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Patterns of mass degeneracy in the baryonium spectrum
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Using group-theoretical techniques, we give SU(4} mass formulas for the flavor representations of the

baryonium states. We also present the mass spectrum for the ideally mixed baryonium states. It is found

that degenerate clustering of particle states separated only by isospin breaking occurs within J multiplets.
The broad phenomenological features of the spectrum are discussed.

I. INTRODUCTION

Recently there have been extensive theoretical
efforts directed towards the baryonium and multi-
quark spectrum. ' ~ As well there has been the
discovery of a growing number of resonances which
do not fit easily into the conventional two- and
three-quark spectrum. ~ A number of these
studies have concentrated on the color-magnetic
spin-spin interaction with its associated semisim-
ple SU(6) color-spin group containing the color-
spin product SU(3), xSU(2)z. ' "'" The group treat-
ments of the baryonium states have been based on
the diquark structure. Two quarks couple to form
a diquark in a relative s-wave state which then
couples with a similar antidiquark system. The
dynamic stability of a number of high-spin bary-
onium states against decay into qq pairs deriving
from an angular momentum barrier between the
two diquarks. The color representations of the
diquark system can be either an SU(3) 3 or 6.
Jaffe' 3 has treated the qqf7'q states both in the case
of zero angular momentum where the color-mag-
netic interaction mixes the two color representa-
tions, ' and the situation where the diquarks are
sufficiently separated such that the color-magnetic
interaction between them is negligible. ' The lat-
ter approach leads to two baryonium series; one
where the diquarks are both in color 3, the other
with the diquarks in color 6. This approach has
been combined with the bag model. 3' Qther
authors have considered the two baryonium ser-
ies, in particular Chan Hong-Mo et gl. and
Tsou have noted the significance of the 6-6 ser-
ies and its different decay properties from the
3-3 series.

In a previous work, "we have constructed the
Clebsch-Gordan coefficients in SU(4) associated
with the baryonium wave functions. Here we use
the mass breaking techniques of Gell-Mann3 and
Okubos' to obtain the SU(4)-flavor-breaking pattern
of the baryonium spectrum, thus extending the
detailed studies of the flavor spectrum for the qq
states. With SU(4) one expects an enormous

number of states to occur for each spin-parity
mutiplet. Qur analysis exhibits the degree and
nature of the degenerate mass clustering occuring
within the spectrum. The approach parallels the

dynamic treatment in the bag model'' and the
quark model. ' ' In the group analysis each spin-
parity multiplet has a different parameter set
while both the bag and quark models possess tight-
ly constrained parameter sets, thus it does not
have the same predictive power of these models.
The advantage of the group-theoretic method lies
in its freedom from the assumptions of these
models; it is based only on a very general form
assumed for the flavor breaking. Its success in
conventional- hadron spectroscopic classification
suggests that it will act as a valuable guide for
the baryonium spectrum.

In Sec. II the mass formulas for all the repre-
sentations of relevance for the qqgg states are
presented. The conjecture of charm exotics in
e'e reactions ' 3 as well as in the 0" states
provides justification for working in SU(4). Fur-
thermore, there appears only at the SU(4) level
and above, a representation with tensor struct-
ure, T„"„antisymmetric with respect to i, j, and
with respect to k, f." This representation [20"
in SU(4)] gives rise to a. unique mixing pattern in
the baryonium states. In Sec. III, the mass spec-
trum for ideally mixed (i.e. , pure diquark, antidi-
quark) baryonium states is given. We conclude in
Sec. IV with an amplification of a number of the
features of the spectrum, and with some general
phenomenological aspects of the spectrum.

II. MASS FORMULAS

Following Pkubo, 3" we will assume that the
symmetry-breaking Hamiltonian, II, is given by

H T8 +. 'Q Tf 5 (2.1)

where T, and 7f5 transform as the 8th and 15th
components of the adjoint representation. Through-
out we will work in U(4), the results are the same
as in SU(4) as long as care is taken to ensure that
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TABLE I. Diquark wave functions. The [q;q,.], repre-
sent (q;q, + q, q;)/W2. The antidiquarks are obtained by
replacing the quarks with antiquarks, and D; (I,) with D;
(-I.).

where.

