp) —Q. II

(
Argo) + 0.26 1XIf) + 0.66

(
pp) —0.23

~
Ago) + 0.551NIf )$

+ components involving nonsinglet color mesons and baryons. (16)

Here 7), and Q, represent that part of the physical
p and P mesons having no strange quarks. The
harmonic-oscillator quark model also is fraught
with difficulty" if the A~(1405) is not included in
the lowest L = 1 [70] multiplet.

A second difficulty shared with the usual quark
model involves the ratio of the coupling constants
g~~~, and g~*„g; if one assumes the ratio of the

amplitudes in the wave function, Eq. (16), is just
the ratio of the coupling constants, then

gA NK (17)

This is identical to the result —not surprisingly
since, for both models, the SU(3)/ representation
is a nonet —obtained in the usual quark model"
where it is usually assumed the A*(1405) is a

————t:22]

~ ~ ~ ~ ~ ~ ~ ~ ~ $2 1 1 ]

S=—I

0
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Ip X Q Q

SU(3)/ singlet. However, this result is in conflict
with analyses using the K-matrix formalism; the
ratio of the coupling constants preferred from
these analyses is a factor of 3 larger than Eq. (17),
and apparently is independent of the parametriza-

t21 1j

t22j—

/
/

/
/

/ --—---—Z
// / ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ ~ ~ ~ OON g 8

/ /y ~ l

!i
y/ !

/ z/
/ N, H, B

// )io ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ +
/ / /

X,Z, Z, Z,

/y +/ // /

p' A
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ s ~ t N~A

// ---————p XZp
/ z N, H

/1 /

/(z
N

/
/

/)

—2200

—1800

—1600

—1400

—1200

FIG. 1. The energy spectrum (in MeV) of 2 q q bary-
ons. The left column is the spectrum which would re-
sult were the strange quark massless, and the right
column is the result assuming a strange-quark mass of
279 MeV. The and Z are exotic particles with (I, F)
= (2, —&) and (2, 0), respectively. Other particles may
be found from Table V.

tion used for the K matrix. "
The next heavier A* particle emanates from the

q'[22]q configuration. It therefore belongs to a
different SU(3)& multiplet than does A*(1405), un-
like the usual quark model for which the two
lightest A* particles are members of the same
nonet. Both particles belong to the same SU(6)
representation [21]; however, the amplitude of
the [21] for the A*(1405) is actually only 0.997
because of the mixing induced by the color-spin
interaction. The q'[22]q pa.rticle i's predicted to
have a mass of approximately 1700 MeV, near a

~~* resonance observed at 1670 MeV. The A*

(1670) is observed to decay into NK, Aq, and Zm

with approximately equal rates'~'"; this supports
the assignment of this state as deriving from
q'[22]q a.s the predicted rates from this state into
the three channels are also similar in magnitude.
The experimental decay rates suggest the ordering
of states predicted b y the bag model is cor rec t
since the q'[31]q state which is here assumed to
be the A*(1405) is predicted to have a, very small
amplitude for decay into Ag. This in turn implies
that the form of the contribution from the color-
spin interaction, Eq. (6), is of the correct form.

There is also an observation" of a small amount
of decay of A*(1670) to Z*(1385)m, an impossible
feat for states constructed from either q'[31]q or
q'[22]q, both of which can decay only to the baryon
octet. There must, therefore, be a small admix-
ture from the q'[211]q configuration. Such admix-
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TABLE VI. Decay probabilities for selected q q particles as predicted using the MIT bag model. The SU(6) repre-
sentations given are first that of the four quarks, and second, that of the total state or the dominant SU(6) representa-
tion in those cases where the color-spin interaction breaks SU(6). The SU(6)O(3) mass estimates are from Hefs. 2

and 21.

sU(6)

Decay probabilities for N*
[22] [31] [211] [22] [211]
[21] [21] [21J [21] [32211] sv(6)

Decay probabilities of Z*
[31] [22] [31]
[21] [21] [42111]

[211]
[21]

Masses (MeV)
Bag
sv(6)@o(3)
Observed

1500 1650 1700 1900 1950
1516 1670
1535 1700

Masses (MeV)
Bag
sv(6) g o(3)
Observed

1400
1587

(1480)

1700
1639
1620

1850
1745
1750

1900

Decay channel

s
N'gp

AK
ZK
N&

NAs

N@0

ZK*
Np

Ap

6.3

18.7

2.1

6.3

0 4
3.5

9.5

1.7
9.5

0.3

4

7.6

6.3

9 4
9 4

2.1

3.1
3.1

0.0

0.0
0.0

9.5

14.1
1.6

7.6

Decay channel
Zgp
Zvr

A7t

NK

Z@0
Zp
Ap
NK*

1.2
2.3
0 4
2.3

5.1
9.5
1.7
9.5

3.1
6.3
9.4
6.3

1.0
2.1
3.1
2.1

5.1
10.2
1.7

10.2

1.2
2.3
0.4
2.3

0.0
0.0
0.2
0.2

0.5
1.1

14,2
9.5

2.3
5.1

sU(6)

