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Partial conservation of axial-vector current effects in the MIT bag model
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We extend the calculations of the MIT-bag-model spectrum to include the pion-field exchange energy in a
manner consistent with the ideas of partial conservation of axial-vector current. We find that this interaction
energy is sufficient to destabilize the quark bag whose quantum numbers are those of the pion. The q mass
is also improved, while other features of the low-lying hadron mass spectrum are not significantly modified.

I. INTRODUCTION

Recently fallen, Dashen, and Gross have ad-
vanced a new theory of hadronic structure in
which they suggest that a more realistic variant of
the MIT bag model2 should involve a simple coup-
ling between pion and quark fields consistent with
the ideas of chiral symmetry. The proposed con-
nection between the two fields is in the form of a
boundary condition at the surface of the bag. The
region exterior to this surface contains the pion
field, and the boundary condition is an expression
of the continuity of the axial-vector current. '

In this paper we calculate the spectroscopic ef-
fects of the implied pion-exchange energy in this
model. The calculation is carried out in the same
spirit as the gluon-exchange calculations of the
MIT group. ' %e find that the pion-exchange ener-
gy between quarks at the boundary surface is suf-
ficient to provide a destabilization mechanism for
the pionic quark bag. The same pion-exchange en-
ergy moves the q mass, which is degenerate with
the pion in the absence of the pion cloud, some-
what closer to its experimental value. Other fea-
tures of the hadron mass spectrum are not changed
in any significant way. Thus all of the good fea-
tures of instanton effects on the bag mass spec-
trum that have been explicitly demonstrated by
Horn and Yankielowicz can also be produced by
the pion-exchange energy. Any deeper connection
between the two mechanisms remains unexplored.

In Sec. II we give a more explicit statement of
the model. In Sec. III we obtain solutions of the
semiclassical pion field equations subject to the
model boundary conditions and apply these results
to the calculation of the exchange energy. In Sec.
IV. we present and discuss. results of numerical
fits to the low-lying hadron data.

II. THE MODEL

The basic equations of the MIT bag model in-
clude the coupled quark-gluon field equations of
quantum chromodynamics, which are used in the

(ingy —1)q =0,
&.(a g', —a'W, ) =0.

(3)

(4)

In the rigid-sphere approximation, the hadron bag
is a sphere of radius R, and nz ( r, 0) is——th-e in-
terior normal to the surface. There is also a
quadratic boundary condition whose contents are
presumably satisfied by restricting the energy
eigenmodes of the quarks within a specific bag to
one type and by minimizing the hadron mass with
respect to the radius, R.

The mass formula for a hadron bag of radius R"

is given by

M(R) =Ey +E0 +Eo +E~+Es .

E~ =4mBR /3 is the volume energy and Eo=-Zo/R
is the vacuum contribution. The quark and anti-
quark energies are contained in Eo =(N, +N,)E„-
where E, is an energy eigenvalue associated with
solutions of Eqs. (1) and (3) in the limit of vanish-
ing gluon coupling (g-0).~ Finally E~ and E„are,
respectively, the order g color-electric and
color-magnetic energies generated by the quarks
within the bag.

To the above standard MIT bag model we add a
fundamental pion field, 4, that forms a cloud
outside the surface x=R but is not allowed to pen-
etrate into the interior region to which the quarks
and gluons are confined. The pion field is to sat-
isfy the Klein-Qordan equation,

(2 —p, )4=0 (6)

subject to the boundary condition
gf~ 3,4=iqy, ,&q. —

linear approximation of the gluon field:

(iP —m ++,X')q =0,
3.(a w,'-3'w, ) = gq~, y'q. (2

These equations apply within the bag; outside the
bag the fields vanish. The field equations are
augmented by the following linear relations on the
bag surface:
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In the zero-mass limit, this model is equivalent
to the linear approximation of the chirally sym-

I

metric model suggested by Callan, Dashen, and
Gross. The boundary condition of Eq. (7) follows
from the condition that the normal component of
the axial-vector current,

ap =fy p pz'W+f 8s@ (8)

(9)

III. PION FIELD AND EXCHANGE ENERGY

We calculate the pion field in the semiclassical
approximation used for gluon energy calculations
by the MIT group. ' The pion field is the superpo-
sition of fields generated by each quark source.
Here the quark sources appear explicitly only in
the boundary condition, Eq. (7). The pion field is
therefore determined by

(8 —p )4 =0, r)R (10

be continuous across r =R. In the chiral-sym-
metry limit, p. -0, nz-0, the current is conser-
ved, while for p, @0 we have the partial conserva-
tion of axial-vector current (PCAC) condition

8'a, =p'f, 4

Assembling the preceding pieces, we find that
the right-hand side of Eq. (11) is

iqy, ,Tq =——(4v) 'C U a' p 7 UR ',
where

C '=-2(x —1)ix= l.

