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An isobar-model partial-wave analysis of 4140 m. p. ~m+m n bubble-chamber events at total center-of-mass
energies between 1330 and 1380 MeV is reported. Included in the analysis is a chiral-symmetry background
calculated from the phenomenological Lagrangian. Significant results of the analysis are that production is
dominated by the initial P11 wave and that, in this wave, final-state &N production is more important than
mh production. We show that the recent single-arm-spectrometer data confirm the bubble-chamber data,
where the two overlap. We discuss the determination of the chiral-symmetry-breaking parameter g. The
analysis establishes that the present data is consistent with several models of the symmetry breaking,
although it favors the vector breaking model of Weinberg, g = 0. Using a dispersion relation we show that
eN production in the tail of the Roper (P11) resonance significantly affects the extraction of ( from total-
cross-section data; hence in pion production ( cannot be determined independently of the isobar amplitudes.
As a further application of the results of the analysis we determine the value of the Amh coupling constant.
Our result depends on the value taken for the 5 mass and what assumptions one makes to determine the

large mh amplitudes; but, in any case, it is considerably less than the theoretical predictions which follow.

from SU(6), U(12), the quark model, and superconvergence relations. We also perform, in this paper, a
Goldberger-Treiman-MIT-bag-model calculation which agrees with the other theoretical predictions. We
further show that by attributing all P33 inelasticity to 775 production the results of a recent elastic-phase-
shift analysis imply upper bounds on the 6mb, coupling constant which are consistent with the value implied

by the isobar analysis,

I. INTRODUCTION

Low-energy single-pion production is a rich
source of information on a number of important
questions including (1) the validity of three-body
equations, (2) the accuracy of theoretical predic-
tions of resonance-resonance-particle couplings,
and (3) the determination of deviations from chiral
symmetry.

The world data set for the process comprises
early emulsion experiments in the 50's and 60's, '
bubble-chamber experiments from the 60's and
70's that yielded a tota, l of about 300000 events
spread over the energy range 1300-2100 MeV"
and, most importa, ntly, a new wave of spectrome-
ter experiments beginning in the later 70's with
the LASL experiment of Gram et al. ' at six ener-
gies from 1260 to 1360 MeV. Past isobar-model
a,nalyses of the data, include the pioneering full-
amplitude fit to the emulsion data by Olsson and
Yodh, an, ambitious partial-wave analysis of two-
thirds of the bubble-chamber data by a Berkeley-
SIAC collaboration, ' and subsequent analyses of
partial data sets by workers at Saclay, ' Imperial

College, ' and Caltech. '
The purpose of the present paper is, in general,

to make contact between the bubble-chamber data,
and the spectrometer experiment' and, in particu-
lar, to present the conclusions that can be drawn
from the lower-energy bubble-chamber data.
About 4000 p +p -p'+z +e bubble-chamber
events below 1380 MeV are available. ' They di-
vide fairly naturally into energy bins with 8'=1340
+ 10, 1360+ 10, and 1375+ 5 Me V. There are, of
course, complete kinematics for each event. The
spectrometer experiment detects, with good pre-
cision, the energy (E,) and angle (8,) of just the
v' over a fairly wide range of E„and z, (=cos8, )
at six energies,

5 = 1260, 1280, 1300, 1305, 1335,

and 1355 MeV.

In Sec. II we review the bubble-chamber data and,
to facilitate comparison with the spectrometer ex-
periment, give the (E„z,) distribution; the bub-
ble-chamber distribution appears to be in good
agreement with the counter data.
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In Sec. III we turn to the question of chiral sym-
metry and chiral-symmetry breaking in the phe-
nomenological-Lagrangian approach to mN- mnN.

This has been discussed in detail by several auth-
ors."" As the four-momenta of all three pions
go to zero, chiral symmetry makes a unique pre-
diction for the scattering amplitude in terms of the
pion decay constant. The breaking of chiral symme-
try is partially fixed by the value of the pion
mass, but introduces one new parameter ($) which
describes the tensor transformation property of
the term in the Lagrangian that breaks the sym-
metry. The predictions of broken chiral symme-
try a,re incorporated in the tree diagrams of a phe-
nomenological Lagrangian. " In Sec. III we give
these predictions. We also compare the predic-
tions of the full phenomenological Lagrangian with
that of its threshold approximation; the result is
that they agree, for the chiral-symmetric part.
The chiral-symmetry-breaking term, however,
changes considerably with energy.

In Sec.. IV we fit the bubble-chamber data. We
use the chiral-symmetry prediction as a back-
ground and add the following isobar production
amplitudes: PP11(wh), PS11(eN), PP33(mh),
DS13(wh), DP13(eN), and DS33(ph). The (standard)
notation here is [L (initial), L (final), total I, to-
tal J]. We also add what is left of the chiral-sym-
metry-breaking term after subtracting its projec-
tion onto PS11(eN) and DP13(e N); the latter is done
to prevent a double counting of these production
amplitudes. Our results are: (1) PS11(eA) pro-
duction is the largest single contribution; (2)
PP11(nh) production is also large; (3) PP33(r&)
production is surprisingly small; (4) DS13(nh) and
DP13(eN) production are approximately degenerate
and definitely nonzero; (5) DS33(va) production is
probably not consistent with zero; and (6) the chi-
ral-symmetry-breaking parameter ( is consistent
with zero. Zero for & implies that the o commu-
tator has a pure isotopic scalar (I=O) structure
as would be expected in the quark model and that
the symmetry-breaking term in the Lagrangian
transforms like the "time" component of a chiral
four-vector, in accordance with the model of
Weinberg. "

In Sec. -V we discuss an evaluation of the ApA

coupling, constant using the results of our analysis.
Our method is to study the diagram for nN-6-v~- gmN. We first evaluate the cross section for
this process using the amplitudes determined with-
in the partial-wave isobar model. Then we evalu-
ate the diagram using Lagrangian field theory,
taking care to include spin complications for off-
mass-shell 4's. Comparing the two results yields
our prediction g~„&'/4m =40+ 20. This value dis-
agrees with the predictions of SU(6) and a Gold-

berger- Treiman-type calculation. The latter
agree with each other (gz„z'/4m= 100) and are
about 3 standard deviations higher than the result
of the analysis.

In the concluding discussion of Sec. VI we com-
pare our results with those of Herndon et al. ' To
check our result that $ = -0.3 + 1.6, we consider a
dispersion relation for the PS11(eN) amplitude.
From an approximate evaluation of the dispersion
relation for the production amplitude near the
three-body threshold we are able to conclude that
the data tend to favor a value for ( that is close
to zero. Finally, we present a summary of the
principal findings of this work.

) m +2m~ = s- —s)2 2= (2.1)

where m denotes the mass of the nucleon. We cen-
tralized by writing s,. = s,. (threshold)+ As,. and scal-
ing, for a given event, the three As,-'s by the same
factor. Any events that fall outside the Dalitz
plot are brought back by adding a few tenths of an
MeV//c to the appropriate momentum.

In Figs. 2(a), 2(b), 2(c) we display the distribu-
tions of all 4140 events as functions of each of the
three subenergies. The distributions for each
set of centralized events are similar to those
shown. One notes the strong peaking of the m'g

energy s, toward high values, which shows the in-
fluence of the e enhancement.

In the c.m. frame we define a coordinate system
(Fig. 3) in which the initial-state nucleon is di-
rected along the positive z axis and the momen-
tum vector of the final nucleon defines the x-z
plane. Letting z, (z, z„) equal the cosine of the
angle between the +z axis and the w' (g, n) mo-

II. "THRESHOLD" BUBBLE-CHAMBER DATA

In Fig. 1 we show the full world set of bubble-
chamber data" below 2000 MeV for the four pro-
cesses

1. n p n'xr n, 121490 events,
2. n. p -n'Ttp, 72 346 events,

w'p -m'm p, 68976 events,
4. n'p 7t'n'n, 7460 events.

We note also that there are some recent data" on
the reaction m p -m'n%. For the present analysis
we consider only the 4140 n. p -m'm n events be-
low 1380 MeV. ' The events have been centralized
to the three total energy values 1340& 10 (1227
events), 1360+ 10 (1481 events), and 1375+ 5 (1432
events) using a scaling procedure. The latter is
based on the relation between the square of sub-
energies s, (s, =s„„., s, =s,+„, s, =s,+„)and the
total c.m. energy squared s,
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FIG. 1. Histograms of the available bubble-chamber data for 7t p x'z n, x p z ~ p, 7t'p ~ 7t'p, and 7)'P —7r'x'+.

mentum vector, we obtain for the full data set the
angular distributions shown in Fig. 4. (Again, the
results are the same at each of the three different
energies. ) Important features of the distributions
are the (z =-1) w' and (z =+1) ~ peaking. These
are opposite from the distributions one would ex-
pect on the basis of a simple one-pion-exchange
model.

In Figs. 5(a), 5(b), 5(c) we give the distributions
in (E„z,) of the bubble-chamber events. (We
have divided the plane into 10 energy bins and 10
cosine bins. } It is this distribution that the spec-
trometer experiment measures. The distribution
can be fit by a function of the form

f(E„z,) =A+ CTz, + D(T,„T)z,+ ET', (2—.2)

where T = (E, —m„)/100 and all quantities refer to
the overall c.m. The values for the four param-
eters at the three energies are given in Table I.

This parametrization is the same as that used by
Gram et al. ' in a preliminary analysis, and the
values in Table I a,re in good agreement with their
results.

III. BROKEN CHIRAL SYMMETRY

A. General theory

The general theory of broken chiral symmetry
has been reviewed by many authors. """It has
been applied to pion production by Chang, "Olsson
and Turner, "Long and Kovacs, "Rockmore, ' and
Lomon. ' We follow the general treatment of
Weinberg ' and the application to pion production
of Olsson and Turner. " The basic idea is that,
in the symmetry limit, S-matrix elements must
be invariant under both isospin rotations and chi-
ral "boosts" of chiral tensors, such as the chir al
four-vector
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FIG. 2. Histograms of the bubble-chamber data
used in this analysis (Bef. 3) as a function of the three
invariant subenergies ~s~ (a), Ws2 (b), and v s3 (c), as de-
fined in the text. We plot Ws& and ~s2 over the range
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(c)
FIG. 4. Histograms of the angular variation of the

4140 bubble-chamber events used in the present analy-
sis. The angular variables z+, z, and z„equal, re-
spectively, the cosine of the angle between the z axis
(cf. Fig. 3) and the ~', 7), and e momentum vectors.
(The initial nucleon momentum is along the +z axis. )
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TABLE I. Parameters for the phenomenological form, Eq. (2.2), for the distributions in
(E„z,) of the bubble-chamber events.

C (MeV-') D (MeV ~) E (MeV-2)W (MeV)

22.12 + 0.30
21.92 + 0.28
20.81 + 0.33

1.41 ~ 0.64
0.30.~ 0.68
0.52 + 0.95

1340
1360
1375

-5.94 + 0.58
-4.14 + 0.60
—5.81 + 0.89

-5.67 + 0.50
-7.51 + 0.57
—7.58 + 0.99

FIG. 5. Distributions in (E, ,z, ) of the bubble-chamber events at the three energies (a) 1340+10 MeV, (b) 1360
y10MeV, and(c) 1375' 5 MeV. E, is the 7E' kinetic energy in the overall c.m. We have divided the plane into 10 energy
bins and 10 cosine bins. The relative number of events in each bin is given using an alphanumeric scale: 0 9, A Z,
vrith 0 representing the smallest number of events.
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(3.1) g 1
»»wvn 4ru~, ~0 (&up)y', (3 9)

[V'(x), V" (y)]„, =i5'(x —y)c„&V" (x)+S.t. ,

[A'„(x), V",(y)]„,= i5'(x —y)e, yAu~ (x) + S.t. ,

[V'„(x),A",(y)]„, = i5'(x —y)..„Au (x)+ S.t. ,

[A'„(x),A",(y)]„, =i5'(x —y)c, , V", (x)+ S.t. ,

(where S.t. stands for possible Schwinger terms)
as applied to soft pions.