Decay probabilities of A *
[31] [22] [211]
[21J [21] [21]

[31]
[42111.] sv(6)

Decay probabilities of "*
[31] [22]
[21] f21]

[22](I=2
[21]'

Masses (MeV)
Bag
sv(6) g o(3)
Observed

Decay channel
Zz
Aq)
NK

Zp
Ag
NK~

1400
1405
1405

3.5
0.4
23

15.3
1.7
9.5

1700
1675
1670

9.4
g 4
6.3

3.1
3.1
2.1

1870

0.0
0.2
0.2

1.6
14.9
9.5

7.6

15.3
1.7
9.5

3.5
0 4
2.3

Masses (Me V)

Bag
sv(6) s o(3)
Observed

Decay channel

~0

~7l

AK

@0
~p

1650
1724

(1630)

1.2
3.5
1.5

5.2
15.3
6.8

1900
1760

(1940)

9.4
3.1

12.5

3.1
1.0
4.2

1900
1924

12.5
12.5

4.2
4.2

Masses (Me V)
Bag 2250 2250 2800

Decay probabilities of sundry exotic particles
Y=-2, I=O Y=-2, I=1 Y=-3, I=2

SU(6)

Decay probabilities of Y =+2 particles
Zp*[22] Z(*[2111] Z2*[1111]

t'21] '[21]
'

[21]

Decay channel
HK

0 y

Q

0 4
25.3
5.2
1.9

0.4
25.3
5.2
1.9

Masses (Me V)
Bag

Decay channel
NK
NK+

1700

25.0
8.3

1900

0.4
25.3
7.6

2400

100
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tures would arise by including in the Hamiltonian
the small terms dropped from the color-spin
interaction in passing from Eq. (1) to Eq. (8).

The bag model predicts three additional ~&*

particles in the region below 1900 MeV. 'There is
one additional —,

' state identified at 1870 MeV. Its
decays" to NI7 and to Z*(1385)w suggest the
association of this state with the configuration
q'[211]q; the other two predicted states are from
the q'[3l] representations. One belongs to the
[42111] representation of SU(6) and would decay
primarily to Zm; the other is a, member of the
same nonet as A*(1405), but has three s quarks.
Because of. the proximity of these three states to
each other, it is likely that a certain amount of
admixing wiH occur and that SU(6) will not be a
valid symmetry in this energy region.

The A~(1870) decays to A*(1385)m, whereas the
q'[211]q state is predicted to decay to Z*p. This
illustrates a difficulty with the present formulation
of the bag model, a feature which will be of even
greater import in the discussion of the ~ baryons.
The qq pair is assumed to have zero orbital an-
gular momentum relative to the Z~ and are coupled
to spin one. In the nonrelativistic quark model
there is a clear distinction between orbital and
spin angular momentum, but not so here. Al-
though one might effect such a transformation, we
shall content ourselves here with the knowledge
that the bag model predicts an appreciable decay
rate to the Z*(1385).

'There are several other A* particles predicted
around 2 GeV, although there is at present no
firm experimental evidence for any resonance
having —,

' angular momentum. It is apparent,
however, that there is no need to invoke P-wave
excitations of the bag to account for A.* particles
below 1800 MeV.

The lightest five-quark particle predicted to
have the quantum numbers of the nucleon derives
from the q'[22]q configuration rather than q'[31]q
as the A~(1405) did; however, both of these parti-
cles belong to the representation [21] of SU(6).
Consequently, although it might appear that there
is an interweaving of SU(6) representations, in
fact, all the lowest excited baryons of 4 =- —,

' belong
to the same SU(6) representation.

'The lightest-mass N* is predicted at 1500 MeV
and may be identified with a known ¹ at 1535MeV."
From Table VI it is seen thai the largest decay
probability for this N~ is for Rm decay with the
rate for Np a factor of 3 smaller. Experimentally,
the Np rate-appears to somewhat larger than that
for Nm. Again, the usual quark model" shares
this apparent failure.

The next heavier N* is that clue to q4[31] and

belongs to the same nonet as the A*(1405); it is
predicted to have a mass of 1650 MeV. It is
natural to associate it with the N*(1700), although
difficulties present themselves when the predicted
decay probabilities are compared with experiment.
As already noted, since this N~ is derived from
q'[31]q, it has an ss pair and its decay to Nm is,
therefore, only allowed if the Okubo-Zweig-Iizuka
rules are violated; one anticipates that such a
decay process to be at least diminished. Unfortu-
nately, the N" (1700)'s primary decay mode ap-
pears to be Rm. Further, a large decay rate to
ZK is predicted, although only a small amount is
observed. The agreement is in this case, clearly
less than satisfactory.

