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An isobar-model partial-wave analysis of 4140 7w ~p. — ot 7 "n bubble-chamber events at total center-of-mass
energies between 1330 and 1380 MeV is reported. Included in the analysis is a chiral-symmetry background
calculated from the phenomenological Lagrangian. Significant results of the analysis are that production is
dominated by the initial P11 wave and that, in this wave, final-state €N production is more important than
A production. We show that the recent single-arm-spectrometer data confirm the bubble-chamber data,
where the two overlap. We discuss the determination of the chiral-symmetry-breaking parameter £. The
analysis establishes that the present data is consistent with several models of the symmetry breaking,
although it favors the vector breaking model of Weinberg, £ = 0. Using a dispersion relation we show that
€N production in the tail of the Roper (P11) resonance significantly affects the extraction of ¢ from total-
cross-section data; hence in pion production £ cannot be determined independently of the isobar amplitudes.
As a further application of the results of the analysis we determine the value of the AwA coupling constant.
Our result depends on the value taken for the A mass and what assumptions one makes to determine the
large A amplitudes; but, in any case, it is considerably less than the theoretical predictions which follow
from SU(6), U(12), the quark model, and superconvergence relations. We also perform, in this paper, a
‘Goldberger-Treiman—-MIT-bag-model calculation which agrees with the other theoretical predictions. We
further show that by attributing all P33 inelasticity to A production the results of a recent elastic-phase-
shift analysis imply upper bounds on the AmwA coupling constant which are consistent with the value implied

by the isobar analysis.

1. INTRODUCTION

Low-energy single-pion production is a rich
source of information on a number of important
questions including (1) the validity of three-body
equations, (2) the accuracy of theoretical predic-
tions of resonance-resonance-particle couplings,
and (3) the determination of deviations from chiral
symmetry.

The world data set for the process comprises
early emulsion experiments in the 50’s and 60’s,!
bubble-chamber experiments from the 60’s and
70’s that yielded a total of about 300 000 events
spread over the energy range 1300—2100 MeV?3
and, most importantly, a new wave of spectrome-
ter experiments beginning in the later 70’s with
the LASL experiment of Gram ef al.* at six ener-
gies from 1260 to 1360 MeV. Past isobar-model
analyses of the data include the pioneering full-
amplitude fit to the emulsion data by Olsson and
Yodh,® an ambitious partial-wave analysis of two-
thirds of the bubble-chamber data by a Berkeley-
SLAC collaboration,® and subsequent analyses of
partial data sets by workers at Saclay,” Imperial
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College,® and Caltech.’

The purpose of the present paper is, in general,
to make contact between the bubble-chamber data
and the spectrometer experiment® and, in particu-
lar, to present the conclusions that can be drawn
from the lower-energy bubble-chamber data.
About 4000 7~ +p - 7" + 7~ +% bubble-chamber
events below 1380 MeV are available.® They di-
vide fairly naturally into energy bins with W=1340
+10, 1360+ 10, and 1375+ 5 MeV. There are, of
course, complete kinematics for each event. The
spectrometer experiment detects, with good pre-
cision, the energy (E,) and angle (6,) of just the
7" over a fairly wide range of E, and z, (=cosd,)
at six energies,

w=1260, 1280, 1300, 1305, 1335,
and 1355 MeV.

In Sec. II we review the bubble-chamber data and,
to facilitate comparison with the spectrometer ex-
periment,® give the (E,,z,) distribution; the bub-
ble-chamber distribution appears to be in good
agreement with the counter data.
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In Sec. III we turn to the question of chiral sym-
metry and chiral-symmetry breaking in the phe-
nomenological-Lagrangian approach to 7N - 77N.
This has been discussed in detail by several auth-
ors.'°-'? As the four-momenta of all three pions
go to zero, chiral symmetry makes a unique pre-
diction for the scattering amplitude in terms of the
piondecay constant. The breaking of chiral symme-
try is partially fixed by the value of the pion
mass, but introduces one new parameter (£) which
describes the tensor transformation property of
the term in the Lagrangian that breaks the sym-
metry. The predictions of broken chiral symme-
try are incorporated in the tree diagrams of a phe-
nomenological Lagrangian.'' In Sec. III we give
these predictions. We also compare the predic-
tions of the full phenomenological Lagrangian with
that of its threshold approximation; the result is
that they agree, for the chiral-symmetric part.
The chiral-symmetry-breaking term, however,
changes considerably with energy.