L, = —,'[I,' ' + 2E(Y, I)

+ Y(+qC —4B —3) —(B—
g C)'], (2.4)

10(2,0, 0, 0)
C= 0 Dg(+1) = 5'{P

D, (o)= [am]+

C= 1 D4(+—)= [(Pc]

D, (--,')= [mc],

L2 ——~[12 —I2 ' —I', '+4C+C ],

Dg(-1) = %K

D, (+-,')= [tP sl+

D2(-2) = [~s],
D3= ss

D5 ——[sc]
C= 2 D6

——cc

6(1,1,0,0)
c=o s, = [{pot]

s2(+2)= [{Ps]

s2{=,)= [m,sl

C=1 S, (+-,')= [ac]

s (=,')= [Rc]

S4= [sc]

~33+~~44 ~ (2.2)

where y is a measure of the U(4) breaking. It is
convenient to express the states in the irreducible
representations in terms of the Gelfand basis (see
Appendix). In this basis the states can be des-
cribed by a set of integers (m&&j which form a
Gelfand pattern. Using techniques given in the
Appendix, the mass spectrum from Eq. (2.2) for
the states of the irreducible representations is
given by

m=mo+o. ,(- Y+B—3C+yC)

+ ~2(Li+ &e34e43) + xL2) (2 3)

the representations have zero baryon number.
The above structure for the Hamiltonian has the
property of conserving total isospin, hypercharge,
and charm. In the tensor notation ofokubo' '"the
mass operator has the form

F(Y, I) = 4 Y —f(I+ 1) . (2.6)

6 x6 = 1+15+20",

10x6= 15+45,
6x10= 15'+ 45,

10x10=-1+15+84.

(2 7)

(2.6)

(2 9)

(2.10)

Table II contains the U(3) subreductions of these
representations. The mass formulas for these
representations are given in Tables III-IV. For
the products, 6x6, and 10x10, the conjugate
states lie in the same representations, and from
the invariance of the mass formulas under charge
conjugation, terms linear in Y or C alone must
vanish. This leads to the condition, n, + 2a~=0.
for the 15 and 84 representations, while for the
20", a complete degeneracy; n, = a, =0. The sit-

The quantities I&"', I2"' are Casimir invariants of
the U(n) group. 46 They, together with the quantum
numbers can be evaluated using Eqs. (A4)-(A7).
The group generators e&4 and e4& in Eq. (2.3) can
be expressed as functions of the Im, &I.

46 For the
baryonium states, the baryon number, 8, is zero.
The effect of the term (e34e43) is to mix states in
the same U(4) representation (intramultiplet mix-
ing) at the same point in weight space, but belong-
ing to different U(3) representations.

The diquarks lie in the 6 and 10 representations;
the antidiquarks in their conjugates, The diquark
wave functions are given in Table I. The baryon-
ium states lie in the products:

V(3) Rep.'C

TABLE H. U(3) decompositions associated with the U(4) representations.

U(4) Rep. C U(3) Rep. V(4) Rep.

4{1,o, o, o)

6(1,1,0, 0)

10(2,0, 0, 0)

15(1,o, o, -1) -1
0
1

2O" (1, j.,-1,-1)

45(2, O, -1,-1)

84(2, 0, O, -2)

-1
0
1

-1
0
1
2

6
8
6

15
8+10
3+6

3

6
3+15

1+8+27
3+ rS
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TABLE III. Mass formulas and intramultiplet mixing
elements for the 6 x 8 and 10 && KO representations. The
constants differ in each U(4) representation. E(Y,I) is
defined in Eq . (2 .6) .