A further heavier N* is predicted near 1 t00 MeV
which should have a large coupling to ~p, no such
state is reported in this region. Three additional
N* particles are predicted to have a mass of less
than 2 GeV.

C. E=l, V=o; Z*

The experimental information on 5* particles
remains sparse. A 2* has been reported'" at an
energy of 1480 MeV, but has not been confirmed. "
'The only X* particles assigned spin and parity

have energies of 1620 and 1750 MeV, al, though
the SU(6) SO(3) quark model' predicts three
particles in this mass region.

In the Jaffe approximation to the color-spin
interaction, the 4* and 5* particles belonging to
the same multi. piet and having the same number of
s quarks have the same energy. In reality, cor-
rection terms which have been dropped will split
the two particles by 50 to 100 MeV; hence, one
anticipates a —, Z particle corresponding to the
'&*(1405) below 1500 MeV. It is disquieting that
none have been observed, and their continued ab-
sence wi. ll create considerable difficulty for the
bag model. The bag wave function for the lowest
Z* suggests that the Z~ couples only weakly to
possible decay products, perhaps offering an ex-
planation for its elusiveness. 'The decay pro-
babili. ties are given in 'Table VI. The lowest con-
firmed —,

' Z* lies 270 MeV above the A*(1405), a
splitting that appears difficult to obtain within the
bag model.

The next two Z* are predicted at 1700 and 1850
MeV, somewhat above the known 5* particles as
well a,s above the predictions of the SU(6) C30(3)
model if one assumes that a 2 Z* has been experi-
mentally missed. If one were to associate the
particle predicted by the bag model. at 1700 MeV
with Z*(1750), then the Z*(1620) is 200 MeV above
its predi. cted value of 1400 MeV. Neither do the
decay rates shed much light on this puzzle. A
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resolution must await further experimental in-
formation and a more accurate estimate of the
Z* masses.

D. I=—', Y=-1;

'The bag model predicts =* states of masses of
1650 and 1900 MeV plus additional states above
2 GeV. The SU(6) CD 0(3) model' predicts the
existence of two =* resonances at 1724 and 1760
MeV, intermediate between the energies predicted
for the bag states. A ™*state has recently been
reported by Briefel et al." at 1630 MeV and a
possible state in the 1930-to-1960-MeV region.
However, in the absence of further information on
their spin and parity, it would be presumptuous
to identify these resonances with the bag states.

E. Y=2 Z*

The usual quark models construct the baryons
from but three quarks and the maximum hyper-
charge is then one. However, introducing config-
urations such as q4q allows more freedom, and it
is possible to construct V=2 states from such con-
figurations. Such states are of some import:
Their observation would unambiguously signal the
onset of a region where the usual quark models
must need be modified.

Wjthin the context of the bag model, one can
construct hypercharge two states with isospin
zero, one or two from configurations where the
four quarks have SU(6) symmetry [22], [211), or
[1111],respectively. The masses of these Z,*
particles are predicted to be 1700, 1900, and
2400 MeV, respectively, and are members of the

SU{3)z representations (03), (22), and (41), having
dimensions 10, 27, and 35, respectively. The de-
cay modes of these particles are given in Table
VI. The estimation of the energies of the ZI~ par-
ticles is one of the few clear differences between
the usual quark models and the bag; for many of
the other, lower-lying resonances, the bag model
and SU(6)80(3) have similar predictions, but as
already discussed, the usual quark models with
three quarks cannot produce particles of hyper-
charge 2.

A dynamical calculation by Aaron, Amado,
and Silbar" corroborates the bag-model estim-
ates; using the relativistic three-body Blanken-
becler-Sugar equation, S, and D, Z,* states were
predicted near 1830 MeV. Although this S, state
is 100 MeV above the predicted position of the bag
state, this may not be too disturbing in view of the
uncertainties in both calculations. It will be seen
in the next section that the bag predicts a —,

' state
near 2000 MeV. The failure of the Gell-Mann-
Okubo mass formula in Ref. 31—in which it is as-

sumed the D, Z,* is a member of the same 10*
multiplet as the D» mX resonance at 1520 MeV —to
establish other members of the multiplet in which
the Z,* resides is understandable: (3nly the Z,* is
a pure 10* member. All other particles formed
from q'[22]q are mixtures of a 10~ and an octet,
with the admixtures being induced by the mass of
the strange quarks.

The continued absence" of a & Z,* particle is,
therefore, particularly disquieting, and the im-
portance of establishing the properties of hyper-
charge two particles clearly warrants continued
searches, perhaps with facilities having more in-
tense K' beams.

F. Sundry particles

Because of the considerable freedom allowed in
the construction of states from a q'q configuration
arising from the greater number of SU(3)& repre-
sentations, the possible quantum numbers of the
allowed baryons is less circumscribed than in the
case of baryons constructed from a q' configu-
ration. In this subsection a number of particles
which do not fit into any of the usual categories
will be discussed.