In Sec. IV we fit the bubble-chamber data. We
use the chiral-symmetry prediction as a back-
ground and add the following isobar production
amplitudes: PP11(rA), PS11(eN), PP33(nA),
DS13(rA), DP13(eN), and DS33(rA). The (standard)
notation here is [L (initial), L (final), total I, to-
tal J]. We also add what is left of the chiral-sym-
metry-breaking term after subtracting its projec-
tion onto PS11(e N) and DP13(e N); the latter is done
to prevent a double counting of these production
amplitudes. Our results are: (1) PS11(eN) pro-
duction is the largest single contribution; (2)
PP11(nA) production is also large; (3) PP33(r4A)
production is surprisingly small; (4) DS13(rA) and
DP13(eN) production are approximately degenerate
and definitely nonzero; (5) DS33(rA) production is
probably not consistent with zero; and (6) the chi-
ral-symmetry-breaking parameter £ is consistent
with zero. Zero for £ implies that the o0 commu-
tator has a pure isotopic scalar (I=0) structure
as would be expected in the quark model and that
the symmetry-breaking term in the Lagrangian
transforms like the “time” component of a chiral
four-vector, in accordance with the model of
Weinberg.'®

In Sec. V we discuss an evaluation of the ArA
coupling constant using the results of our analysis.
Our method is to study the diagram for 7N—-A~7A
- nmN. We first evaluate the cross section for
this process using the amplitudes determined with-
in the partial-wave isobar model. Then we evalu-
ate the diagram using Lagrangian field theory,
taking care to include spin complications for off-
mass-shell A’s. Comparing the two results yields
our prediction ga,,?/4m=40+20. This value dis-
agrees with the predictions of SU(6) and a Gold-

berger-Treiman-type calculation. The latter
agree with each other (ga, /47 =100) and are
about 3 standard deviations higher than the result
of the analysis.

In the concluding discussion of Sec. VI we com-
pare our results with those of Herndon et al.° To
checkour resultthat {=-0.3+ 1.6, we consider a
dispersion relation for the PS11(e N) amplitude.
From an approximate evaluation of the dispersion
relation for the production amplitude near the
three-body threshold we are able to conclude that
the data tend to favor a value for & that is close
to zero. Finally, we present a summary of the
principal findings of this work.

II. “THRESHOLD”’ BUBBLE-CHAMBER DATA

In Fig. 1 we show the full world set of bubble-
chamber data® ® below 2000 MeV for the four pro-
cesses

1. mp—-nr"n, 121490 events,
2. mp~n’r"p, 72346 events,
3. 7'p~n’r*p, 68976 events,
4, 7'p=~n*r'n, 77460 events.

We note also that there are some recent data'® on
the reaction 77p - 7°r%. For the present analysis
we consider only the 4140 77p - 7 7~n events be-
low 1380 MeV.? The events have been centralized
to the three total energy values 1340+ 10 (1227
events), 1360+ 10 (1481 events), and 1375+ 5 (1432
events) using a scaling procedure. The latter is
based on the relation between the square of sub-
energies s; (S, =Sy-p, S2=Sp+y S3=Sp+,-) and the
total c.m. energy squared s,

;o m2+2m,,2=f:s,.—s, (2.1)
in

where m denotes the mass of the nucleon. We cen-

tralized by writing s; =s,-(threshold) +As; and scal-

ing, for a given event, the three As;’s by the same

factor. Any events that fall outside the Dalitz

plot are brought back by adding a few tenths of an

MeV/c to the appropriate momentum.

In Figs. 2(a), 2(b), 2(c) we display the distribu-
tions of all 4140 events as functions of each of the
three subenergies. The distributions for each
set of centralized events are similar to those
shown. One notes the strong peaking of the 7*7~
energy s; toward high values, which shows the in-
fluence of the € enhancement.

In the c.m. frame we define a coordinate system
(Fig. 3) in which the initial-state nucleon is di-
rected along the positive z axis and the momen-
tum vector of the final nucleon defines the x-z
plane. Letting z, (2_,z,) equal the cosine of the
angle between the +z axis and the 7% (r~,n) mo-
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FIG. 1. Histograms of the available bubble-chamber data for 7=p—n*rn, 77p—1'n"p, 7*p —n'r*p, and 7*p — r*n'n.

mentum vector, we obtain for the full data set the
angular distributions shown in Fig. 4. (Again, the
results are the same at each of the three different
energies.) Important features of the distributions
are the (z=-1) 7% and (z =+1) 7~ peaking. These
are opposite from the distributions one would ex-
pect on the basis of a simple one-pion-exchange
model.

In Figs. 5(a), 5(), 5(c) we give the distributions
in (E,,z,) of the bubble-chamber events. (We
have divided the plane into 10 energy bins and 10
cosine bins.) It is this distribution that the spec-
trometer experiment measures. The distribution
can be fit by a function of the form

F(By,2,)=A+CTz, +D(Ty,~ Tz, +ET?, (2.2)

where T=(E, -=m,)/100 and all quantities refer to
the overall c.m, The values for the four param-
eters at the three energies are given in Table I.