84(2, 0, 0, -2)
C= +2 m(6)= mp +

7 P [48 + 18E(Y I) + 56y]

C= + 1 m(X5) = mp + ~P [92 + 3YC+ 18E(Y,I) + 60y]

m(3) = mp + ~ P [83 + 63E(Y,I) + 135y]

&15
~ 3,—,', -&&

= 3 P, &15
~ 3,0, 2

&
= WSP

C= 0 m(27) = mp + TP [46 + 6F(Y,I) + 10y]

m (8)= mp + ~ P [97 + 32E(Y, I) + 105y]

m(1) = mp + ~ P (10 + 30y)

(27
~ 8, j, +1& = ' P, (27

~
8, 0, 0&= 3 v 6P

(27[8,1,0&= 2v 6P, (8 i 1,0, 0&=Y5/2P

20" (1,1,-1,-1)
m (20") = m2p

15(1,0, 0, -1)
C = + 1 m &3) = m &3) = mo +

it) p(7 —18F&Y', I) —15y)

C= 0 m(8) = mp PF(Y I)

m&1) = ma+ pp (7 —9y)

(8~ 1,0, 0&= —~P
1(0,0, 0 ~ 0)

m(1)= m(

uation is more complex for the cross products
10x 6 and 6 x 10; the charge- conjugate states now

lie in different representations with different con-
stants in the mass formulas ~ In these cases terms lin-
ear in Ycan occur, the condition of charge- conjuga-
tion invari ance le ading only to an expressing of
the constants of one product in terms of the other .
A further feature of the cross products is that the

III. IDEAL MIXING

Since multiple-weight points occur in the prod-
ucts in Eqs. (2.7) —(2.10), we need to consider the

physical states at these points as mixtures of the
representation states. Consider a general mix-
ing of n state s, then following conventional treat-
ment of mixing, the masses of the physical state s
will be given by the eigenvalue s of a symmetric
n x n mass matrix in representation space,

M, , = &Z,
~

H
~
H,.), i, I' = 1" n . (3 1)

H in Eq (3.1) is a phenomenological Hamiltonian
including Eq. (2.2) as well as a term responsible
for mixing between the various U(4) representa-
tions . We will assume that the mixing between
the different radial states is -negligible .4' The
diagonal terms and those given by the intramul-
tiplet mixing term (e,4e43) are given by Eq. (2.3).
[We assume that these terms are unaffected by
the extra U(4) mixing term in H]. The other ele-
ments are parameters introduced to allow for in-
termultiplet U(4) mixing. The physical states will
be mixtures of the representation states,

n

~,. =P a',
~
Z,), i = 1" n . (3.2)

The problem of determining the g~ in Eq. (3.2)

t" = F= 0 states of each product are no longer e�-
igenstate of G parity. ' We will consider this when

de aling with the mixing of the products . Along
with the mass formulas, the nondiagonal terms
resulting from the intramultiplet mixing are given
in the form (r, ~r„ I, 1') where I and Y specify the
mixed states in the U(3) representations r, and r2

TABLE IV. Mass formulas and intramultiplet mixing elements for the representations in
the 10 && 6. The formulas for the 6 & 10 can be obtained by replacing Ywith -Y, and C with -C.

45(2, 0,-1,-1)
C= +2 m (3) = m p

—2n + 4P —3Y(o. +P ) + 6y (G + 6P )
C= +1 m(6)=mp Q + 9P 3Y((l +3P) +3y(A +7P)

m(3)= mp G + 7P 3Y(A + 2P) + 3y(G. +9P)

&6~ 3,&,--,'&=3W2P

C=0 m(10)=m + 14& —Y(3a + 11P) +6Py
m (8)= mp + 15@ Y(3& + 10P ) + 4P E(Y I) + 6Py

(10 i 8, 1,0& = (10 i 8, i, -l& = 2v 2P

C=-1 m(15)= ma+ n +67'p —Y&3n +~fp) +3pF(Y, I) +3yp —a)

15(1,0, 0, -1)
C= +1 m(3)=m'p Q + 3P. 3P Y+ 3y(G,'+ 5P)
C=0 m(8)= mp + 11P 3Y(& + 2P) +4PE(Y I) +3Py

m(1)= m, + 4P + 12Py
(8~ 1,0, 0&=2W2P

C= 1 m(3)=mp+& +7P 3Y(o,'+4P)+3yg —0')
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TABLE V. Mass spectrum for the ideally mixed
6 x 8. The masses are with respect to mp. Distinct con-
jugate states are obtained by S; x S;—S; x S& for i &j.
The multiplicity includes the conjugate states. Mass States Multiplicity

TABLE VII. Mass spectrum for the 10 x XO. Conju-
gation follows the pattern in Table V.