4~ resonance is observed at 1650 MeV;
such a state may be formed from q4[211]q and is
calculated to have a mass of approximately 1700
MeV. The SU(6)SO(3) result' for this state is
1663 MeV. Other ~* resonances are predicted by
the bag model at 1950 and 2050 MeV; the former
state lies near a resonance having the appropriate
quantum numbers at 1900 MeV.

The SU(3)f representation conjugate to the SU(6)
representation [211]of four quarks is {21)f, and
the SU(3)z representations for the total state ob-
tained from (21) x (01) are (30), (11), and (22).
The former two are the familiar nonexotic decuplet
and octet representations, respectively, while the
latter has dimension 27 and will give rise to exotic
particles. From Eg. (10a) the hypercharge may
assume values from -2 to 2, the latter value being
that of the Z,* discussed in the previous section.
Particles with hypercharge -2 and with isospin
zero and one are predicted near 2250 MeV.

Hypercharge -3 particles may arise from
q'[1111]q states since the SU(3)z representation
of the four quarks is (40), and the product kets
may have representation (41) or (30). A Y= —3
state is predicted to be around 2800 MeV.

IV. HIGHER-SPIN BARYONS FROM q~ q

A. —,
' states

Baryons with angular momentum and parity &

will be discussed in this section. The discussion
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FIG. 2. As for Fig. 1, but for ~ baryons.

will be very abbreviated, in part because of the
fewer number of known states, and because the
agreement with experiment is less good than for
the —,

' baryons. The calculated decay amplitude
will be particularly affected by the intrinsic in-
separability between orbital and spin angular mo-
mentum in a relativistic model. The predicted
values of the masses using the MIT bag model as-
suming only S-wave quarks are given in Table V
and are shown in Fig. 2.

The calculated masses of hypercharge-zero
states appear to all lie approximately 200 MeV
too high as compared with experiment. The two
lowest observed —,

' A* resonances have energies
of 1520 and 1690 MeV, whereas the predicted val-
ues a;re 1800 and 1850 MeV. Similarly, the lowest

Z~ states are at 1580 and 1670 MeV, whereas
there are several 2 Z* states predicted in the
neighborhood of 1800 MeV, but none at a lower
energy.

The model appears to work somewhat better for
states with hypercharge 1. The lowest N* states
are at 1520 and 1700 MeV, which is to be com-
pared with predicted energies of 1600 and 1800
MeV. A &* is known at 1670 MeV and the pre-
dicted energy is 1600 MeV.

Z,* states of hypercharge 2 are predicted at 2.0
and 1.8 QeV for isospin zero and one, respectively.

D3Zo state has been reportedat 1865 MeV
but needs confirmation. The calculations of Aaron
et al."predict a, D, Z,* level at 1830 MeV. The
near equality in answers of two such diverse ap-
proaches is encouraging.

Finally, 0 states are predicted at 2.2 GeV and
states of hypercharge -3 at 2.8 GeV.

states

From the form of the color-spin interaction,
one observes that for states originating from the
same representation, the state with the higher
spin will lie lower. One may anticipate this may
create difficulties, as indeed it does. The lowest
D„N* resonance is at 1670 MeV, whereas its
predicted value is 1520 MeV. Similarly, other
low-lying —', states are 6*(1960), A*(1830), and

5"(1765), all lying lower than their predicted val-
ues of 1650, 1500, and 1600 MeV, respectively.

V. q'q' BARYONS

An estimate of the masses of baryons con-
structed from the q q configuration is of interest
for several reasons. First, it provides a clue
as to whether H„, provides a realistic estimate
of masses for large numbers of quarks; it would
be disconcerting were q q baryons to have a,

smaller ma. ss than q q baryons or that they were
predicted to lie in an energy region wherein they
should already have been observed. The first
term in the color-spin interaction, Eq. (6), pro-
vides for a repulsion which is linear in the total
number of quarks. However, the expectation
value of the SU(6) Casimir operators is a quadra
tie function of the indices of the Young tableaux,
is attractive and could conceivably overcome the
repulsion linear in the number of quarks. That
this does not occur is a manifestation of antisym-
metry which requires f, &3, so there is an es-sen-
tial limit on the amount of attraction. This at-
traction is further offset when f,. equals three by
the condition imposed by Eq. (11), namely, there
must be at least one s quark. If the number of
possible flavors ascribed to the quarks were in-
creased, thereby relaxing the restriction on the

f, , more attraction might be obtained from the
Casimir operators of SU(6), but only at the ex-
pense of including more massive quarks.

Secondly, the calculation of q q baryons pro-
vides an estimate of the density of baryon states
at higher energies which is of interest not only
in particle physics, but also in the high-energy
scattering of two heavy ions. 33 Finally, one may
estimate the energies of particularly exotic par-
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TABLE VII. Masses (in GeV) of selected baryons constructed from q q configurations. Only the lowest two energies
are given for each spin. The SU(6) representations are those of the five quarks and two antiquarks. All masses are
quoted to the nearest 50 MeV.