This parametrization is the same as that used by
Gram et al.* in a preliminary analysis, and the
values in Table I are in good agreement with their
results. '

III. BROKEN CHIRAL SYMMETRY
A. General theory

The general theory of broken chiral symmetry
has been reviewed by many authors.*>*"!% It has
been applied to pion production by Chang,'® Olsson
and Turner,** Long and Kovacs,'? Rockmore,'® and
Lomon.'* We follow the general treatment of
Weinberg_15 and the application to pion production
of Olsson and Turner." The basic idea is that,
in the symmetry limit, S-matrix elements must
be invariant under both isospin rotations and chi-
ral “boosts” of chiral tensors, such as the chiral
four-vector
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FIG. 2. Histograms of the bubble-chamber data
used in this analysis (Ref. 3) as a function of the three
invariant subenergies Vs; (@), Vs, (®), andVs; (¢), as de-
fined in the text. We plot Vs; and Vs, over the range
1079 to 1205 MeV and w/’s_s over the range 280 to 405
MeV. Each bin is 6.25 MeV wide. For each graph the
bin at the uppermost energy contains all events for
W=1330-1380 MeV that have a subenergy greater than
the maximum energy shown on the graph.

FIG. 3. The c.m. coordinate system. The momentum
of the initial nucleon defines the +z axis and the momen-
tum (D) of the final-state nucleon defines the x-z plane,
Py and B, are the momenta of the final state 7* and -,
respectively, and n lies along Dy XD,.
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FIG. 4. Histograms of the angular variation of the
4140 bubble-chamber events used in the present analy-
sis. The angular variables z,, z_, and 2, equal, re-
spectively, the cosine of the angle between the z axis
(cf. Fig. 3) and the 7*, 7, and # momentum vectors.
(The initial nucleon momentum is along the +z axis.)
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FIG. 5. Distributions in (E,,z,) of the bubble-chamber events at the three energies (a) 1340 +10 MeV, (b) 1360
+10MeV, and (c) 1375+ 5 MeV. E, is the " kinetic energy in the overall c.m. We have divided the plane into 10 energy
bins and 10 cosine bins. The relative number of events in each bin is given using an alphanumeric scale: 0—~9, A—~2Z,
with 0 representing the smallest number of events.

TABLE I. Parameters for the phenomenological form, Eq. (2.2), for the distributions in
(E,,z,) of the bubble-chamber events.

W (MeV) A C (MeV-1) D (Mev1) E (MeV-?)

1340 22.12 £0.30 1.41 +£0.64 —5.94 £0.58 -5.67 +0.50
1360 21.92 +0.28 0.30 +0.68 —-4.14 £ 0.60 =7.51 £0.57

1375 20.81 +0.33 0.52 +0.95 -5.81 +£0.89 -7.58 + 0.99
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[(c®-¢2)2, §] (3.1)

formed from the pion field Zﬁ and any constant c.
This invariance requirement summarizes the con-
tent of the current-algebra commutation relations

[Va), V()] =y, =10° R = Feypy Vi (2) +8.t.,
[A2(), V() |, == 16°R = Pe 5, AN (1) + 8.t

[V‘;(x),A‘g(y)}%:%: i0°(X = §)e o gy Al (1) +S.t.
[A2(x), AB(9) ]y =y, =i0° R = F)e 45y Vi (x) + Sit.,

(where S.t. stands for possible Schwinger terms)
as applied to soft pions.

Predictions of the current algebra (3.2), with
the PCAC (partial conservation of axial-vector
current) condition that the pion pole dominate all
matrix elements of the axial-vector current, can
be reproduced by using a chiral-invariant La-
grangian constructed from covariant [in the sense
of (3.1)] derivatives. The covariant derivative of
the pion field is expressed in terms of the pion
decay constant £, as

D3 =(L+41,7F) 0,3, (3.9

and for a field ¢ with isospin operator t @or us Y
will be the nucleon)

Dy =0,y +2ikf, (A +1 7,720 (Fx0, D)y
(3.4)

(3.2)

One can build a chiral-invariant Lagrangian by
coupling D,y, ¢, and Du$ in any isospin-invariant
way. Such a Lagrangian, however, will have no
mass term for the pion. This term is included in
the symmetry-breaking part of the Lagrangian.
As shown by Weinberg,'® this term can be written
as a power series in f, ~*¢°/4

Ly==sm 21 =L [N(N+2)+2]5f,72¢%+ =+ *},
(3.5)

where N is the rank of the tensor operator as
which £, transforms under a chiral rotation. The
7w s-wave scattering lengths are related to N by

2a,+0a, =t L[N(N+2)+2], (3.6)

where L=m,/87f,’. Specification of N fixes both
scattering lengths since a second combination of
a, and a,,

2a,-5a,=6L, (3.7

is independent of any other parameters.