Predictions of the current algebra (3.2), with
the PCAC (partial conservation of axial-vector
current) condition that the pion pole dominate ail
matrix elements of the axial-vector current, can
be reproduced by using a chiral-invariant La-
grangian constructed from covariant [in the sense
of (3.1)] derivatives. The covariant derivative of
the pion field is expressed in terms of the pion
decay constant f, as

D.y = (I --.'f.-V)-'s. e,
and for a field g with isospin operator t (for us g
will be the nucleon)

(3.3)

Du(=8 $u+i2-'-f '(1+ 'f„Q ) t —'(tj& x& Qu)$.

(3,4)

One can build a chiral-invariant Lagrangian by
coupling Dug, (, and Dug in any isospin-invariant
way. Such a Lagrangian, . however, will have no

mass term for the pion. This term i.s included in
the symmetry-breaking part of the Lagrangian.
As shown by %'einberg, "this term can be written
as a power series in f, 'p'/4

Z»= ,' m, 'y'll —-—,
'--[X(X+2) + 2]-,'f„2y'+ ~ J, -

(3.5)

where N is the rank of the tensor operator as
which S~ transforms under a chiral rotation. The
mn s-wave scattering lengths are related to N by

2o, + a, = -,'L[iV(N+2)+ 2], (3.6)

where L=m, /Bnf, . Specification of A'fixes both
scattering lengths since a second combination of
a and a

2ao —5a, = 6I. , (3.'I)

is independent of any other parameters.
Specializing to vN-gpN, we write the relevant

w-N interaction terms for the chiral Lagrangian,
following Ref. 11) as

&»» =2' 4&u&5'"&'8"0:2m
(s.8)

formed from the pion field P and any constant c.
This invariance requirement summarizes the con-
tent of the current-algebra commutation relations

~v
~»»ww 4 20 Xu ~2 ou (Pf P;) &g'(g xB p)

(3.10)

~,.=-4f - [e'(s"y)'--,'(I--.'&),'(y')']. (3.11)

These terms are the same as those used in sev-
eral other calculations" "'"'"except for the
anomalous-magnetic-moment term (»~ = 1.85) in
(3.10). This term plays a negligible role in the
analysis, as discussed below. The pion decay con-
stant and g, are related to the weak axial-vector
vertex function by the Goldberger- Treiman condi-
tion" f,g, =mg„(0), where we use g„(0)= 1.25, g~
=13.5, m=939 MeV, and f„=87 MeV. t is related
to the tensor rank Nby

g
=-', [3-iV(iV+2)J. (3.12)

where f, —P /2f„ is the o field to order P . From
(3.13) it also follows that $ is a measure of the
isotopic I=2 component of the v commutator. If
c is the ratio of the I=2 to I=0 components, then'

18&

15m —6
(3.14)

In the following section we describe our proce-
dure for determining $ from a maximum-likeli-
hood analysis of the data discussed in Sec. II. In
addition to our analysis there are several theo-
retical models and experimental results from
which g may be determined. In the general model
of chiral-symmetry breaking of Gell-Mann, Oakes,
and Renner" the nonsymmetric part of the Ham-
iltonian is assumed to transform according to the
(3, 3) + (3, 3) representation of SU(3) x SU(3). A

prediction of the model is that $ = 0. This and
other predictions are based upon simple SU(3)
assumptions involving certain chiral-symmetry-
breaking meson matrix elements. However, it has
been argued" that these assumptions have no di-
rect relation to the quark model, so the latter can
provide another, somewhat independent estimate
of $. In the quark language, the o commutator is
expressed in terms of spinors for the "up" and
"down" quarks and their average mass, m, as"

It measures the amount of departure from the as-
sumption that that o commutator is proportional
to the o field. Using Eqs. (3.8)-(3.11) we find to
order P'

[q,",suA„'] =if,m, '[5 '(f„—-y'/2f, )

+(&/4f, )(5 'P+2y"y')J,
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~n(uu+dd). This structure implies that the iso-
tensor part of the commutator is zero, hence $
= 0. Still further theoretical support for this value
comes from the so-called hard-pion current-al-
gebra method. "'" Here it is assumed that inter-
mediate-state sums a,re saturated by low-lying
single-meson states. Within the pole dominance
approximation, the assumption that there is no
I=2 component to the 0 commutator is natural as
there are no known I=2 s-wave pn resonances.

Aside from zN-n~N, another reaction from
which $ may be extracted is the decay K'
-~'~ e*v,. From the analysis of several experi-
ments on K,4 decay, various values of the 5=0,
s-wave nw scattering length a, have been deter-
mined Hite and Jacob have a,iso recently ap-
plied interior dispersion relations to pN scattering
amplitudes to extract g,. An average of these re-
sults is

go=0.25+ 0.09m~ '. (3.15)

Using Eqs. (3.6), (3.7), (3.12) and f, = 87 MeV, this
implies -2.53 & $ & 0.29, which is consistent with
the theoretical predictions. In this regard one
should note that Wei. nberg's original calculation
of the n'm scattering lengths was based on the as-
sumption that the 0 commutator was pure isosca-
lar, so his result is in agreement with (3.15). The
scattering length also agrees with the recent sym-
metry-breaking model of Schwinger, "which im-
plies that $ =-2.

/
f

I

B. Predictions for pion production

From (3.8)-(3.11) one may calculate the ampli-
tude T(wN- vwN) for the diagrams of Fig. 6. In
Appendix A we give the complete results for all
the tree diagrams for all independent pion produc-

tion processes without making any threshold ap-
proximation in the kinematics.

The total cross section predictions of these
amplitudes are presented in Fig. 7 for both $ = 0
and ( = —2. For comparison, in Fig. 7(a) we also
show the prediction of the anomalous-magnetic-
moment term (for m p -w'n n), which arises from
the second term in (3.10). The contribution to
other charge states is of comparable importance,
and in our final fitting we did not include this
term.

The amplitudes generated with a chiral Lagran-
gian are expected to be valid only through terms
linear in the pion momenta —terms of higher or-
der may be strongly model dependent. " In the
present analysis, we have used the full amplitude.
To test the model dependence of the $-independent
piece of our amplitude, we expanded numerically
T(zN-VnN) j.n a. power series in the pion momenta,
and retained only linear terms. The deviation of
the cross-section predictions of this threshold
amplitude from those of the full amplitude (see
Fig. 7) are a measure of the significance of the
model dependence of our results. This numerical
expansion is effected as follows. . First, we scale
the three-momenta of the final state pions q, and
q„by a parameter p «1; and then we form the
symmetric and antisymmetric parts of T(mN
-wwN) in q, and q, . This threshold approximation
to the $-independent part of the amplitude is eval-
uated at the appropriate energy according to

(3.16)

where we write

TI =- [T(pq, pq. )+ T(pq. , pq, )l —,(3.»)

(-)T, =-—[T(pq„pq, ) —T(pq„pq, )]. (3.16)

Here, Q is the c.m. momentum of the incident
pion, Q„, is the threshold value of Q, and p is the
scaling fa,ctor. The symmetric part of T is a
threshold approximation appropriate to production
of s-wave final-state pions, and the antisymmetric
part, a threshold approximation appropriate to
production of p-wave final-state pions. For the
chiral-symmetry-breaking part of the production
amplitudes, T&, we use a symmetric threshold ap-
proximation

1 I@I
(T&),h =2 [T~(pq„pq2) -»L(pq2, pqi)l

IQ~h I

' (3.19)

FIG. 6. Tree diagrams which contribute to the process
7I7)¹ (a) inctudes. the "one-point, " (b) tt&e "two-

point, " and (c) the "three-point" diagrams.

In Fig. 7, we depict the cross-section predictions
of (3.16) 2nd (3.19) for both ( =0 and ( = —2. We
also present the predictions of a "hybrid" ampli-
tude in which the threshold a,pproximation de-
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mations involved. Olsson, Osypowski, and Turner
consider only the one- and two-point diagrams de-
picted in Fig. 6—the three-point graphs are neg-
lected. Furthermore, they use a threshold ap-
proximation to the T matrix

T(~N- «N) —=~(vN- «N) IQI, (3.20)

where Q is the c.m. momentum of the incident
pion and a(nN-«N) is the T matrix evaluated at
threshold divided by the threshold value of IQI.
-This threshold approximation is essentially our
T,'„"+(Tq)t„(the graphs neglected by Olsson, Osy-
powski, and Turner are small) and the curves la-
beled o,'h+' in Fig. 7 reprduce the $ =0 cross-sec-
tio'n predictions of these authors. In this regard,
it should be noted that the figure depicting the to-
tal cross section for n p -n'm n as a function of
the pion laboratory kinetic energy, T„in the first
of Ref. 11 is incorrect. However, the plot of Q'
xphase spa, ce in the second of Ref. 11 is correct,
as are the threshold expressions for the pion pro-
duction amplitudes in both of these papers.

Rockmore" also uses the threshold approxima-
tion of Eqs. (3.16), (3.19) and considers v produc-
tion from both single-nucleon and nuclear colli-
sions. In the earlier Rockmore paper (the first
of Ref. 13), it is noted that the $-dependent part of
the effective Lagrangian for g production does not
agree with the current commutator calculation of
Chang. " Rockmore mistakenly concludes that the

C. Comparisons with previous analyses

The arguments in Sec. III A strongly support the
Weinberg model of symmetry breaking (t = 0).
However, the results of previous w-production
analyses have not been definitive in this regard.
For example, while Rockmore" concludes that
the data are consistent with t' =0, the analyses of
Long and Kovacs, ' and more recently that of Lo-
mon, ' support the Schwinger model" ($ =-2) in
which the o commutator has isoscalar and isoten-
sor terms. In another recent analysis, Olsson,
Osypowski, and Turner ' find that $ = -0.8+ 0.4
which is 2 standard deviations away from either
model.

The proper assessment of the results of these
analyses is complicated by the different approxi-

scribed above is used only for the (-independent
part of T(vN «N). For v p-v'v n, the $ =0
cross sections generated with this threshold ap-
proximation are virtually indistinguishable from
those generated with the full amplitude. Although
not conclusive, this implies that the $-independent
part of our amplitude is model independent. The
g =-2 predictions of Tth, however, are -50% lar-
ger than the predictions of the full amplitude at
the uppermost energies. For the remaining charge
states, the differences between 0 and 0,„ indicates
that the model dependence of even our chiral-sym-
metric predictions is likely to be significant.
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TABLE II. The total-cross-section predictions (in mb) including both the chiral amplitude

(with $ = 0) and isobar production. The first number corresponds to the EPP solutions (Table
V), the second (in parentheses) to the SPP solutions (Table VI). These solutions are dis-
cussed in Sec. IV. The cross sections are generated through a Monte Carlo calculation with

2000 points. We estimate (from Tables V and VI) that the errors on the total cross sections
are about +20Vo.

1340 + 10 MeV 1360 ~ 10 MeV 1375 + 5 MeU

7r P-7t'7r n

7t -P- 7t'7r-P

~ p-vrovr p

1.39
(1.30)
0.75
(0.73)
0.27
(0.30}
0.19
(0.21)
0.26
(0.34)

2,10
(2.].5)
1,15
(1.12)
0.44
(0.52)
0.32
(0.33)
0.63
(0.71)

2.62
(2.51)
1.42
(1.34)
0.61
(0.63)
0.49
(0.48)
0.72
(0.98)

two approaches are not equivalent, the effective
Lagrangian requiring g = 0 to be consistent with the
available low-energy m p -v'~ n data and the cur-
rent commutator, $ =--.'. . However, Olsson, Osy-
powski, and Turner (in the third of Ref. 11) later
point out that the discrepancy between the two ap-
proaches is due to the neglect of certain pion pole
diagrams in the current-commutator calculation.
This last reference is the most current calcula-
tion which uses the threshold approximation; it
gives ( =-0.8+ 0.4, as noted earlier.