(I, Y)
[32]x [2]
1, S= (I, Y)

[311]x [11]
S=

(0, 0)

(2, -1),(2) 1)

(o, 0), (1, o)

1.90, 2.30

2.10, 2.50

2,35, 2.70

2.15, 2.30

2.35, 2.50

2.60, 2.70

2.55

2.75

2.95

(~&, -1), (~2, -1),
(~2, 1), (~&, 1)

2.40, 2.60 2.65, 2.75 2.65, 3.00

(0, 0), (1,0)) (2, 0) .2.20, 2.45 2.45, 2.55 2.45, 2.85

[32] x [11]
S=g

(1, 0) 2.00, 2.35

(2 ~
—1) ~ (2 ~ 1), 2.20, 2.50

S= 2

2.30, 2.45

2.45, 2.60

S=+
2

2.55

2.75

(1,-2), (o, o),

(1,0), (1,2)

(p, -1), (p, 1)

(0, 0)

2.60, 2.80 2.85, 3.00 2.85, 3.15

2.85, 3.00 3.05, 3.10 3.05, 3.30

3.05, 3.20 3.25, 3.30 3.25, 3.50

(0, 0), (1,0), (0, 2) 2.45, 2.75

(i. 1) 2.70, 2..95

2.70, 2.80

2.90, 3.00

2.95

3.10 (I, Y)

[221]x [2 ]

2 $ —2 S=

(r, Y)
[311]x [2]

rS= 2 $ —2
2.05, 2.40 2.25, 2.45

(1,0), (0, 0), (0, 2), 2.25, 2.55 2.45, 2.60

2.30

2.45

(1, 0)

(, , -1),(„1),
(+, 1)

2.10, 2.35 2.00, 2.45 2.45, 2.85 2.85

2.30, 2.55 2.20, 2.60 2.60, 3.00 3.00

(1,2)

(„-1),(„-1),
(~, 1)', (~, 1)

2.45, 2.75 2.65, 2.80 2.65

(„-1) 2.75, 2.95 2.70, 3.00 3.00, 3.30 3.30

(0, —2), (0, 0), 2.55, 2.75 2.45, 2.80 2.80, 3.15 3.15 .

(1,0)

(1,-2), (1,0)',

(2, 0), (0, 0)

(2, —1), (2, —1)

2.65, 2.95 2.85, 3.00

2.90, 3.10 3.05, 3.20

2.85

3.05

ticles, e.g. , particles having
~
V[ =3, I'=-4, or

lsospln ) .
The lowest —,

"q'q' baryon (see Table VII) is pre-
dicted to be a A* at an energy around 1900 MeV
and is a SU(3)~ singlet; it is 500 MeV above the
lowest q q state. The lowest 2" Z* and N~ are
estimated to appear at 2.0 and 2.1 QeV, respec-
tively. The lowest —,

"and —,
"states with hyper-

charge 3 are predictedat 2.65and2. 55 QeV, res-
pectively, with the lowest —,

"7= -3 state at 3.15
QeV. - The lowest —,

"F=-4 state does not appear
until 3.5 and 3.7 QeV for isospin zero and one,
re spe ctively.

VI. CONCLUSION

In this paper a systematic analysis of all
baryons which may be constructed from four
quarks and one antiquark has been made. The
calculation of the masses and the decay ampli-
tudes of these baryons —or indeed, any multiquark
hadron —is made viable by the calculation of the
necessary SU(6) & SU(3)I3ISU(2) vector coupling
coefficients. The method used to calculate these

coefficients employs SU(3) Racah and 9-A. p, recoup-
ling coefficients and was briefly outlined. Tables
of the necessary coefficients are given for con-
figurations of q q and q q .

A detailed comparison with experiment was
made for the —,

' baryons and the agreement was
very good. Particularly striking was the agree-
ment with experiment for the A*, N*, and 6* par-
ticles; all observed states could easily be asso-
ciated with states predicted by the bag model. In
particular, if the basic assumptions of the MIT
bag model are correct and if the parameters of
the model as chosen in Ref. 4 are essentially
correct, then resonances which had previously
been thought to be P-wave states are rather
states constructed from q q configurations. There
is then no room for additional states and the
lowest P-wave —,

' state must be at a much higher
energy than was previously thought, say 1.8 to
2.0 QeV. Neither the bag model nor the usual
quark models can say anything unambiguous
about the positions of such states.

The bag model predicts several states not yet
observed. The most disturbing of these is a
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Z* state expected in the 1.4 to 1.5 Geg region.
It is the only particle in the lowest SU(3)& multi-
plet for which no known resonance may be iden-
tified. Further particles for which searchers
should be made are the perenially elusive Zl*

states expected above 1.65 MeV and states of
hypercharge -2 and -3 at 2.3 and 2.3 GeV, res-pectivelyy.