Mass States Multiplicity

+f5
+64
+F3
+62
+E'i

- SZp

E'i

E'2

—E'3

—E'5

$4$4
S4x S3
($, x g, )I.P
($3 x g3)I.i
$4 x g2

$4$i~ $3
Ss x Si

x S2)I i
($2 x $2)I~
$2 x$i
SiSi

1
4
1

4
10
4

1

1

lies at the heart of the group-theoretical approach
to flavor breaking. The maximum number of mix-
ing parameters in Eq (3.1) will be n(n-1)/2, hence
for v&3 the input masses will be sufficient for
determining the mixing parameters and the co-
efficients in Eq. (3.2) provided the unmixed dia-
gonal terms are known. For n ~ 4 the input
masses for the type of products involved in qqqtv

mixing will in general be insufficient for deter-
mining the parameters in the mixing. This ig

. unlike the qq mixing where the products involve
the adjoint and singlet representations, and where
sufficient of the mixing parameters are deter-
mined by the intramultiplet mixing to enable the
masses alone to determine the full mass matrix

+12Py

+3P (1+y)
+9Py

+6P (1+y)

+3P (1+2y)

+6Py

+3P (3 +y}
+3P (2+y)

+3P (1+y)

+3Py

+12P

+9P

mp

DGD6

D,D,

D, x D4

D6 ' D3 D5Ds

D8 x Q, D4 x D5

D6 x Di (D4x D4)I=O i

D5D3

D4x D3, D5 x D2

D5 x Di, (D4x D2)I=o, i

( 4' i)I=i/2, 3/2

D3D3

D2 x D3

D1 x 8 ~ (D2 x D2)r=o, i

( 1 2)I=i /2, 3/2

i)I=O, i, 2

10

10

12

for any SU(n). 48 To proceed for the baryonium
mixing either some assumptions are required re-
garding the mixing terms in Eq. (3.1) or about the

g, . In principle the g~ could be determined from
the decay properties of baryonium. In practice,
the extraction of such information is difficult for
qq mesons, and is not feasible at present for bar-

TABLE VI. Mass spectrum for ge 10 x 6, The quantity in [ ) indicates the fine splitting
from the mass of that level. Underlined states mix with their conjugates to form 0-parity
eigenstates. The (*), (*~), pairs mix according to Eq. (3.4). See text regarding their assign-
ment.

States Multiplicity

+6P (1+3y)
+18Py

+12P (1+y)
+6P (1+2y)

+12Py

+6P (3 +y)

+6P (2+y)

+6P (1+y)

+6Py

+18P

+12P

+6p

wo

D,g, [( 1+2y)h]

D, x g, [y4]

D5$4

D4 x g4 [ 4], D5 x g3 p, ], D& x g2 [( 1 + 2y)4]

(D4 $3)I=O, i~ 6$i[2y+]

D gQ+[(1 )Q]

D2 x$4[ yA] D3 x$3[(2 y)6] Dsx g2[yQ]

, x @4[ (1+y)~] (D2 x $3)I-O**,[(1 y}Z]

D&$i[(1+y)6], (D4 x 82)I p+ if {1 y)A]

3)I=i/2 3/2[-y ]. D4

D x 82[4)

(D2 x $2)I p, i, DSSi[2&]

x $2)I-i/2, 3/2 [-», D, x ~, g ]

Di xgi
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TABLE VIlI. Spin-parity series for the flavor decoln-
positions. The diquarks are in color 3.