In the present analysis, aside from questions of
the model dependence of Tq, we find that (3.16) is
not a good approximation to the production ampli-
tude at the energies at which data are present for
two reasons. First, the threshold approximation
of Olsson, Osypowski, and Turner neglects pro-
duction of the two final-state pions in a relative
p state. From Fig. 7, we see that for n p-n'7t n

the cross-section predictions of T,'„" (o,„"')and of
T,'„' (o,'„') are of comparable importance at the
relevant energies. Second, we find that isobar
production makes an important contribution to the
production cross section. Especially important
is the interference between the t-dependent piece
of the chiral amplitude and eN isobar channel as
discussed below in Sec. IVC. In Table 0, we pre-
sent the total-cross-section predictions of our
analysis. For m p -n'm n, the chiral-symmetric
amplitude accounts for only 20/q to 30% of the total
production cross section. It is apparently the use
of the threshold approximation (3.20), particularly
in regard to the chiral-symmetry-breaking piece,
which allows the T(mN- wnN) used by Olsson, Osy-
powski, and Turner to compensate for the lack of
isobar production and the neglect of T,'„' in their
total-cross-section predictions at the energies
considered by these authors.

Long and Kovacs" use the full amplitude as gen-
erated by the phenomenological Lagrangian of
Eqs. (3.8)-(3.11) (excluding the small anomalous
magnetic moment term), but neglect isobar pro-
duction in their analysis. Using several different
models for the symmetry breaking, these authors
make predictions for total cross sections for
n P m z n, r'P - n '7t'p, and n p - n p'p and for
certain differential cross sections for g'p w n'n
and m p —w 7t. n. In a comparison with data on
these processes they find that $ = —2 leads to the
best agreement; however, our numerical work, as
discussed below in Secs. IV F and VIB, implies
that this result is inconclusive because of the
neglect of isobar production.

IV. THE FIT TO THE BUBBLE-CHAMBER DATA

A. Introduction

We took the chiral-symmetry contribution to
w P-~'m n from Eqs. (A12)-(A15), subtracted
from the symmetry-breaking term in (A12) its Pll
and D13 components, added production of what we
consider to be the six potentially most important
isobar states, and determined $ and the six iso-
bar production amplitudes from a maximum-likeli-
hood analysis of the bubble-chamber data described
in Sec. II. The details of this analysis are given
below, while the results are summarized in Ta-
bles V-VIII.

B. Isobar production amplitudes

In Ref. 29 we gave in detail our formalism for
determining partial-wave amplitudes in the isobar
model. Here we reproduce the principal results
in a form close to the actual programming. In Ap-
pendix 8 we give numerical examples. For the
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where the index n is the collection

o.'= p, f„i„i„,i„i„i„J,I, , lt, I„t), , pt, j,], (4.2)

isobar amplitude we write

r,„=g X.,X. , (4 1)

FIG. 8. Notation for the reaction gN 1+ 2+ 3 with a
two-particle resonance in the fina1 state.

with i denoting an isospin projection and p, a spin
projection. &' is the same set as n but without
any projection quantum numbers. The indices in
the collection (4.2) are defined in Fig. 8. In the
present analysis we include only the & and 6 iso-
bars. The basis functions for these states are
given by [C(j,j,j;m,m„m) is a Clebsch-Gordan
coefficient]

X,= v 2 C(l —,','-; i,i „ i) C(11 Oi,i,0) C( ~2/,. J; t(, 0p,.)C(2 1&J; p&, t(, , —p&, t2, )

2I, +I ."' e" smVXI t ~ t(j) 4 W
eg ly

(4 3)

X~( ) = C (1 2I; i„i„i)C (I ~ 2; i g ~i ~ )C (21 I; i~i 2i)C (q I(J; 0;0P q )

x Q [C(—1 —;PttB, Pt+tl1)C( lt J; Pt+ teal, i() —(Pt+tB),P;)1 ((I )I 2t, .-( ~ )(i) )]

&2l +1 ' ' 4v ' ' t'e" sin5x] ' w, l

4w 3 ' '( q, ' B~, (4.4)

X~"' describes the case when the 4 is made up of
particles 1 and 3 (v'n); there will also be a contri-
bution X~") from the (v n) isobar. The two-body
phase shifts, 5, for ~S in the 3-3 state and mn' in
the I=V= 0 state are taken from the elastic analy-
ses of Refs. 30 and 31, respectively. In the bar-
rier penetration factors B, which are defined by
Blatt and Weisskopf, "we set the radius equal to
0.25 fm. Our results will depend only very weakly
on the radius value (for reasonable choices), and

we note that for our value the penetration factors
are essentially B, ~q'I. The normalization in-
tegrals 8 are given by

sin'5
(4.5)

2

where

2(2') 2[22(2')') '(~) (4.7)

In our notation p„p„and p, are the c.m. momen-
ta of the v', v, and n, while W, = Ps, and q, are the
subenergy and relative momentum for the j-4 pair
[(ijk)=(123) et cycl.]. W= Wsis the total c.m. en-
ergy, and p is the c.m. momentum for the initial
state. Because of the ordering of factors in the
Clebsch-Gordan coefficients in (4.3) and (4.4), our

A ~ 's will differ by various signs from those of
.Refs. 6, 7, and 8. Relevant sign conventions are
discussed in detail in Sec. VIA.

C. Total production amplitudes

We fit the following six isobar production ampli-
tudes:

PP11(v4), PSll(ei)t), PP33(vh), DS13(wt2),

DP13(eX), and DS 33(v t2, ) .

Our criteria for these choices were: {1)we took
all final-state 8 waves, and (2) we took final-state
p waves arising from resonant initial states
(P33,P11,D13). In relation to the extraction of
the chiral-symmetry-breaking parameter, we
also consider the SP11(&N) wave, as discussed
below. It should be noted that, even though our
data are all in one charge channel (w'v n), we can
determine both I= —,

' and I= 2 ~4 production ampli-
. tudes. This is because the relative amounts (and
the relative signs) of the v'6 and w 6' contribu-
tions are different for the two isospin states.

In computing total cross sections in the isobar
model it is necessary to include the overlaps be-
tween pairs of basis functions for production of
different isobars from the same initial state. 1he
size of the overlap is a measure of the nonortho-
gonality of the final states. All overlaps have
been calculated i:n a previous work by two of us"
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PP11(mk)
X

PS11 (EN)

TABLE III. The normalized overlaps defined by Eq. (4.9) and the overlaps with the chiral-
symmetric background. The integrals are computed with a Monte Carlo routine, using 5000
points. The overlaps involving ~ isobars were computed using X~=X~'+X~

(a) Normalized overlaps
DS13(mh) DS13 (7t b, ) DP13 (EN)

X X X

DP13 (eN) DS33 (mA) DS33 (mA)

1340
1360
1375

0.22 —0.06i
0.25 —0.06i
0.22 —0.04i

-0.84 —0.19i
-0.78 —0.29i
-0.73 —0.36i

0.60
0.60
0.59

-0.21 + 0.05i
-0.19 + 0.07i
-0.17 + 0.07i

(b) Overlaps with chir al-symmetric background
1340 MeV 1360 MeV ~

1375 MeV

PP11(~6)
PS11(~N)
PP33(~a)
DS13 (mD)

DP43 (&N)

DS33(mh)

-0.5+ 0.2i
1.3 —.0.3i
0.3 —0.1i

-1,0+ 0.5i
0.8 —0.2i

-0.7 + 0.3i

-0.5+ 0.3i
1.4- 0.4i
0.3 —0.1i

-1.1+ 0.7i
0.9 —0.3i

-0.8+ 0.5i

-0.6 + 0.3i
1.5 —0.4i
0.3-0.2i

-1.1+0.9i
1.1 —0.3i

-0.7+ 0.6i

and were rechecked by a different method in the
present work. We define

X g= X*X~dp, (4.8)

where p denotes the four-dimensional phase space.
We note that the basis functions X (=X„X~"',X~~')
are such that the partial-wave cross section has
the form

g =4wg'(J+ —,)~A, ~'x [CG (isospin) j'.
'The normalized overlaps

X g=X ~/(X Xqg)'~' &4.9)

are given in Table III for the waves of interest.
Also shown are the overlaps with the chiral-sym-
metry background

where Tcs is the "chiral-symmetry" part of the cur-
rent-algebra amplitude, $T& a generalization of the.
chiral-symmetry-breaking part of the current-al-
gebra amplitude, and we have added the term
ZA .X to.describe isobar production. The iso-
bar sum includes the six waves mentioned earlier.
Up to a constant, T, is the "usual" one-pion ex-
change diagram given in Eq. (3.11) of Aaron et a&.29

It should be emphasized that the A, are not the full
production amplitudes, but rather the deviations
from current algebra.

At this point one would like to fit the data with $
and the six A, as fitting parameters. Unfortun-
ately, this is not possible. 'The reason is that ac-
cording to Ref. 29, we may expand

(4.11b)
a.= X.*Tcsdp (4.10)

T = Tca+ $T)+ Q A,X (4.11a,)

We see from the table that the PS11(eN) and PP11
(m&) have a small overlap, while the DS13(md. ) and
DP13(eN) have a very large one. Because of the
latter feature, we were not able to make a clear
separation of the two amplitudes. It should be
noted, however, that the (normalized) overlap in
the isobaric production cross section has a differ-
ent value from the charge state one so that a good
measurement of the total D13 reaction cross sec-
tion would determine the relative amplitudes.

Equation (A12) suggests a total production am-
plitude T of the form

where the B ~ are known, and below 1400 MeV, to
a very good approximation, only three waves-
PS11(eN), DP13(eN), andSP11(eN) —contribute to
the cross section. The fitting procedure deter-
mines the coefficients of the basis functions, X .
For the PSll(cN) and DP13(eN) waves, the 8, of
(4.lib) combine with the A, of (4.11a) giving new
fitting parameters, and consequently these waves
cannot determine $. It is only the coefficient of
the SPll(&N) basis vector, that appears in the ex-
pansions of Tcs and T& but not in the u' sum in
(4.11a), that can be used to determine the $ para-
meter. Therefore, our procedure is, essentially,
to identify $ by the devia. tion of Spll production
from the chiral-symmetry prediction. It should
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be noted. that, in the threshold limit, T, is pure
PS11 because the energy denominator [(p& -P,. )'
—m, '] has no z„=pz 'p,. dependence. Our method
depends on going far enough from threshold to
make an appreciable SP11 component. 'The SP11
wave is particularly appropriate for this task be-
cause the absence of any (nearby) resonances im-
plies that, of the large waves, it should be the
least affected by unitarity corrections. We note
that at 1360 MeV, T, would give, with ( = -2, ap-
proximately 1/0 of the observed cross section and
would therefore make a 10/0 difference in the am-
plitude. Thus $ could be measurable with the bub-
ble-chamber data. -

Since current algebra applies as all pion four-
momenta go to zero, it would be desirable to de-
termine $ from the spectrometer data. ' Unfort-
unately, single-arm spectrometer data determine
only two of. the four final-state kinematic variables
and hence may not be amenable to a three-body,
partial-wave analysis. It is therefore an uncer-
tain tool for determining the extent of isobar pro-
duction and hence the deviation of the remainder
from the chiral-symmetry limi't. It should be
noted that the work of Nath and Kere" implies
that eN production in the tail of the Hoper reson-
ance should persist at low energies. We find, as
discussed in Sec. IV F, large &X production at
1340, 1360, and 1375 MeV; in Sec. VI B we dis-
cuss a dispersion relation calculation which es-
timates the rate at which the cN production de-
creases toward threshold. It is, of course, dif-
ficult to distinguish the P11- resonance tail eE
production from the one-pion-exchange (OPE)
pion production at low energy; thus, for a reliable
determination of $ one may need to fix the OPE
contribution by means of nonresonant waves, as is
done in the present work.

I

X = 2N lno + —2 Incr,. +o~ (o -o„)'
0' Il Qo 2 (4.12)

where E is the total number of event points, o is
the fitted cross section, and o, is the experimental
total cross section with error 4o„. In our fitting
we used the new total-cross-section values inter-
polated from Ref. 4 (with generous errors as-
sumed)

o„+Aa„(1340)= 1.35+ 0.15 mb,

g„+&o„(1360)= 2.25 + 0.20 mb,

(4.13a)

(4.13b)

D. The fitting procedure

We use a maximum-likelihood procedure similar
to that used by the Berkeley-SLAC collaboration
and desc ribed in Ref. 6. The quantity that is min-
imized is g', which is defined by

o„+b,a,(1375)= 2.65 + 0.30 mb . (4.13c)

(4.16)

where ~p~ is the change in the kth parameter, P~
is the 0th component of gradient (-BX'/Bp~), and

A,., is the second-derivative matrix &»= BQ'/
epI8p~. Here we have used a vector notation where
P~ is the transpose of P.