The comparison with known resonances of the
predicted —,

'
. and —,

' baryons is less auspicious.
This poor agreement may reflect the possibility

that Hb„does not adequately account for all the
quark-quark spin-dependent forces or that the
influence of P-wave quarks or deformations may
be more important for higher-spin states. One
method to circumvent such difficulties is to gen-
eralize the baryonium model34 and to apply con-
cepts introduced by Johnson and Thorn —and
applie1I by Jaffe2' to the NÃ system —which relate
the slope of the Regge trajectory to the SU(3),
Casimir operator; such attempts are under way. 3'

The masses of baryons constructed from all

TABI E VIII. The SU(6) 2 SU(3)@SU(2) vector coupling coefficients necessary for a q~q
calculation.

[432),

[42111)2

[321111]+

[432]+2

[42111]~2

[33»1]+2

[4321~2

(20)&2 x {02}1

(~)1/2

(~)1/2

(~)1/2

(~2,)'"
(&)1/2

[32] x [2]
(20)2 &&(02)l

(~)1/2

(Z)i/2

(~}1/2

() 1/2

(01)&2 x{10)0

(X)1/.2

(Q) 1/2

(4)1/2

(01)~2x(10)0

(~)1/2

(M) 1/2

(A) 1/2

[4311]~2

[42111)2

[21lf

[4311lf
[42111)2

[33111)i

[4311]~2

(20)&2 x (02)0

(4) /

(~)1/2

(P)i/2

[3g]x [ll]
(Ol)~2x(10)1

I 't

. (&)1/2

-(40}'«
(P)1/2

(X)1/2

0

(&}1/2

(4)i/2

($)1/2

($)2/2'

(A) 1/2

(P)1/2

(20)~2x(08)0

(M) 1/2

2

(~)1/2

[43»]~2

[42111)2

[32211)2

[21l,

f4221]2

[42111)2

[32211$

[21)",

(20)~2x(02)1

4

(~)1/2

(g) 1/2

(20)+2 x (02)0

(g) 1/2

(~)1/2

(~)1/2

4

[311]x [2]
(20)~2x(02)1

(+)1/2

(~)1/2

(~)1/2

t311]x [ll ]
(20)+2 x(02)0

(M) 1/2

(M) 1/2

(~)1/2

(&)1/2

(20)2 x(02)l

($)1/2

(~)1/2

()1/2

(~)1/2

(01)2 x(10)l

(M) 1/2

'12

(W) 1/2

(~)1/2

(01)&2 x (10)0

. g&)i/2

(M) 1/2

(~)1/2

(Ol }+2 x (10)1

(~)1/2

(M) 1/2

(M) 1/2

2
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TABLE VIII. (Continued)

[42219.,-

[42111}2

[32211}22.

[422172

[32211]~2

(20)~2 x(02)0

(X)1/2
6

(M) 1/2

(4)1/2

[311]&: [11]
(01)p

&& (10)1 (01)~2 ~(10)1

—18)(~ 1/2

(~)'"
(2)1/2

(~)i/2

(&)1/2

(20)~2 x(02)0

(2 )1/2

(Z)i/2

[4221}j;

[32211}2

[21}j
[4221}22.

[33111}2

[32211}f

[4221]~2

[32211]2

{~)1/2

(y) 1/2

{J)1/2

(~3)'"

(~)1/2

(g) 1/2

(j )1/2

(Z) 1/2

(~)1/2

(Z) 1/2

(.2 )1/2
7

(&)1/2

{20)+2x(02)1 (20)&x(02)1
[221]x [2]

{01),x(10)0

(~)1/2

(~)1/2

2

(01)2 x(10)0 {01)2x(10)0

(X)1/2

[3321},

[32211}2

[»},.
[3321]+2

[33111]+2

[32211}2"

!111}2

[3321]~2

[32211]2

(20)~2~(02)0

(j )1/2

[221]
(01)&2 X(1P)1

(&)1/2

(~)1/2

(Z) 1/2

~2 )1/2

(~)1/2

( tL) 1/2

x [11]
(01), ~(10)1

3

(X)1/2

(&)1/2

(~)1/2

-(2100)1/2

(~)1/2

(n.)1/2

(20)2 x(02)0

(L)1/2

(~)1/2

(~)i /2

(M) 1/2

(01)~&&(10)1

(~)1/2

(Z) 1/2

2-
5

(M) 1/2

[42111}2

[32211]2

[Ill�},

[32211]2

(20)+2 & (02)1

8
('~ )1/2

(~)1/2

(~)1/2

(Xz) 1/2

(~)1/2

[2111]~ [2 ]
(20)&2 x (02)1

(Z)i/2

(Z)i/2

(~)1/2

(~)1/2

(~)1/2

(01)~2 ~(10)0

(M)1/2

(01)~2 ~(10)0

(Z)i/2

14(~)1/2

(J )1/2

allowed q'q configurations were calculated; al-
though the spectrum is considerably richer than
for q or q q, and baryons with more exotic quan-

turn numbers may be calculated, their masses are
considerably heavier. The lowest q'Tt. baryon is
a A* expected near 1.9 GeV.