6x g. L= J, P=(-1)~, G=(-1)~'
10x6: I.=J 1 P ( 1)& 1 G=-+
10x y0. I J P ( 1)z G ( 1)z+I

L, = J-l, P= (-1) +- G=(-1) +

I.= J-2, P= (-1)~, G= (-1)z+I

yonium states.
Given this fact, we have assumed ideal mixing

for the baryonium states (this is equivalent to the
ideal mixing of Jaffe'). One expects deviations
from ideal mixing to be small for baryonium. For
qq mesons, deviations from ideal mixing can be
understood qualitatively by timelike multigluon ex-
changes with the process q,g; q&q& occuring pre-
dominantly by two-gluon exchange for the 0 states
and three-gluon exchange for the 1 states. '~'"
The analogous process for qq pairs in the qqgg
states may occur with a one-gluon exchange. '

However, since the quarks in the qq pairs annihil-
ating come from different diquarks, one expects
such a process to be small compared to the pro-
cess in qq mesons especially for baryonium states
relatively stable to break up into meson pairs.
Also the quarks annihilating must come from a
flavor singlet and a color octet. Both these fea-
tures introduce factors which inhibit the process
relative to that in qq mesons.

If we consider Eq. (3.1) in the basis of the phy-
sical states,

1
X(5 4) G ~ =~ (D)S4 + D5 S4) . (3 6)

Associated with this mixing there will be a further
splitting of their masses according to Eq. (3.5).
The constants in Table VI are the same as those
in the 45 in Table IV, with 6=3o. +9P. In all
cases the breaking parameter, y, has been as-
sumed to be constant for a given decomposition.

ling in Eq. (3.3), and being undetermined in the
group approach. It arises in both the 6x 6 and
10x6 mass spectra.

Tables V-VIII present the mass spectra of the
ideally mixed states in Eqs. (2. 7) —(2. 10). All the
mixing in 6 x 6 except that involving the singlet is
of the form in Eq. (3.4). Thus at each point where
mixing occurs there arises a pa, rameter equiva-
lent to A in Eq (3.4) where we have labeled &,-.
The ordering is based on quark content. Hence
around a mean mass, equal to the mass of the un-
mixed 20", we have a symmetrically placed mass
clustering. In the 10x10all the states can be ex-
pressed in terms of three constants, these are the
sa.me as those in the 84 in Table III. The 10x6
involves features of both these spectra; the ma-
jority of states expressible in the form in 10x10,
while two pairs mix according to the form in Eq.
(3.4). We have indicated these pairs by asterisks.
Their assignment in the spectrum is based on Eq.
(4. 1) below. The underlined states in the 10x6
mix further with their conjugates to form eigen-
states of G parity, for example,

(~,. (H(I,&= g Pa,".&,'(ft, ~e(ft, &,
~i g=1

(3.3)
IV. DISCUSSION

(3.4)

In this case we obtain from Eq. (3.3), m, =m,
Q

and a physic al mass spe ctrum

I, =m, +g.
1 2

(3.5)

Such a mixing has the disadvantage of A decoup-

then from the requirement of Eq. (3.3) vanishing
for i ej, i)j =1 n we have n(n-I)/2 equations.
These provide relationships between the mixing
parameters in Eq (3.1) an.d those in Eq. (3.2).
The type of relationships vary from case to case.
From the Clebsch-Gordan coefficients for the
products in Eqs. (2.7)-(2.10);3' the zf can be de-
termined. The mass spectrum for the physical
states is then obtained from Eq. (3.3) with i =j.
An example of mixing of particular significance
occurs when Eqs. (3.2) and (3.1) have the follow-
ing form:

+ 6(n, (S) —n, (A) + y[n, (S) —n, (A) ]). (4.1)

The constants mo, A, and y differ for the two re-
presentations, n&(T) is the total number of quarks
of type i and n;(S) [n, (A)] is the number of quarks
of type i in the symmetric (antisymmetric) di-
quark pair. For the 10x10, 6 is zero, as all the
quarks belong to symmetric diquark systems.
The ~ term arises from the form of flavor break-
ing'in Eq. (2. 1), and is a splitting analogous to
the ortho, para splitting in a two-fermion system.
It is a feature present for color-singlet systems
only involving four quarks or more. The 4 term
is expected to be small. For example, when the
mass of the U(3) 6 representation in the 45 is
calculated in the naive quark model, and a un-
iversal quark-quark interaction assumed, then a