The change, ~,.„, which minimizes the approxi-
mate y' is

(4 17)

Equations (4.12), (4.16), and (4.17) are iterated
numerically until a solution is obtained (P - 0) at
which point the parameter errors are simply

(~-1 )I/2 (4.18)

Problems arise when the algorithm for 4P „re-
sults in a X' increase; This normally occurs be-
cause of. inadequacy of the quadratic approximation
or numerical instabilities associated with degener-
acies in the parameter space (redundant paramet-
ers). We found it efficient and useful to work with
the normalized eigenvectors of the real symmet-
ric matrix, A. '.

o, , the differentia. l cross section at the ith data
point, is given in terms of T in (4.11) by

(4.14)

'The symbol ~,. denotes the four kinematic quantit-
ies necessary to describe an event, which we
choose to be FV„W„cos8„, and cosP, as defined
in Fig. 3. 'The theoretical total cross section o~ is
obtained from the event point cross sections by

o'&= o',. d (4.15)

In terms of the conventional likelihood function,
X' is just -2 lnl. , where L is the product of the
likelihood for o. around o„with error ~o„by the
likelihood for N events of values v,. (with total
cross section o). The quantity F is implicitly var-
ied in the analysis (for minimum y'). If Aa„= 0,
then o=o„.

'This definition of X allows a direct interpreta-
tion of parameter errors which are defined, in the
canonical way, as that change in one parameter
which causes X' to increase by one after X' has
been minimized with respect to all parameters.
This definition also allows direct addition of other
X' constraints, such as isotopic partial-wave cross
sections. When multiple charge channels are used,
the corresponding X' values are simply added to-
gether.

The algorithm for minimization is a standard
one. X' is first expanded to second order in the
parameter increments
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A 'p,.=X)g, ,

k
r:

(4.19)
[Note that in (4.25) we have unbinned the data. ]
This approximate A is positive-definite as is nec-
essary for a stable minimizing algorithm.

This enables us to express hp . asasumof ortho-
gonal changes E. Elastic-production-phase (EPP}approximation

(4.20)

where

(4.21)

X'= 2N lng„+-~ —2 n,. lng, , (4.22)

where n,. = number of events in cell i. Then A,.k
= B g'/BP, .BP, can be written

Since the Ap' »e anorthogonal set, motionalong
one of these directions is presumably independent
of motion along the other axes.

Although the full second-derivative matrix, A,
can be calculated, the search algorithm was found
to be more efficient. with an approximation devel-
oped in the following way. First let us assume that
4g„= 0 and that the event points have been binned
into equal elements of phase space so that X' can
be written

T = K(l- iK) ',
and we write

gl/ 2K/1/ 2

(4.26)

(4.27)

f is a diagonal phase-space matrix and K is a
real-symmetric (in the physical region), reduced
K matrix. Note that an element of K is expected
to be constant at a threshold. It is convenient to
split the K matrix into elastic and inelastic com-'
ponents as

A possibly useful method for reducing the num-
ber of parameters required to codify the data is
to constrain the production amplitudes using in-
formation about the (known) elastic partial waves.
%e will do this using a K-matrix formulation, al-
though other formalisms would undoubtedly suffice
and render similar results. The coupled-channel,
dimensionless, T matrix is expressed in terms
of a K matrix though'

T ik + 2 ~ ~ ~ i 4 ~ k 2 ~ ae/kg g. g' g
k g ~ g2 ~ gx i i i

jK, K',

&K, K,.
(4.28)

where

2g
g 7

T,jk gp gp

80.
gill ep

Bg,g.ivik gp ep

(4.23)

(4.24a)

(4.24b)

(4.24c)

'p, = —, = elastic amplitude,
K'

1 —sK
(4.29)

K' =K, + iKO(1 —iK, ) 'Ko, (4.30)

The dimensionality of K,. depends upon the num-
ber of inelastic, channels. An element of K,. repre-
sents inelastic-inelastic scattering. K, is a vec-
tor representing coupling between the elastic chan-
nel and the inelastic channels. The equation for 2'

can now be solved to yield

The last term in this expression is very time-con-
suming to calculate, but for large numbers the
following relations can be used

and

(4.31)

4)g~Ã
g2

g& (d g. .i

Therefore, we have

g, ~k Nu ~ —Ng~ g, ,-k=Ng. gT ]
' gg

This can be used to give the approximate second-
derivative matrix

gx gr

=vector of production amplitudes .
A number of situations could exist for which the

matrix (1 —iK;) ' is essentially real. In these
cases the phases of all production amplitudes are
equal to the phase of (1+iT,):

(4.32)

%e refer to Q~ as the elastic production phase
(EPP). For open inelastic channels K,
=g,' 'K„g,-'/' is real but may be either positive
or negative, which implies that the EPP for a
given production amplitude is known modulo m.

A region where EPP seems reasonable is where
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TABI E IV. The elastic production phases (in degrees)
used for the EPP solutions.

W (MeV) P33 D(3 D33

1340
1360
1375

22.6
28.5
32.0

-36.1
-32.2
-29.5

3.2
4.3
5.5

0.0
0.0
0.0

= T8

FIG. 9. Argand diagram for an elastic reaction show-

ing the elastic production phase angle P&.

the inelastic channels are just opening (&, -0;
hence, K, -O). In this case

T,-E,(1+iT,) . (4,33)

A second situation leading to EPP involves chan-
nels that are kinematically closed, giving imagin-
ary phase-space factors, for which (1 -iE,.) ' be-
comes just a real mixing matrix. The graphical
interpretation of EPP is shown in Fig. 9 which
gives the Argand diagram for an elastic reaction
and indicates the angle Q~. One sees that for an
elastic resonance such as the 4, we have T",-0,
and Q~-0. In Appendix C we include a further dis-
cussion of some aspects of the EPP approximation.

The elastic production phases used in the pres-
ent work are given in Table IV. In the following
section we present the results of analyses with ap-
propriate production amplitudes constrained to
have these phases and analyses in which the phases
were freely searched. The latter phases are re-
ferred to as SPP or "searched production phases. "
We feel that the best representation for & produc-
tion waves is obtained by utilizing the EPP con-
straint. We note that the a production wave
PS11(eN) has a real contribution from the back-
ground and that, as discussed further below, the
phase of the searched component is large. These
facts suggest that the combined (background plus

isobar) amplitude has something near the EPP
prediction for this wave.

F. Results

In our fitting we imposed on the D33 production
amplitude the requirement thatitbereal, since the
corresponding elastic amplitude has small phase
shifts at the energies involved, and we kept the
D13 phase at the EPP value for the SPP solution.
We tested these assumptions against the data
by making random starts with these amplitudes
complex and also by allowing the fitting pro-
gram search to complex values from the real val-
ued solutions. In the second case, no significant
improvement in X' was obtained. In the first case
the effect was to increase the number of local
minima, reached from random starts, with bad
values of X'—without uncovering any better min-
ima than those found with the reality restriction.

Because of the large value of the DS13(w&)
DP13(cN) overlap, the search program exhibited,
in some cases, an instability in which it searched
to large cancelling values of A(DS33 vb. ), -
A(DS13-wd ), and A(DP13-eN). The meaning of the
large overlap is that, to a good approximation,
both DS13(n 6) and DP13(&N) describe transitions
to the same mnN configuration. However, we ex-
pect that the amplitude for making the p -wave EN

transition should be suppressed relative to that for
going to the n ~ s wave. For these reasons we set
A(DP13 eN) equal to-zero. This implies that the
DS13(v&) amplitude which results from the fitting

TABLE V. The preferred EPP solutions in modulus-phase form. The phase, in, radians,
is given in parentheses. Sign conventions relating our amplitudes to those of other analyses
are given in Sec. VIA. The PP33(~6) wave is given in Table VIII.

Wave

S Z11(~a)

S S11(~X)

DS13(xb )

D$33(n'6)

X2

1340 + 10 MeV

0.102 + 0.007
(0.39)
0.201 + 0.007
(1.552+ o.O63)
0.067 + 0.007

(o.o55)
0.04 + 0.013

(0)
-8.0

1360 + 10 MeV

0.126 + 0.008
(o.49)
0.245 + 0.008
(1.483 + 0.068)
0.096 6 0.007
(0.075)
0.084 + 0.015
(0)
74.0

. 1375+ 5 MeV

0.179 + 0.010
(o.56)
0.235 + 0.009
(1.362)

. 0.109 + 0.007
(o.o96)
0.083 + 0.014

(0)
9.0
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TABLE VI. The SPP solutions in modulus-phase form. The phase, in radians, is given in
parentheses. Sign conventions relating our amplitudes to those of other analyses are dis-
cussed in Sec. VIA. The PP33(m.4) wave is giv.en in Table VIII.

Wave

PP].l {7(A)

PS11(~X)

DS13(&4)

DS33 (z6)

X

1340 + 10 MeV

0.084 + 0.007
(1.123 + 0.110)

, 0.182 + 0.007
(1.444 ~ o.o71)
0.055 ~ 0.006
(o.o55)
0.057 + 0.012

(o)
-30.0

1360 & 10 MeV

0.114 ~ 0.009
(0.96 + 0.12)
0.237 + 0.008)
{1.471 ~ 0.068)
0.088 + 0.009
(0.075)
0.093 + 0.015

(0)
64.0

1375 + 5 MeV

0.162 ~ 0.010
(0.975 & 0.090)
0.238 + 0.009
{1.412 ~- O.O73)
0.090 + 0.009
(o.o96)
0.107 + 0.016

(0)
-4.8

has a small part representing DP13(&N) produc-
tion.

%'ith the above restrictions on the production
amplitudes, we obtained the following results from
the maximum-likelihood analysis.

l'. Preferred solutions

The preferred solutions from our analysis are
presented in Tables V and VI in modulus-phase
form; with the phase in radians. The Table V
(EPP) solutions were obtained by keeping the &

phases fixed at the elastic production values given
in Table IV. Table VI (the SPP solutions) involved
a searching of the PPII(zb, ) phase. This generally
resulted in X' reductions of between 10 and 20, a
small reduction in the magnitude of most ~ pro-
duction waves, and a uniform increase in the ratio
of DS33 to DS13 & production.

2. Alternative solutions

The preferred solutions were obtained from hun-
dreds of random starts at each of the three ener-
gies. Generally, the preferred values were dis-
tinguished by substantially lower y "s than those
alternative solutions which were discovered with
this procedure. An exception occurred at 1340
MeV where the alternative EPP solution given in
Table VII actually had a somewhat lesser y' (-14.4
vs -8), but was of a clearly different character
than the preferred solutions. When the PPI1(w&)
phase was released, the alternative solution
searched to the SPP 1340 value given in Table VI.
Attempts to duplicate this solution at 1360 and
1375 MeV were not successful, so we view it as
an artifact of the 1340 data and not as a viable,
stable solution.

3. PP33(mh) solution

For those random starts which included search-
ing of the PP33(ih) wave, this amplitude invari-
ably searched to quite a small number and the re-

TABLE VQ. The alternative EPP 1340 solution dis-
cussed in Sec. IV F in modulus-phase form. The phase„
in radians, is given in parentheses.

Wave 1340+ 10 MeV

PP11(sr~)

PS11{~N)

as].8(~a)

DS33(wk)

0.092 + 0.007
(o.39}
0.149 *0.008

(O.66 ~ O.14)
0.065 *0.005
(o.o55)
0.004 + 0.008

(0)
-14.4

sultant solutions were basically those listed in Ta-
bles V, VI, and VII. In order to determine more
precisely the PP33(wh) amplitude we resorted to
a one-dimensional X mapping in which we fixed
the amplitudes at their EPP (Table V) values,
fixed the phase of PP33(wa) at its predicted elas-
tic va. lue, and then varied the modulus of the am-
plitude thereby producing a sharply minimized X'
curve; the results are indicated in Table VIII.
Table VIII also includes results from a similar
procedure using the SPP (Table VI) solutions.
These results are used, with extrapolation, to
evaluate the &n4 coupling constant in Sec. V.