D. STROTTMAX

In conclusion we note that the MIT bag model
with the Jaffe approximation appears to be re-
markably successful in accounting for the-masses
of —,

' baryons, particularly as there were no free
parameters available. It is essential for the
model to remain credible, however, that either
a —,

' Z~ particle be found in the 1.4- to 1.5-0eV
region or that it be shown that corrections to the
Jaffe approximation elevate the predicted Z* to a
higher energy. The success of the bag model
should encourage a more detailed examination of
the effects of deformation" and of P-wave
quarks3 ' on the bag-model estimates.
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APPENDIX

The SU(6) & SU(3) S SU(2) Wigner coefficients
for which a single quark couples to a state of
several quarks will be referred to henceforth as
one-body signer coefficients. In this appendix
it will be shown how to calculate the SU(6) Wig-
ner coefficients appropriate for coupling states
of several quark~ to states of several antiquarks.
Although one could make use of the procedures of
Ref. 16, the procedure discussed here is simpler
when more than one antiquark is involved.

Consider a basis state in which configurations
of n& quarks and n2 antiquarks are separately
rr1embers of irreducible representations of SU(6),
SU(3), and SU(2). The product state may im-
mediately be coupled to a, representation of SU(3)
and SU{2) through the use of the appropriate
SU(3) and SU(2) Wigner coefficients.

I~"'tf](&141)S1~1 Y'[f1](~2P2)82&2;(~) )S~pa, y)

11I(
I2I2 3

2P. 2 I2Y, XP, IY,

I|I2I]., 3I2, 3 II3 q ] +fP, ] S]&(I]I( 3I', g 2
2 ~2+2 S2%212I2, 3~2 A1

2p 3

(A2)

In Eq. (Al) p is the outer multiplicity. The SU(3)& representations which follow from the antisymmetry
of the quark and antiquark states will not be written explicitly. The correct linear combination of the
basis states to produce a product state which is labelled by SU(6) may be found by diagonalizing the Casi-
mir operator of SU(6)

35 7? [ ?? 2

Q(, — Q Q; Q—: Q~ S — Q~ S

where the n„are the generators of SU(6). The Casimir operator may be divided into three terms

I

e61" = e,"'(n, ) +e„"'(n,) —2

gran,

{i)n,(j),
$6?? f

(A3)

j6??2

where the argument of 66"' in the first two terms on the right-hand side indicates that the Casimir op-
erator acts only on the group of n, quarks or n, antiquarks. As the quark states in Eq. (Al) are sep-
arately antisymmetric, any particular quark among the first n, quarks —say quark n, —may be singled out
from the sum over i, and similarly antiquark n2 may be singled out from the sum over j, and the matrix
element multiplied by n, n2:

8
g 6 ~g (81) + 66 '(11&) —2n1n, gn (n1) n (n&) (A4)

The last term of Eq. (A4) may be related to a two-quark SU(6) Casimir operator:

—2+n, (n, )n, (n, ) =P[n, (n, ) —n, (n,)]' —gn, (n, )1 —gn„(n, )'.

The expectation value of 8,"' may now be evaluated with the use of Eq. (A4) and Eq. (A6)
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&e"'[f11(l)[u I)S(u), e q" [f2](X2P)S2(d „(Xli)S»
I
(-'8"

I
&"'[f[](X,12[)SPr, q" [f2](X2]22)S2(u2,'(X]2)S(uP&

611 622 («8 ([f1])&+(68 ([f21)&—2n[n2«8" ([1])&]'

+n[n2([fi](~[ P 1)s[+I [f2](&2(L(2)s2~2 (l( P)s((i
I

"g[&.{ni) —&.(n2)]
I
[fi](~[][[[)sinai [f21(l[2u 2)s2~2;(~v) s~& (A6)

611 622 6(( 1 l"1)s (~1@1))6((~20'2) s {~2([12))6( 1 1)6( 2 2)6(~1+1)6(~2+2) '

In this appendix a bar appearing over a quantum number indicates that the quantum number is a label
for the right-hand state, unlike in the main body of the paper where a barred quantity referred to the
antiquark system. The only exception is that K is an SU(6) generator for the state of the antiquarks.

The last term in Eq. (A6) is evaluated by decoupling quark n, from the first group and quark n, from
the second group of quarks by using the Wigner coefficients from Ref. 15, and reeoupling using 9-j and
SU(3) 9-Xp coefficients, The last term of Eq. (A6) becomes

() ~ g )s ~ (Xi]11)S1(o, (10), (X, li, )S,~
1 y 1 1

Cff &

[f.l [1]

(~„,)8,„, (][2'P2')S2'(d2' {10)-,' (]1.2l22)S2(O2

Pf' 1

[f.'1 [11 [f.1

2' p2)S2'[()2' {10)2 (X2 @2)S2(d2 nf

(](,' p, ,') (10)

&)t' ')( )
(&'u') (&,.]2 )l

~
1 p j.