The masses of the states with a determined mix-
ing in the 10x6, 6 x10, and10x10, can be ex-
pressed in terms of their quark content

m(q) = mo+ A[n, (T) +yn, (T)]
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degeneracy for the entire 6 is obtained. In terms
of the mass formulas this implies L =0. The pres-
-ence of this splitting in the flavor group is simi-
lar to that due to the color-spin interaction where
the splitting induced is such that the antisymme-
tric state [the SU(3) 3] is lighter. 4'

The phenomenon of clustering of states is evident
experimentally, both near the threshold in NN~'"
and in the three types of hadronic interactions; at
rest, formation, and production. 5 A similar situ-
ation is observed in e'e annihilation. 5 In Table VIII,
spin-parity and associated G-parity series for
each decomposition are presented. The e'e sit-
uation is particularly interesting since the J
values are well defined unlike the ambiguity pres-
ent for the other exotic candidates (for example,
the S, T, U resonances). ' The J'P=1 states can
occur only with I = 1 and above. For L = 1 they
can occur once. menthe 6 x 6and 10 x 6 states and twice
in the 10 x 10states. From the color-magnetic inter-
action one expects the 6 x 6 states to have lower
mass. The four possible I=O states in the 6x6
arethe S4S4, (S, xSp)z p, (S,xS,)~ p and S)S) These
states have a mass separation of E'5-62, 2&), E'5-$2,
respectively. As well, the I, =O states in (S,
x Sp) J-) and (S, x S,), , can also couple in e'e . We
note as a final point that a weak mixing pheno-
menon like that in the K-E~ system can also be
expected to occur in the baryonium states, for
example, between the D, xD, and D, xD, states in
the 10x10. We leave to a later paper a detailed
phenomenological analysis based on the spectrum
presented above.

PEj) ~ 82' f ~ Ale f J ~
) (A2)

C= gm, 4- gm„,

2) =mg+mee —Q mee),
l=f

I= —,'(m„—m„),
P(mb2+m2P) ~

(A4)

B is the baryon number. The eigenvalues of the
two lowest-order Casimir invariants required in
the text are given by

(A5)

The array contains the subgroup reduction
U(4) &U(3) &U(2) in a transparent way; the rows

(m,Ji = 1 n describe irreducible represent-
ations of the U(n) subgroups for n=2, 3. This
subgroup reduction also corresponds to the label-
ing of states implicit in the flavor breaking given in
Etl. (2.1). The dimensions of the U(4) repre-
sentations and those of its subgroups are given
by the Weyl dimensionality formula,

ib

(A3)
j&j

The quantum numbers of the states in terms of the
nz,.

&
are given by

3a= pm, .„
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where

(A6)

APPENDIX

The irreducible representations of U(4) can be
described by a set of integers (m,.4] with i = 1 4,
and satisfying I,'4~ mf f 4 The full structure
of a representation can be contained in a basis
scheme of Gelfand and Zetlin. " In this scheme
the states are described by a triangular array of
integers;

It has been shown in U(n), that a tensor operator
T,-& can be expressed in terms of a sum of prod-
ucts of the group generators. " For the represen-
tations of relevance for the baryonium spectrum
the highest product is second order in the gen-
erators, hence,

)';, = +b ( ) epee„eee„)
4"- f

Rl 44

m23

off

satisfying a "betweenness condition, "

(A1)

a, 0, and |." are constants, and the e&&, i,j=1 ~ ~ 4,
are the sixteen U(4) generators. The matrix ele-
ments for the diagonal generators are given by

i 1

tml ee lm) =(Q me' —Q mi,
)

il -„. tAit)
4i=f j=f

The matrix elements for the. e34 and e43 generators
can be calculated from expressions given in Ref.
46.
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