4. $ parameter
I

We used the same methodology for determining
the $ parameter at each of the three energies as
was used for determining the PP33(wA) a'mplitude;
namely, a X' mapping using the EPP solutions
from Table V. Our procedure for determining g

involved, first, replacing the chiral-symmetry-
breaking contribution of Eci. (A12) by the full one-
pion-exchange diagram of Aaron et a/. 29 The form-
er (specifically, the multiplier of $) is recaptured
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TABLE VGI. The PP33(») solution as discussed in Sec. Dt" F in modulus-phase form. The
phase, in radians, is given in parentheses.

Wave 1340 + 10 MeV 1360 + 10 MeV 1375 + 5 MeV

PP33(~&) amplitude (from EPP solution)

PP33 (zA)

X2

-0.004 + 0.020
( o.65)
-9.6

0.055 ~ 0.013
( o.56)
69.0

0.030 + 0.016
(-o.5o)

7.8

PP33(~4) amplitude (from SPP solution)

PP33(~a) -0.047 ~ 0.012
(-o.65)
-33.0

-0.091 + 0.013
( o.56)
59.6

—0.084 + 0.010
(-o.5o)
-6.6

from the latte r by multiplying by
I

3 m

T

(4.34)

The results for the coefficient of the one-pion-
exchange diagram, let us call it $, are (for one
particular set of starting points):

$(1340 MeV) = -0.06+0.30, (4.35a)

$(1360 MeV) =+0.60 + 0.50,

$(1375 Me V) = -0.30 + 0.30 .
(4.35b)

(4.35c)

These give, when averaged, )=0.08+ 0.40; the
values of $ were obtained from the mapping pro-
cedure described above in Sec. III. They are
sensitive to the starting values; the errors, we

believe, are r.ealistic ones.
To find the value of the conventional $ we need

to multiply $ by the factor R. We have evaluated
ft in three ways: (a) taking the limit W„-2m„and
using the $ = 0 wv scattering lengths; (b) taking the
limit W„-2m, and using-the $ =- -2 wv scattering
lengths; and (c) averaging over the Dalitz plot.
The results for 8, , in these three cases, are

B,=Bb ——-4.
These give

$,= -0.2+ 0.9,

$b, =- -0.3 + 1.6.

(4.36a)

(4.36b)

(4.37a)

(4.37b)

g is thus consistent with zero, although we cannot
rule out, on the basis of the present data, , the
value g = -2. The reader should recall that our
method for determining $ is essentially to ask for
the deviation of the amount of SP11(&N) production
from the amount predicted by chiral symmetry.
Because of the small size of the SPll(eN) one-
pion-exchange cross section, the extraction of
g requires some delicacy.

5. Other charge states

Using the above results for the isobar model
amplitudes and the expressions of Appendix A for
the chiral-symmetry-background amplitudes, we
may calculate the cross sections for all possible
charge state processes with a proton target. The
results are given in Table II. Comparing these
results to the chiral-symmetry contribution of
Fig. 7, we see that the large percentage of &N pro-
duction in m'p n implies that production of non-
zero-charge dipion states should be significantly
closer to the current-algebra predictions than is
the production of zero-charge states, to which
&N production contributes.

V. Dmh COUPLING CONSTANT

In this section we use the results of the isobar
analysis to determine the value of the Aped coup-
ling constant. Qur method is first to use the
PP33(gb, ) production amplitudes to compute the
total cross section for this channel from the rela-
tion

(5.1)

where p is the c.m. momentum of the initial state,
CI is the product of the relevant isospin Clebsch-
Gordan coefficients, and A is either the SPP or
EPP amplitude from Table VIII. We then com-
pare (5.1) with the same total cross section cal-
culated from the Feynman diagram of Fig. 10.
This diagram involves the mN4 coupling constant,
which we can fix from the 6 width, and the ApA

coupling constant. The "experimental" values of
A will thus give a direct determination of the
&m4 coupling.

In order to evaluate the diagram of Fig. 10 we
must overcome two difficulties that are present
in the field theory of a spin-~ particle. First, no
completely consistent method of quantization is
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i ~(q)l

FIG. 10. The Feynman diagram for PP33(g&) produc-
tion.

available; some anticommutators are necessarily
incompatible with a positive definite metric. 5'

We shall not let this stop us from doing pheno-
menology but shall endeavor to be as consistent
as possible. Second, the off-mass-shell couplings
and the propagator involve extra parameters, one
of which is free and can be chosen for convenience
and others whose values are chosen to fit a con-
sistency criterion. Denoting the spin- ~ field by
the 16-component Rarita-Schwingera' vector spin-
or g, we write the Lagrangian for a, spin-~ par-
ticle with no interactions as3'

)

Z=-,')() [g zy" +~(5 yz+bgy) —.—,'(SW'+2%+1)y y"y8]s /~+ H.c.+ —'m
7)) [g ))

—(S~ +3~+1)y yz]g, (5.2)

where we use the metric and y conventions of Bjorken and Drell. ~ No physical result can depend on the
value of the parameter ~&, which may be chosen arbitrarily. The spin- ~ propaga. tor also involves 'N and
takes the form

&"))')=lp —(,-l r, )') 'I)))+ ) -r"+ w 2+ hV —2)' )+
3FPlg 3&kg

1 ~+1 t '%+1 W' 'I
~

'VP

,~~) 1 4~„)'-,~~) .)l~ &+~")"+, „,r')' I.
(5.3)

r.N~P(g. ~+~~a&)p's 4.
The most gene ral form for X is

A. = —'%'(1 + 4Z) + Z,

(5.4)

where Z is another parameter. This expression
was first obtained by Nath, Etemadi, and Kimel'~

who showed that Z is required to be ~. In later
work by Hagen36 it was shown that Z = ~ is re-
quired in order to satisfy the Johnson-Sudarshan
theorem' that the constraint equation continue to
exist in the presence of the interaction (5.4). For
'VP= -1 this condition implies that the time com-
ponent $' should not app'ear in the field equation
that results from varying 7))0. Thus the expense
of eliminating the final terms in (5.3) by choosing
W= -1 is to have X = -1 and additional terms in
(5.4)

In our work we have replaced the resonance de-
nominator of pq. (5.3) with the isobar propagator
of Woloshyn, Moniz, and Aaron40:

1 " dk ~~+ E~ k v(k')

Since the form of the propagator simplifies con-
siderably with W=-1, we shall use this value in
our calculations.

As noted above, the interaction terms of the I a-
grangian involving spin- ~ particles contain addi-
tional parameters. The gX4 vertex, for example,
is given by

I

The form factor

v(k ) =2 g

where

' Z (m ', m', m, ')[(m+m )' —m, '] '
)

(5.5)

E(a,b, c) = [a + b + c —2ab —2ac —2bc]) ~

and en~, m, and m, are the &, N, and g masses,
respectively. Using F~ =0.110 QeV gives the
g,+~~~ coupling. The coupling constant for other

and mr=6 83 fm ', p=1 8 fm ', and g=3 14'
This expression has been shown to fit the 3-3 par-
tial-wave phase shift for mlV scattering with a X'

which is as low as other three-parameter fits, and
it has a substantial theoretical foundation. The
values of the 4@4 coupling constant are sensitive
only to the imaginary part of the resonance de-
nominator; we tried a number of other forms of
the parametrization of the propagator with the
result that the values of g~,~ could be substan-
tially increased over those quoted below only with a
width of the form I'0(q/qo)'. Such expressions,
however, give very bad fits to the mN scattering
phase shifts.

The coupling constant in (5.4) is related to the

decay width by
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charge states is obtained from this value using
appropriate C —G coefficients. We note that, in
our opinion, the appropriate b mass to use in
(5.5) is the real part of the position of the pole of
the A propagator (-1211 MeV), rather than the
resonance position (-1236 MeV). In our numeri-
cal work we have used both masses; we find that
the resulting values of the 47t4 coupling constant
diffe r significantly.

Consider now the 4m~ vertex. Here again there
are extra terms with extra parameters. For a
pseudoscalar-type coupling we have

g~, ~t/i y, [g 8
—r, y~(A'N'+ A'w + ~A+ —,')]PQ . (5.6)

This choice of coupling is, of course, not unique.
The alternative axial-vector-type coupling is
considered below. The consistency criteria '
fix the parameter A to be 3. The reader may
note that for %"=-1 and A = 3, g' does not appear
in the 6Ttt field equation. Again, there is an extra,
off-mass-shell term in the vertex, if we choose
~= -1.

From (5.3), (5.4), and (5.6), the matrix element
for the diagram we are considering is given by

g~+~ ~0Ã~'n~'R'r-pz %& 0 +(Pf)(A'ng rnr8)

&«'(P&+ v&) r [g,.—r,r„]&'V;+Q) [g.. r.r, ] (fN;—),
(5.7)

where the momentum labels are the same as in
Appendix A. There are a large number of terms
involved in squaring the eighty term sum in Eq.
(5.7) and summing over all spins, but we have
managed to calculate the total. cross section ex-
actly by using the computer codeS HOONS VIP."

We define a 4g4 coupling constant, g, by fac-
toring out the Clebsch-Gordan (CG) coefficient

2

4' (5.9)

A is the experimental number for the PP33(mn)
amplitude as given in Table VIII; C is the result of
the calculation of this section. Table IX gives
the values of C and g'/4m for the various energies,
for two values of no~ and for the two solutions for
A.

In addition to the pseudoscalar coupling of (5.6)
one can equally well consider a AzA coupling of
the axial-vector form, i.e.,

(5.8)

When we compare our cross section with Eq. (5.1),
this CG coefficient, and those which must multiply
the coupling constant given by (5.5) to get g,.„~,

'
and g, -~~a', will cancel the C~ factor in (5.1).
Using (5.1), we then get an equation for g of the
form,

g y5[g ~y" + [B'N+ 2(B —1)](g"y~+gsy ) + [(,'B+D)vP—+D'w+,'D —,'B+ ,']y —y ys)——p~sQ .
2m'

(5.10)

TABLE IX. The ~~& coupling constant as determined for various combinations of the 6
mass, isobar-analysis solutions, and pseudoscalar (P) versus axial-vector (A) interactions.

Coupling 10
g2/47r
(sI I')

9'
(EPP)

1340 MeV

1360

1375

1340

1360

1375

1340

1360

1375

1375

1211 MeV

1211

1211

1236

1236

1236

1211

1211

1211

1236

1236

P

P

P

P

P

9.32

4.31

2.54

16.90

7.75

4.58

11.10

4.78

2.71

21.00

9.00

5.11

1g 7+11,6
9.0

35 7 +10.9- 9.5

17 9"'-6.5

35 7+21.1
-16.2

64 1 +19+6
-17.0

32 3 "4.4-11.8

23 4+13.8-10 6

39 6+12.1-10.5

19 1.8.5-7.0

4 + 26~2
-20-1

74 6+22 ~ 8- 19.8

0 t 16ei
-13-1

0 1+5.2-0.1

13 0 6'- 5.4

2 3"'-1.8
0 3"4-0.3

23 4+12.4
9.8

4 1+5.6
O'I2

0 2+6o2- 0.2

14 5'7'6-6.0

2.4'3'3-1.9
0 3+11.7

0.3

27 2+14.4- 11.4

4 6+8.2-3.6



20 ISOBAR PRODUCTION IN m p ~ m+n n NEAR THRESHOLD

When the 6 is on the mass shell, this coupling is
identical to the one in (5.6). Consistency of the
constraint equations fixes the various parameters,
in this case to B=D= 1. It is useful to notice
that, for these values, (5.10) reduces to

p~8s py
2'~

(5.10a)

go++a'o6++ 9 ~ " 10

4m 4m goo
(5.11)

Here G2/4v = ~, p, » is the average mass of the

meson octet, 700 MeV, andMyo 18 the average mass
of the baryon decuplet, 1450 MeV. The predicted
value for the g' of Eq. (5.9) is thus

2 2
g = lC(-.'1-.';—.'0-,') j

' ""'"' = 130. (5.12)

The Kgb, coupling constant has also been treated
in U(12); the .resulting value is in close agreement
with the SU(6) answer. '

We can also make a theoretical prediction of g
by extending the Goldberger- Treiman44 relation
to spin--,'- particles (see Appendix D),

gpp ~~ —~~mp. (gw) pp~~/fp ~ (5.13)

(g„)~p~n is the axial-vector coupling constant for
the semileptonic decay 4'- 4~ev. This is unknown

but can be calculated with some confidence in a
model, such as the MIT bag model, where the nu-

cleon g„ is predicted accurately. ' In the bag
model, one finds

Using this coupling we can again calculate C from
Eq. (5.9); the results are given in the bottom half
of Table IX.