(16)

(17)

dh(pR')
ftr I d( R3)

=(12p') i CU [op6 p+v2g 5 i+v2g, 6 |]&U,

(20)

where v, =(o, +io, )/2.

The pion field energy is given by

The pion field can therefore be written in terms of
spherical harmonics of order unity only,

4 =D Yi„(8,$)h(p, x), (18)

where h(P) is the Hankel function

b(P) =(P '+P ') exp(-~). (19)

Combining Eqs. (11), (16), and (18) yields for D

dpi'

[(4 )' + ( V4 )' + p 24'] .
r R

(21)

G}4—f —= z4'r p 2 T4, Y =R

4(~ f)-0 (12)

in order to have a bound state of rnatter. Since
only quarks in the same mode are allowed in a
bag, the right-hand side of Eq. (11) is independent
of time. Equation (12) is also a time-independent
boundary condition, so that 4 must be a static
field.

For massless quarks (only u and d quarks are
relevant here) the wave functions at the surface
are given by'

where in Eq. (11)we use the quark wave functions
in the absence of gluon couplings. We also impose
the boundary condition 4 =+4..

a
(22)

As in the gluon energy calculation of the MIT
group, we argue that the terms in E, of the type
4,4, are part of the quark self-energy which lead
to quark-mass renormalization and are therefore
absorbed into the phenomenological quark energy
term Eo in Eq. (5). We therefore keep only the
exchange terms and let

E (23)

where

We write the pion field explicitly as a sum of
terms arising through the boundary condition from
each of the quark sources in the hadron bag:

q(r 0)= i . - - i, x=R.ijp(x) U

4m (-ji x 'p'U& ' ab d p'(V4, V4l, + p. 4, '4~) . (24)

jp(x) =j|(x) (15)

jp and ji are spherical Bessel functions, U is a
spin-isospin function, and x/R is the single-quark
energy eigenvalue. The normalization factor is
given by

P7
2 Rp' 2( )

(X )

X

and the lowest energy eigenvalue is determined by

r-R

Gauss's theorem allows us to reduce the ex-
change integral to the simple surface term

=R
(25)

Inserting Eq. (11) for &4J8x and the spherical
harmonic expansion for 4, yields

—(«v)'"f,E =Ch(~~)U'. [D(b), +V2D, (b)o,

which yields y =2.04. + v 2Di(b)o ] rU, . (26)



20 PARTIAL CONSERVATION OF AXIAL-VECTOR CURRENT. . .

TABLE I. Masses of hadrons (in GeV) with and without the pion interaction term. The
masses of p, Nf(, , 0-, and (d are used as input in both eases. The values of parameters
are discussed in the text.

Particle &E.@wuv» Exp. mass
Bag-model fit

without E, with 8,

Z

Nsi~

0

30
18

2
0
6
2
0
0
2
0

-6
0
0

-6

0.180
0.111
0.012
0
0.027
0.009
0
0
0.014
0

-0.043
0
0

-0.121

0.938
1.116
1.189
1.321
1.236
1.385
1.533
1.672
0.77
0.892
0.783
1.019
0.495
0.139

0.938
1.105
1.144
1.289
1.233
1.382
1.529
1.672
0.783
0.928
0.783
1.068
0.497
0.280

0.938
1.077
1.081
1.219
1.236
1.373
1.518
1.672
0.816
0.951
0.783
1.100
0.386

~Prom Ref. 5.

We define the effective pion-exchange operator
Z", by

E', = U, Ug', U,U„. (27)

Equations (20) and (26) then give

E', =(48m) C f, R Ga', o,r, ''
where

G =[-2k(rjR)]/[pRh'(pR)]

(28)

(29)

and note that as p, -0, G - 1..
A useful form for the pion-exchange energy is

Z, =g (E,")
ale

=(48m) 'C 'f, 'R G(Q)

where

(30)

Q =+ (2$„' —3)(2I~' —3) .
aCb

S,„and I,& are, respectively, the spin and isospin
operators of the two-particle subsystem. The re-
sults for pion exchange between two antiquarks or
between a quark and an antiquark are the same;
the reader should be reminded that strange quarks
are not counted in the above summation.