S~ 2 $~ S~

S' S„S S' S„

(&,s,))]
(](.2li2), U

(&s)),

s,)

(l 2~2)

l(X'p')

(10) (X[P[

(01) (A.2]22)

(&rally') (~ll)j

(A7)~ ss(~„s„)s„+I~„(N,)-~.(~,)I' s7i(t„s„)s„),

where nz is the dimension of the representation [f] of the symmetric group. The value of the two-quark
matrix element in Eq. (AV) is 6,")(q2). The one-body Wigner coefficient relating the product of an anti-
quark and n, -1 antiquarks to a state of n, antiquarks is the same as the coefficient relating the product
of a quark and n, —1 quarks with a state of n, quarks. To emphasize this the Wigner coefficients in-
volving antiquarks are written with the SU(3)(3) SU(2) representation (10)—,. The SU(3) representations of
a qq state are (00) and (11), for each of which the spin may be either zero or one; the allowed SU(6)
representations are [1111111and [21111].Only the SU(3)@SU(2) representation (00)0 belongs to [111111].
Hence, the qq matrix assumes the values

(&„s,„)s„Q[a,(n) —n, (e)]' (&„s„)s„)= () —s[(-()"*'+(-()'"+ (-i)"- ]. (A6)

The sum over the SU(2) 9-j symbols may now be simplified by using either orthogonality or the sum
rule

8' S23
U S'

2 2

'
$23

(s; —,
' s

IU S' 2 S I(-1) 23 = ( 1) 2+ 2 2 U

$ S' S~ S

1 2

j.
$2 $2

(s,- s, sj
(AS)



766 D. STROTT MAN 20

With this simplification the matrix element becomes

&q '[f1 J{)1&1)S1~1X & '[f2](i12&2)S2~2 () ) )S»l (-'3"
I
&"'[f1](i11i1)S1&.X @[f2](i2@2»2&2'(i i )»p&

= ~„-6.;f«. '([f, ]))+ (~."([f,]))——",

&~;&ps, ~;

[f,'J [1]
'

[f, l

n f 1i11)S1(ds (10)2 (X,P,,)S (d

[f,] [ll [f,]

X,'i1,')S,'w,' (10)-,' (V, P) )S,~

[f.J [1] ~ [f]
n~ X2'P, 2')S2'~2' (10)-,' (XSP2)82ru

P~ g~)S 2~2

[f.] [1]
X2'P, 2')S2'&O2' (10)-,' {X2i(,2)S2(d2

(&' u ' ) (&~o23 &

(&lp,') ((s) (& p)( . ,( ls')~((s) (&,4,)

V ();i,) (01) (i,i, ) V, (i;i,) (01) (V,i,)

(& s )(&',s', ) (&s) (&'s') (& s, ) (&s) f

X 6(S„S,)6(S„S,)[9-3(-I)'23]

!

3 ( I )232'+S 2+S 2U s; s,
,
(&+ (-()"")I.

s, s, s)
(A10)

Because conjugate SU{3) representations are not equivalent,
exist. However, since the total SU(3), representation must be

&„(&,u, ) (&,i1,) (i1,:&„)2

(&„s„) (s„&„) (()s) f„„,„„,,„,

a sum rule similar to Eq. (A9) does not
a color singlet, one may use the identity

X U[(~1,P.,)(&, i1,)(~1,i1,)(&,P.,); (~1„i1„)(&„P,„)] . . . , {A11)

which may be proven by applying the definition of the 9-Xp, coefficient in terms of SU(3) Racah coefficients.
In the event that (X»i1») = (00), the SU(3) Racah coefficient becomes

U[(X P, )(i1 i1 )(i1 X )(i1 '1 ) (i1 P,12)(00)]= (-1)'1' 1"2' 2-'»- » (A12)

where g(Xp) is the dimension of the representation (A. i1), Eq. (4). The 9-Xp, coefficient reduces to

&,i,) (&2) 2) (&,2i»
U p~~~ $2~2 p ~2~~~

00 00 00

(A13)

Upon diagonalization of the array resulting from calculating all the allowed matrix elements, Eq. (A6),
the eigenvalues correspond to allowed values of the SU(6) Casimir operator, Eq. (7), and the components
of the eigenvectors are the desired SU(6)DSU(3)SSU(2) Wigner coefficients. The SU(6) &SU{3)(3)SU(2)
one-body Wigner coefficients are taken from Ref. 15 and the SU(3) Racah coefficients were calculated
using the programs of Refs. 12 and 13. The coefficients necessary for calculations vrithin the q'q~ con-
figuration are given in Table VIII.
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