Since the values of the coupling g given in Table
IX correspond to the definition (5.8), they must be
multiplied by a CG coefficient to find the coupling
for the particular charge state of interest. As
seen from the table, g depends slightly on whether
(5.6) or (5.10) is used, with the axial-vector coup-
ling values being slightly larger. The value chosen
for the mass of the 4, however, has a much stron-
ger effect on the result for g. A value slightly
above the resonance position, rn~ = 1236 MeV,
gives values for g'/4v twice as large as those ob-
tained if rn~ is taken as the real part of the pole
position, rn~ = 1211 MeV. This is almost entirely
due to the difference in g,„~ as calculated from
(5.5) .

What value does theory predict for g'P From the
pion-nucleon coupling, SU(6) gives the 6 - 4"m'
axial-vector coupling constant4'

Usually, in using the Goldberger-Treiman (GT)
relation f, is fixed to give 14.6 for g», 0'/4w. Thus
we have f, =0.622m„ if we use the experimental
value for the nucleon axial-vector coupling, g„
= 1.25, or we have f, = 0.544m„ if we use the bag-
model prediction of 1.09 for g„. In these two
cases we get

47I
,
= 102 or 133 (5.15)

for m~ = 1236 MeV (100 or 130 if m~ = 1211 MeV).
These numbers agree fairly closely with the SU(6)
result, as expected, since both methods give good
values for the nucleon-pion coupling constant. 46

The startling thing is that, with the possible ex-
ception of the solution at W=1360 MeV for m~
=-1236 MeV, the theoretical values (5.12) or (5.15)
are several times and several standard deviations
larger than the experimental values given in Table
IX. Further it is hard to see how the A values of
Table VIII could be seriously in error since an A
equal to, or larger than, 0.1, as required to agree
with (5.12) or (5.15), would correspond to a PP33
(wA) isobar contribution of more than 5% of the
total cross section. But it also seems. that the
GT relation should remain true for spin ~. Al-
though there are additional terms in the matrix
elements of the axial-vector or pion current from
those retained in Eq. (5.13), they vanish as the
momentum transfer (pion momentum) goes to zero.
The PCAC smoothness assumption therefore im-
plies that these terms should not significantly af-
fect our result for g~,~. Fu'rthermore, ' there are
theoretical reasons to expect that the appropriate
mass to use in our calculations is the real part of
the position of the pole of the b. propagator (-1211
MeV), rather, than the resonance position (-1236).
Also the restrictions which give the EPP solution
for &, rather than the SPP solution, seem very
reasonable. Each of these things severely in-
creases the disagreement between theory and

experiment.
Finally we note that the preliminary results

from the Berkeley-Carnegie-Mellon elastic-
phase-shift analysis4' provide an upper limit for
A(PP33 vS) if we ma—ke the reasonable assump-
tion that there is no other significant P33 produc-
tion mechanism. Using the values of g and 5 at
W equal to 1356 or 1394 MeV from this analysis,
we find that

(A~ =0.02' ' ' (1356 MeV),
(5.16)

0.01'0'0', (1394 MeV) .

(g~)~ ~0 =1 3o

(g~) ~-~ —1 13

(5.14a)

(5.14b)

Extrapolating'the C values of Table IX to these
energies and averaging over the two types of coup-
ling, the two values for m~, and the two different
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energies we find

2g 2+2)
4r (5.17)

The maximum value for g'/4v from the 1-standard-
deviation error for any energy, nz~ value, or coup-
ling type is 52.

The Berkeley-Carnegie-Mellon group also has
inelasticities and phase shifts at 1321 MeV, which
yield a similar value for ~A~. We did not include
these data because the extrapolation of C coul. d
not be done accurately. {." would, of course, be
larger so that these data would not give as good
an upper bound on g /4v from the 1-standard-de-
viation error, although the values of g /4w would
still be consistent with zero.

VI. CONCLUSIONS

A. Comparison with Hemdon et ul.

There is one previous partial-wave isobar-model
analysis, by a Berkeley-SLAP collaboration, 6 with
which our results should be compared. Both
analyses use, in principle, the same data set, al-
though the number of events we found on the tapes
supplied to us (4000 with energy below 1380 MeV)
does not correspond to the number (5200 with
energy below 1380 MeV) reported in Table ID of
Ref. 6.

We reproduce in Table X the results of Herndon
et al. for isobar production at 1310, 1340, and

1370 MeV. We reca, ll tha, t our results for the
amplitudes for gN production are only approxi-
mately comparable with those of Ref. 6 since we
include a chiral-symmetric background separ-
ately. To carry out the comparison we must con-
sider the question of sign conventions which was
mentioned briefly in Sec. IV. In order to compare
the results of isobar analyses with the predictions
of various models of strong interactions, it has
been generally agreed to adopt the following stan-

=A, (standard) q . (6.2)

Here l,. is the initial orbital angular momentum.
The reader is reminded that our incident pion is
taken along the -z axis, while that of Herndon et
af. is along the +z axis. In (6.1) and (6.2) q(=+I)
defines the overall pha. se between our amplitudes
and those of Ref. 6. An overall minus is irrele-
vant to Herndon et al. This is because the phases
of their amplitudes are determined by a partial-
wave, coupled-channel, K-matrix calculation from
resonant elasti. c phases. It is not irrelevant to
our fit, however, since we determine all isobar
production amplitude phases relative to the chiral-
symmetry ba.ckground, which has a phase that is
determined by the signs of g,„„andf, . In princi-
ple, the sign of the product g,„„f,could be deter-
mined by an analysis of z p- p p P in which the
photon exchange amplitude is included along with
the chiral-symmetry background. %'e believe that
our isobar amplitude's, as listed in Tables V and

VI, have the "correct" overall sign to make them
consistent with the sign of the threshold chiral-

dao"d conventions in constructing the isobar expan-
sions [i.e., Egs. (4.3) and (4.4)]:

(i) The baryon should appear first in all Clebsch-
Gordan coeff icients (CGC 's) .

(ii) The particle-isobar orbital angular momen-
tum should appear before the channel spin in all
CGC s.

(iii) The angle in any I;„is measured to the first
particle in the corresponding isospin { GC.

Neither we nor Herndon et al. followed the latter
conventions, so below we relate our amplitudes
and those of Ref. 6 to those defined by the above
standard conventions:

A~(present) = +(—I) '~A~(Herndon) q

=+(—1) "' ' iA&(standard)q, (6 ])

A, (present) = -(-I)'~A, (Herndon)q

TABLE X. The low-energy solutions of H,ef. 6. The marginal (-)'s indicate waves with a
relative sign change between the definition of our basis functions and those of Hef. 6.

1310 Me& 1340 MeV

(-)
(-)
{-)
(-)
(-)

xA PP11
DS13
DD13
PP31
DS33

p~ DS13
pg PPl1
p( PP31

~N PS11
SP11
DP13

+0.030
-0.096
-0.022
+0.022
-0.027
+0.'030
-0.0039
+0.030
-0.027
-0.0041

0.068

+ 0.047i
+ 0.0052i
+ 0.006i
+ 0.007i
—0.033i
+ 0.018i
+ 0.011i
+ 0.011i
—0.112i
+ 0.017i
+ 0.0071i

+0.048
-0.068
-0.020
+0.036
-0.038
+0.054
-0.0088
+0.045
-0.037
+0.031
+0.037

+ 0.075i
—0.035i
+ 0.002i
+ 0.011i
—0.047i
+ 0.043i
+ 0.026i
+ 0.016i
—0.130i
+ 0.023i
+ 0.020i

+0.117 + 0.102i
-0.126 —0.011i
-0.067 + 0.030i
+0.066 + 0.0017i
-0.076 —0.053i
+0.102 + 0.043i
—0.0038 + 0,035i
+0.079 + 0.0049i
-0.089 —0.160i
—0.0003 + 0.040i
+0.086 + 0.0025i
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symmetry prediction of Olsson and Turner. "
Thus, we find that q =- -1 in (6.1) and (6.2). In
order to facilitate understa. nding of our conven-
tions, we give numerical results for our ampli-
tudes explicitly in Appendix B.

The comparison between our amplitudes in
Tables 7 and VI and the Herndon et gl. ones in
Table X [corrected by the phases of (6.1) and (6.2)
with q= -1] is rather good. It should be noted
that we include p production through the antisym-
metric part of the chiral-symmetry contribution.
p production from the isobar amplitude of Herndon
et gl. amounts, at 1340 MeV, to a. cross section of
about 0.14 mb, neglecting overlaps. In this re-
gard, one should note that Herndon et gl. use a
total experimental cross section of about 1.0 mb,
whereas the spectrometer experiment4 obtains a
cross section of 1.35 mb. Our antisymmetric
chiral-symmetry zz cross section is, from Fig.
'I, about 0.17 mb; thus the (small) "p pieces" agree
well.

With regard to the 6 amplitudes, the values of
the largest, PP11, agree well between the two fits
in magnitude and phase. Herndon et gl. included
the nonresonant higher waves DD13 and PP31
which we omitted while we included the small (but
important) resonant PP33. The common small
waves DS13 and DS33 agree well. The waves
which were not included in both fits amount to a
very small percentage of the cross section.

We consider the general agreement in phases
between the two fits (with the overall q equal to
-1) very important in arguing for the basic va-
lidity of both analyses in general and, in parti-
cular, for the basic validity of the two very dif-
ferent methods used for determining the phases—
coupled-channel K matrices versus interference
with the chiral-symmetry background.

B. Corrections to the current-algebra prediction

In Sec. IV we presented the- results of our analy-
sis for the chiral-symmetry-breaking parameter.
From the deviation of SPII(&N) production from
the chiral-symmetry prediction we concluded that,
conservatively, $ = -0.3 + 1.6. This result can be
checked, and a. further comparison with the re-
sults of Herndon et gl. can be made by consider-
ing a dispersion relation for the PS11(eN) ampli-
tude. Qur procedure involves estimating the size
of the right-hand-cut corrections to Tc„=—Tcs+ $T&

above the three-body threshold at 8'~= 1217 MeV.
In this section we designate the PSll(&N) pro-

duction amplitude A(W). We assume that near the
three-body threshold A(W) goes as q(W- Wr),
where q is the initial-state c.m. three-momentum.
The (W- Wr) factor ensures the (W- Wr)' pro-
duction- cross- section behavior. We estimate

TABLE XI. I'S11 solution of Herndon et a/. , H, ef. 6,
expressed in our phase convention [cf. Eq. (6.2)].

W (MeV) ReA (PS11) Image 811)

1310
1340
1370
1400
1440
1470
1490
1520
1540
1650
1690
1730
1770
1810
1850
1890
1930
1970

0.027 18
0.037 13
0.089 27
0.176 21
0.200 80
0.250 13
0.208 44
0.217 49
0.172 37

-0.029 47
-0.052 15
+0.047 47
+0.072 87
-0.11502
-0.274 36
-0.318 05
-0.295 98
-0.180 03

0.11173
0.129 87
0.15983
0.132 71
0.19531
0.21'8 94
0.219 47
0.200 63
0.222 57
0.306 47
0.147 88
0.158 61
0.291 52
0.323 00
0.145 30
0.051 66

-0.152 28
-0.256 02

the correction to Tc„by assuming that as O'- 8'~,
A(W) goes to Ac„, the PS11 projection of Tc'„, and
by using this assumption to make a subtraction in
a dispersion relation for A(W). Thus,

A(W) A,„W-W,
q(W- Wr) q(W- Wr)

W»WT,

Disc[A( W') /q '( W' —Wr) ]
(W'- W)(W'- W, )

(6.3)

For the purposes of a rough estimate we break
the integral (6.3) into two parts, (I) W~ 1310 MeV,
and (II) W(1310 MeV. In region I we evaluate the
imaginary part of A(W) using the PS11 solution of
Herndon et gl. ' given in our Table XI. In region
II we set the lower limit of the integral in (6.3) at,

Wr (rather than I+ m, ) and proceed as follows:
1. Assume that the Watson phase theorem ap-

plies, so we may write

DiscA(W) = e"R(~) sin6 (W) A(W). . (6.4)

In this equation 5R is the P11 elastic mK phase
shift. We have used the subscript g to emphasize
a fact evident from Tables V and VI; namely,
that the tail of the broad Roper resonance at
-1470 Me& contributes to p production, even at
very low energies.