(31)

IV. NUMERICAL RESULTS AND DISCUSSION

The numerical values of (0) are given in Table I.
We use the usual SU6 contents with the exception of
Q for which we use ss, and of ~, which we take to
have no ss content. We also show in Table I the
value for the expectation value of F, in the states
of Ref. 5, with radii as given in their Table III.

We use f,= 0. 94'/ v 2. A number of these energies
are substantial. In particular, the contribution of
this term to the mass of the bag state with pion
quantum numbers is considerable and negative,
which tends to improve the agreement with experi-
ment. However, in practice such a large negative
term removes the minimum in the expression for
the pion mass as a function of the radius of the
bag. Therefore the quadratic boundary condition
at the bag surface cannot be satisfied, and there is
no bag state with the quantum numbers of the pion.
Thus the pion-exchange interaction alone is cap-
able of destroying the pionlike bag state, just as
the instanton term of Refs. 1 and 6 can remove the
pion state. We note that for p. -0 our pion-ex-
change energy E, has the same R dependence
(-R ) as the instanton-induced interaction energy
E, obtained by Horn and Yankielowicz. However,
there is the important difference that I:, affects
only the proton, A, pion, and g states, while F,
affects all states with two or more nonstrange
constituents.

This perturbative calculation of the expectation
of E, is unrealistic, since the large 1/R term will
change the value of the equilibrium radius, thus
changing all contributions to M(R). Consequently,
a new fit to the bag-model phenomenological pa-
rameters is required. We have therefore done a
complete refitting of parameters and radii, in-
cluding the pion-interaction term using f,=0.94'/
v 2 =0.092 GeV. The procedure is exactly parallel
to that of Ref. 5, and our program does reproduce
their fit when the pion term is not included. With
the pion term included, the bag parameters Zo,
8, e„and m, were determined using the proton,
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K3 /2 0, and (d expe rimental masses. %e used
zero mass fear the nonstrange quarks and neglected
the very small contribution of color-electric gluon
interactions. The results are given in Table I,
along with experimental masses and the fit of Ref.
5 for comparison. The parameters obtained in our
fit are Zo ——1.53, 8=3.00~10 GeV, a, =0.790,
and m, =0.291 GeV.

For comparison, the parameters obtained in Ref.
5 in the fit using zero for the mass of the non-
strange quark are Zo ——1.84, 8 =4.42&10 GeV,
n, =0.55, and m, =0.279 GeV. The radii were
not changed greatly (except of course for the pion)
and increased for most states (those with positive
(0) in the table). There is indeed no stable pion in
this fit and there would not be even for substan-
tially larger values of f,. Most other masses
change only slightly and no mass changes by an
amount comparable to the perturbative calculation.
We have also made a fit including the instanton
energy but not the pion-interaction energy (not
shown in the table). The masses resulting from
this fit are qualitatively much like those found
here, although of course only the proton, A, pion,
and g are shifted. The strength of the instanton
interaction has only been estimated by theoretical
considerations; our numerical fits prefer the
minimum strength that will destroy the pion-like

bag state.
We have also looked at the effect of the pion-ex-

change energy on the q and p'. In the absence of
the higher-order gluon exchanges discussed by
DeGrand et gl. , one of these would have a quark
content of ss and the other would be uu+dd. The
latter would be degenerate with the pion in the ab-
sence of the pion-exchange energy, thus having a
mass of 0.280 GeV using the MIT parameters, in
bad agreement with either experimental mass. The
perturbation arguments indicate a contribution of
0.362 GeV from the pion-exchange energy, leading
to the hope that at least one of the q and q' masses
might agree with experiment. Unfortunately, when
(E,(R)) is properly included in the minimization of
M(R), the uu+dd combination has a mass of only
0.302 GeV, in bad agreement with either the 0.549
GeV mass of the g or the 0.958 GeV mass of the g'.
The corresponding mass of the ss combination
changes only slightly to 0.645 GeV and remains in
poor agreement with either experimental mass.
Thus the mixing effects of Ref. 5 must be invoked
to fit the q and q' masses.
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