2. For 5~ we use the empirical, analytic expres-
sion

2

)an5 ()V)=5 ()0)=(:" il(1610). (6.5)
T

This gives results fairly close to the analysis of
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Ref. 30, where 6„(W} variesfrom about 1.5'to15'
as W'goes from 1210 to 1310 MeV. Equations
(6.4) and (6.5) together with our original assump-
tion about the threshold behavior of A(W) yields

DiscA(W) = ImA(1310)

(6.6)

Substituting (6.6} into (6.3) and setting W= Wr in

the integral gives the dispersive correction 5A

(from region II) to the current-algebra prediction
for A,

2

Im A(1310) . (6.7}
m q(1310) 1310—Wr

By using %'atson's theorem at a higher energy
than it is valid [after all, the phase of A(W) at
1310 MeV is approximately 90' and not the 15' of
(6.5)] we have underestimated the size of &A.

The phenomenological contribution to (6.3) from
region I is roughly equal to that obtained from re-
gion II, so the full 5A is about twice that given by
(6.7). Using this approximate result, the disper-
sive correction to the current-algebra cross sec-
tion for ~ p - m'm n is

6 =4.y~26A~( —;)

4
—= 0.1 —— T 20ImA 1310 ' mb.

T

(6.8)

The effect of the correction (6.8) on a determina-
tion of $ from total-cross-section measurements

/

can be approximated by comparing o., „0,o, and

[(o'& o)' '+(6'o)'~']'= cr"". We do this in Fig. 11
for two values of ImA(1310), 0.1 and 0.2 at the
ends of what seems its plausible range; for the
two different ways of calculating 0, „full diagram
and full threshold approximation (including the
threshold approximation for the coefficient of f);
and for energies below 250 MeV pion lab energy
(W W, =60 MeV).

From Fig. 11 one cari draw the following con-
clusions:

(1}A pure current-algebra amplitude with $ = -2
and the coefficient of ( computed in the threshold
approximation gives by itself the entire total cross
section and is therefore inconsistent with the data
if our estimate of the size of the dispersive-part
correction to the current-algebra amplitude is cor-
rect.

(2) A pure current-algebra amplitude with $ = -2
and the coefficient of ( computed without making
the threshold approximation would be consistent
with the total-cross-section measurement, after
adding the dispersive part correction, providing
ImA(1310) is at the low end of its range —around

0149
(3) If the above estimate is correct, )=0 and

A(1310) =0.15 are consistent with the cross-sec-
tion measurements at 229 and 255 MeV.

(4) U the above estimate is correct it will be ex-
traordinarily difficult to determine $ by total-
cross-section measurements unless they can be
made in the region below W —Wr= 29 MeV (T„„
= 195 MeV). This is because the interference term
between the dispersive correction and the current-
algebra term vanishes only like S'- O'T.

C. Summary

$ = -0.3 + 1.6 . (6.9)

(6) The large value for the eN PS11 production
cross section and the disagreement between the
full and threshold-approximation chiral- sym-
metry-breaking terms indicate caution in inferring
( from low-energy total-cross-section measure-
ments. ~' At the energies accessible to Gram
et al. ' dispersive corrections to the PSll(eN)
wave are the same magnitude as the difference

The principal results of this work are:
(1) Low-energy bubble-chamber data (1330—1380

MeV} for m p- w'n n gives an (E., z,) distribution
in agreement with the preliminary single-arm-
spectrometer data' (Sec. II).

(2) Section III presents graphs of the current-
algebra predictions for five production cross
sections for the full, tree-approximation, pheno-
menological-I agrangian amplitude, and for the
threshold approximation. Note that these two agree
well for z p —m'n n for the chiral-symmetric con-
tribution; and that the two calculations for the
chiral-symmetry-breaking term (coefficient of P)

differ appreciably. "
(3) Our isobar-model fits show that the dominant

pion-production mechanism below 1380 MeV is
production through the tail of the Roper /11 reso-
nance (see Tables V and VI).

(4) The small penalty in log-likelihood paid for
modeling the PP11(wh) production phase through
the coupled-channel K- matrix elastic-production-
phase approximation supports the validity of this
approximation (see Secs. IVE and IV F).

(5) The bubble-chamber data by themselves are
consistent with both $ = 0 and $ = -2; more events
are needed to discriminate between these two pos--
sibilities. Our technique of determining $ from the
contribution of the chiral-symmetry-breaking term
to nonresonant partial waves appears capable of
giving an answer for the value of $ in spite of the
large &N production in the tail of the Roper reso-
nance (see Sec. IVF4). Our value for $ from the
bubble-chamber data is
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l.o

g Carr

O. I (g= -2)

I

I

b

200 2 l0 220
T~(Me V}

230 240 250
I

260

FIG. 11. Cross-section curves in the region W- Wz, --20 —50 Mev, T,s, = 195—250 Mev. oi""'=([o(t=0)] t+(bta&)i&}t

where ImA(1310)=0.1, 0.2 for i=1,2. The two experimental points are the most recent (unpublished) results from the
spectrometer experiment, Ref. 4.

between the ) =0 and $=-2 amplitudes (see Sec.
VI B).

((}SU(6) and the (generalized to &~&}Goldber-
ger-Treiman relation both predict a reduced ~m4

coupling constant of approximately g'/4w-— 100.
However, our fits imply (see Sec.V) a considerably
smaller value,

g 2—=40+ 20.
4m

(8) Our results for the partial-wave isobar am-
plitudes, on the whole, agree quite well with those
of Herndon et af. '(see Sec. VIA). This agreement
is particularly significant in view of the very dif-
ferent methods used for determining the overall
phase; our analysis determines the overall sign of

the isobar production amplitudes with respect to
the well-defined chiral- symmetry-background
phase.

(9} From the results of our ~ p —v'v n fits we
predict in Table II the total cross sections for all
other relevant charge states, at 1340, 1360, and
1375 MeV.

In conclusion, we strongly urge the experimen-
tal community to produce a more extensive set of
full-kinematics wwN data in the low-energy (thres-
hold to 1350 MeV) region for more than one initial
and final cha, rge-state choice. We think that the
two applications addressed here —determination
of the tensor structure of chiral-symmetry break-
ing ($) and determination of g~,~—by themselves
warrant further intensive experimental effort.
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APPENDIX A: PION PRODUCTION AMPLITUDES FROM

THE PHENOMENOLOGICAL LAGRANGIAN

We collect here our expressions for the 7'- mnN

invariant amplitudes, for all possible charge states,
which follow from the Lagrangian of Eqs. (3.8)-
(3.11). Our specification of energy-momentum
four-vectors is 7& (Q)+N(p, ) —~(q, )+ w(.q, }+N(pz);
note that this differs from the notation used in ot-
her sections. Our invariant amplitude, T, is re-
leased to the S matrix by

F=u(p~)y, u(p,.),
F'(A) = u(p~)Ay, u(p,.),
G(A, H) =u(p, )ggy, u(p, ), .

H(A, B, C) =u(pi)A'4 g'y, u(p, ). .

We will also need the quantities

D,.=(2p. Q+m ')-',

D,=(2p, Q-m, ') ',
D„=(2p,. q,. —m, ') ',
D« = (2pq q, + m, ') ',
D„.= (2p,. q, —m, ') ',

D2=f( 2p~ q, +m, ') '.

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

(A 10)

(A 11)

Following Rockmore, "we refer to diagra, ms (a)
in Fig. 6 as "one-point" diagrams, (b) as "two-
point" diagrams and (c) as a "three-point" diagram.
Letting T" denote the contribution from the i-point
diagram and T'"' the contribution proportional to
the nucleon anomalous magnetic moment, we ob-
tain the following expressions for the invariant
amplitudes:

(Al)

We follow the conventions and normalizations of
Bjorken and Drell. " To simplify the expressions
for the amplitudes, we define the following:

(a) && (Q) +p(p,.) - m'(q, )+» (q, ) + n(p~)

T'"=i ', v 2 4mE+ 2F'(q, }+8mEg 1, 2Q q, —m, '$
2M 4, f JPl

T'2'= i -2 v2 [4mF+ 6F'(q, ) —2mD, &G(q„q, + Q) —2mD&G(Q, q, —q, )+2mD, ~G(q, +Q, q, )
gp j
2m 4f,'

+ 2mD,.G(q, —q„Q)],
3

T '=-i -'- 2 2 2I"'q, +2~D.G q„+2~Di G q2~qa —2~DfG, q, —2~D, fG qi q2

—4m D~D, , H(Q, q2, q„) —4m'D, D,~H(q„q„Q)],

(A12)

(A13)

(A14)

T = i-2 2~2[(D&g+ D&;)(-q2 'Q}F (q&) —(D;+Dy)qz 'q2E (Q}

+ D«H(q„q„Q) + D&H(Q, q2, q ~) + D, , H(q2, Q, q, ) + D,. H(q» q„Q)] .

(b) && (Q)+p(p,.) —~'(q, )+ &&'(q,)+n(p, )

21
i 8 w

1
~g 2F i(Q) 4mE 2q& 'q2 qi Q+ 2q2 Q ~m w

2m 4f,' (Q-q, -q, )'-m, '

(A 15)

(A16)

T '=-i ' 2»2 [ 4mF+6E—'(Q) —2mD, fG(q„q, +Q)
2m 4f,

—2mD2& G(q2, q„+Q)+ 2mD&,.G(q, + Q, q, ) + 2mD2~G(q&+ Q, q2)], (A17)
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Z'"= i-g' v 2 [-4mE+4F'(Q) —2mD&G(Q, q, +q, ) —2mD~&G(q„q, + Q) —2mD~&G(q» q, + Q)
2m .

+ 2mD, ,G,(q, + Q, q, )+2mD„G(q, + Q, q, )+2mD, G(q, +q„Q) —4m'D&D~;H(Q qi q.)

—4m'D D, , H(Q, q„q,) 4m—'D„D,H(q„q„Q)

4m Dp/D H(q2 ql Q) 1f 2 ' (ql Q q'2) 2f 1' (q2 Q ql)]

Ti &= i —,',",2~~[ (D„+-D„)q, QF (q, ) (D.,-+D. ,)q, QF'(q, )

+ Dyf H(qlt q2t Q) D2f (q2& qlt Q) 1i (q2& Q9 ql) 2i (ql& Qt q2)l '

(A18)

(i-) '(Q)+p(p, ) —ii'(q, )+ 7i'(q )+~(p )

i —-'—,v 2 2F'(q, + q, ) + 8m Eg 1 2g~ 'g~+ (m
2m 4f,' (Q —q, —q, ) —m, '

Z'&"=
g ~', v2 [-8mE —6F'(q, +q, )+2mD, qG(q„q, +Q)+2mD, ~G(q, qi+Q)

2m 4f,'
2mD, .-G(q, + Q, q, ) —2mD, .G(q, + Q, q, )J,

3

T "=i —' 2 2 2I"' —2mB G qi @ +2mD .G, q, —2m. D, G q, +2mB' 9'i

4m'D, ~D„H(q„Q, q, .) —4m'D, ~D, , H(q„Q, q, )],

r&"=g —";2'[-(D„+D„)q, QE'(q, ) (D„+D-„)q, QF'(q. )+D„H(q„q., Q)+D.&H(q. q. Q)
2m 4f,'

+ D„H(q„Q, q, )+D. , H(q» Q, n) l .
(d) ~ (Q)+p(p, ) - 7i'(q, )+ ~ (n)+P(Pf)

2m 4f, (Q-q, -q, ) -m„

(A2O)

(A22)

(A23)

(A 24)

, [ 4mF 6F (q,)+4»D„G(q„Q+q, ) 2mD„G(q„Q-+q,.)
2m 4f,'

+ 4mD. G(q, —q„Q) —2mD„G(Q+ q„q,)],
3

T'"= i~—' 2-[—2mF —2E'(q, ) —2mD, qG(q„q, )+2mD, ~G(q„q, )+2mD, „G(q„Q)
2m

+ 2mD,.G(q„Q) —2mD, .G(q„Q) —2mD„G(Q, q, ) —4m'D, D„H(q„q„Q)
+ 4m'D, D„H(q„q„Q)+4.m'D;, D„H(q. Q qi)]

Z'«& — i ' —[2(q, ~ Q q~ ~ Q —q~ q~)E+ 4mD~~q~ QE'(q~) —2mDgj qp 'QE (q|)—(e) & ~Y
2m 4f,' m

+2mD„q, QF (q,)+2G(q„. Q) —2G(q. , Q)+2G(q. , q, ) 4mD. ,H(q. q. Q-)

+2mD, ,H(q„q„Q) +4mD, H(q;, q&, Q) —»mD.&;H(q& Q q|) I
~

(A25)

(A27)

(.) '(Q).p(p, ) —"(q,) '(q.) P(p,)

'( )
'' " ' '+'

T'@=-i ', [-4mE —6E'(q, ) —4mD&G(Q, q, —q, ) + 2mD,
& G(q„q, + Q) —4mD, G(q, + Q, q,).

+ 2mD„G(q, + Q, q, )], (A29)
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3
T' '=-i =—'— 2 —2mE —2E' q» +2mD»&G q», —2mD2, .G, q, —2mD&G, q, +2mD»'G 92&g»

+ 2mD~G(Q, q~) —2mD2, G(q„q2) + 4m'D, ~D2,.H(q„Q, q2) —4m D~D~, H(Q. , q„q,)

+ 4m 'D& D2,. H(Q, q„q,)], (A30)

I'"'= i ' ——v~ —[2(q, q, +q, ~ Q —q, ~ Q)E —4mD&q, q, E'(Q)+2mD, &q, QE'(q, )
(k) ~ n

2m 4f, m.

+ 4mD2, q~
~

Q. E'(q2) —2mD, , q2 «QE'(q~) —2G(q~, q~)+ 2G(q2, Q) —2G{q|,Q)

+ 4m D& H(Q, q» q, ) —
2m D~&H(q~, q2, Q) —4mD2, .H(q~, Q, q~) + 2mD~, H(q2, Q. , q, )] .

(A31)

APPENDIX 8: AN EXAMPLE OF THE NUMERICAL

RESULTS FOR OUR AMPLITUDES

p(initial proton) = (0, 0, 335, 997),

p(initial n. ).=(0,0, —335, 363),

p j
—p(m ') = (-164, 73, 84, 242),

p, =-p(w-) =(-6, -73, 12, 158),

p3
—p(n) = (170,0, -96, 959).

(B2)

Note our convention of having the init. I.al nucleon
along the +z axis. In Tables XII and XIII we give
our results for the basis functions of Eqs. (4.3)
and (4.4), respectively, for p. ~=~-,' and p. ; =+,'-.
The phase-space factor is adjusted such that each
of these basis functions satisfies

TABLE XII. Oor results for the &N basis function of
Eq. {4.3).

We give bere explicit numerical results for our
amplitudes for one bubble-chamber event in order
to allow a detailed check of our conventions and
our results. We choose an event at approximately
1360MeV given by

v s& ——1099 MeV,

vs& ——1199 MeV,

z„=-0.4935,

cosg =0.1055,

where the kinematic variables are defined in Fig.
3. From these values we reconstruct the four-
momenta of the initial two and final three particles
to be {in MeV)

I X I dp =g4m)(' I CG{isospin) I

~ ~

g =2 for dV,
a=1 for mD.

(B3)

We define amplitudes A") related to the chiral-
symmetry invariant amplitudes of Appendix A by

&Os =&&cs ~
{j) . (j) (B4)

A( =- 0.193x 10 (pr =- 2)

=0.484 x 10 (Pr ——+ —,'). (B7)

In our calculations we replace A, by the one-pion. -
exchange e-production diagram of Aaron et gl."—
but not using the scattering length approximation
for e' «sin5„/q„. Call this more general form
B,. As discussed in Sec. IV C we must subtract
from B, its contribution from the two partial
waves I'811 and DI'13 that are being varied in the
fitting procedure; call the remainder 8, . We have
at the kinematic point under discussion

Acs =ZP "c~ in the threshold approximation is the
amplitude of Olsson and Turner. " We obtain for
A. cs at our kinematical point

Acs(p»p2) =-0.174x10 +0.157x10 'i (y f 2)

.=-0.137x10 ' — 0. 231» 0'i (p~=-+-,').
(a5)If we interchange the pions we obtain

Ac~(P2, P j)=0.991x 10 —0.240 x 10 ai (p~ ———2)

=-0.774x10 4+0.106x10 i (p& ——+-,').
(B6)

In the threshold approximation of Olsson and
Turner" Acs(qj, q, ) is symmetric under interchange
of q& and q2. Our values for the coefficient of $,
A.„are real and are given by

Wave 10 X, {ILI. =, ]Mf= — .)

PS3.1 0
DP11 2.62 + 0.712i

10 X, {ILt.;= —, , PP=-)

-2.64 —0.717i
2.98 + 0.808i

Bg =0.105 x 10 + 0.285 x 10 i (p. f ————')
=-0.263x10 3 0.713x10 ~i (p,. =+ —,'),

(B8)
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TABLE XIII. Our results for the» basis function of Eq. (4.4) for the two possible 6
charge states.

1O' X~ ',~
(I;=-, v&=--) (I;=-, p,,= )

PP11
PP33
DS13
DS33

-0.157 —0.607i
0.483 —0.410i

-0.397 —0.959i
-0.251 —0.607i

0.336 + 1.10i
-0.223 + 2.15i
-0.723 —0.0293i
-0.457 —0.0186i

0.223 —0.101i
0.571 —0.419i

-0.829 —0.561i
1.05 + 0.709i

0.247 —0.376i
-1,27 + 1.12i
-0.587 —0.796i

0.742 + 1.01i

B,=Q.234x10 '+0.634x10 ~i (p, z
——--,')

=- 0.518 x10 4 —0.141 x 10 4i (p q
——+ —,').

(B9)

The reader should note that the phase of the one-
pion-exchange contribution to T. in Ref. 29 is not
that of Appendix A of this work; 8, is given in Ref.
29, not T, . He may also note thatA and B, are re-
lated (approximately) by the factor of -4 of Eq.
(4.36b).

Te =(Re - idE)/[1-dr i(Ke+R )]-
To ——Rq/[1 -dr —i(K, +K;)],

where d& is given by .

d„=Kp'; —Ro
2

in terms of the elements of the R matrix

(e, e,]

(cl)
(C2)

(C3)

(c4)

We consider here the T's to be the Argand ampli-
tudes, i.e., T,=(qe"' —1)/2i. The phase of To is
given by

$0 ——tan [(K, +K, )/(1 -dr)]. (C5)

The phase of T, is related to Qoby

APPENDIX C: THE ELASTIC-PRODUCTION-PHASE

(EPP) APPROXIMATION

This appendix treats briefly the EPP approxima-
tion, which was used to model certain production
phases in one of our two fitting procedures. This
was done in order to reduce the number of param-
eters to be determined.

For the case of a single inelastic channel, one
may write the elastic amplitude, T„and the pro-
duction amplitude, To, as follows:

to be valid sufficiently close to threshold. Using
(C7) in (Cl) and (C2), one obta. ins

T, =(K, + iKO )/(1 +K02 —iK, ),

To ——Ko/(1 +Ra —iK,).
(C8)

(C9)

Thus, in this approximation To is related to T, by

To ——(1+iT,)KO, (C10)
This is the approximation used in the fitting as an
alternative to varying the phase of To independent-
ly. %e expect it to be valid in the region of the
Argand diagram where the elastic amplitude begins
to come off the unitarity circle, providing we are
not near a resonance.

The approximation of taking the K matrix to be
factorizable, which also relates the phases of T,
and To, is commonly used in the neighborhood of
resonances. It is equivalent to taking all elements
of the T matrix to be dominated by a simple pole.
In this approximation, we have d& -=0 and the phase
Po of To is equal to the phase Q, of T,.

For the energies of the data fit in this work these
two approximations give similar predictions for
production phases. Consider, for example, the
PP11(ma) amplitude which, because of the prox-
imity of the highly inelastic 1490 Roper resonance,
should be a bounding case. The elastic phase shift
at 5'=1375 MeV is 5 =38'. The phase of the elas-
tic amplitude is Q, =47', while the EPP prediction
is Qe= 32

APPENDIX D: STRUCTURE OF THE AXIAL-VECTOR

VERTEX FOR And AND THE GOLDBERGER-

TREIMAN RELATION

In this appendix, we extend the Goldberger-
.Treiman relation to spin-& particles. First, how-
ever, we must determine the structure of the
axial-vector vertex, which we write as

0 =40 tan (drc/K ) ~ (c6) (~(p') la '(0) I ~(P)) =u. (P '}I"u,(P), (D1)

The EPP approximation is

K,. «1. (C7)

Since we expect R; to be proportional to the prod-
uction-channel phase-space factor, we expect (C7)

where u+) is a spin--, Harita-Schwinger tensor
and M ', a rank-three pseudotensor whose form
is to be determined below. Since the spin--', par-
ticles in (Dl) a.re on the mass shell, the spinors
u, must satisfy the free Dirac equation
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(p'-m. )ug) =0,
and the subsidiary conditions

r us(p)=0

p ug(p) =0.

(D2)

(D3)

All other possibilities either violate G parity or
are equivalent to some linear combination of the
above.

One other remaining possibility is to consider
contributions involving the totally antisymmetric
tensor e, i.e. , terms of the form

In the determination of M ' below, the indices
u, P, and p, refer to (Dl).

We first consider terms of the form
nB gt np, 86 +Bf+n5 +nb+8 p+I v (D4)

have the proper parity and G parity. Of the second
and third terms only the combination

(D6)

survives C parity, while from the final term, we
have

(D7)

l

where g is the metric tensor and 5, p, and v are
free indices to be contracted with the available
four-vectors. There are three linearly indepen-
dent four-vectors, which we choose to be y (the
Dirac y matrices), q=p'-p and P=p'+p. Of
the possibilities represented by the first term in
(D4)

(D5)

n By, 6 n86v gp n5vp 88'
(D8)

with all possible distinct permutations of super-
scripts. As mentioned above, there are only three
linearly independent four-vectors available for
contractions with the free indices in (D8), y, q,
and P. The identity

(g "y' g"-'r' g"-'r''+r'r"r')rs=i~""'r, (D9)

(for general n, P, and p. ), and the subsidia, ry con-
ditions (D3) effectively eliminate contractions of
e with y from consideration since they are equiva-
lent to combinations of terms already considered.
Furthermore, we know

u, (P')P'u6(P) =u (P')(2m. y' —iv "q,)uQ), (D10)

so that contractions of e with P are equivalent to
some combination of contractions with y. Thus,
only e "q, survives, but this has the wrong 6
parity.

Collecting (D5), (D6), and (D7), we have

.(~(p') IA'(0) I ~(p)) =u (p')[g„(q')g 'y'+ &„(q')g 'q'

+f~(q')q q'y'+f2(q')q q'q'+kf~(q')(q g"+q'g")]y5u&) (D11)

The PCAC hypothesis

&+'„(x)=f,m, 'P (x) (n =1,2, 3)

leads to

g~.;~0 = v2 m~[g„(O)]...of,

(D13)

(D14)

Thus we have

lim(~(p') I 8+'(0) I ~(p))
q„o

=iu, (P')[2m'„(0)g ]y,u~(P). (D12)
in the limit that the pion four-momentum goes to
zero. We have assumed, in the normal fashion,
that the matrix element of the axial-vector current
is a smoothly varying function of q. A standard
quark-model calculation will not support more
structure than is present in (D12). Thus, the limit
that we have considered (q'-0) enables us to re-
late the ~71& coupling constant to a bag-model de-
termination of (g„)«.
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~A complete compilation of data from these early ex-
periments is given in Ref. 5.
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