Specializing to 7N~ 77N, we write the relevant
7-N interaction terms for the chiral Lagrangian,
following Ref. 11, as

Lxnr 2%%’#75_7%' L (3.8)

(3.10)

1 =2 7\2 1 1 2/772\2
Lon == w07 G -3 -20m, (@], (3.11)

These terms are the same as those used in sev-
eral other calculations™~'%'%1% except for the
anomalous-magnetic-moment term (k,=1.85) in
(3.10). This term plays a negligible role in the
analysis, as discussed below. The pion decay con-
stant and g, are related to the weak axial-vector
vertex function by the Goldberger-Treiman condi-
tion® f, g, =mg,(0), where we use g,(0)=1.25, g,
=13.5,m=939 MeV, and f, =87 MeV. ¢ is related
to the tensor rank N by

£=2[3-N(N+2)]. (3.12)

It measures the amount of departure from the as-
sumption that that o commutator is proportional
to the o field.”* Using Eqgs. (3.8)-(3.11) we find to
order ¢>

(@2, " Al]=ifm [6%P(f, - 6°/2f,)
+(E/4,) (698G +2¢0%P) ],
(3.13)

where f, - $°/2f, is the o field to order ¢2. From
(8.13) it also follows that ¢ is a measure of the
isotopic /=2 component of the ¢ commutator. If

€ is the ratio of the /=2 to I=0 components, then*

18¢
g“155—6'

In the following section we describe our proce-
dure for determining ¢ from a maximum-likeli-
hood analysis of the data discussed in Sec. II. In
addition to our analysis there are several theo-
retical models and experimental results from
which £ may be determined. In the general model
of chiral-symmetry breaking of Gell-Mann, Oakes
and Renner®® the nonsymmetric part of the Ham-
iltonian is assumed to transform according to the
(3,3) + (3, 3) representation of SU(3) xSU(3). A
prediction of the model is that £ =0. This and
other predictions are based upon simple SU(3)
assumptions involving certain chiral-symmetry-
breaking meson matrix elements. However, it has
been argued® that these assumptions have no di-
vect relation to the quark model, se the latter can
provide another, somewhat independent estimate
of £. In the quark language, the ¢ commutator is
expressed in terms of spinors for the “up” and
“down” quarks and their average mass, 7, as®*

(3.14)

’
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w(@u+dd). This structure implies that the iso-
tensor part of the commutator is zero, hence &
=0, Still further theoretical support for this value
comes from the so-called hard-pion current-al-
gebra method.?**® Here it is assumed that inter-
mediate-state sums are saturated by low-lying
single-meson states. Within the pole dominance
approximation, the assumption that there is no
I=2 component to the 0 commutator is natural as
there are no known /=2 s-wave 77 resonances.

Aside from 7N - 77N, another reaction from
which £ may be extracted is the decay K*
~7'r"e*v,. From the analysis of several experi-
ments on K,, decay, various values of the /=0,
s-wave wm scattering length a, have been deter-
mined.?® Hite and Jacob®” have also recently ap-
plied interior dispersion relations to 7N scattering
amplitudes to extract a,. An average of these re-
sults is '

45=0.25+0.09m, ", (3.15)

Using Eqs. (3.6), (3.7), (3.12) and f, =87 MeV, this
implies —-2.53 <£ < 0.29, which is consistent with
the theoretical predictions. In this regard one
should note that Weinberg’s®® original calculation
of the 77 scattering lengths was based on the as-
sumption that the 0 commutator was pure isosca-
lar, so his result is in agreement with (3.15). The
scattering length also agrees with the recent sym-
metry-breaking model of Schwinger,*® which im-
plies that & =-2.

B. Predictions for pion production

From (3.8)-(3.11) one may calculate the ampli-
tude T(wN-7wN) for the diagrams of Fig. 6. In
Appendix A we give the complete results for all
the tree diagrams for all independent pion produc-

— /
—_—— - /
TS N7
I h ANt
__p_J_— —
a
A / \ I
IR \
[\ \ /o
—l N S VAR
b
Foorod
[ |
| |
R N S
c

FIG. 6, Tree diagrams which contribute to the process
7N —mnN. (a) includes the “one-point,” (b) the “two-
point,” and (c) the “three-point” diagrams.

tion processes without making any threshold ap-
proximation in the kinematics.

The total cross section predictions of these
amplitudes are presented in Fig. 7 for both £ =0
and £ =—-2, For comparison, in Fig. 7(a) we also

. show the prediction of the anomalous-magnétic-

moment term (for 77p ~ 7" 77n), which arises from
the second term in (3.10). The contribution to
other charge states is of comparable importance,
and in our final fitting we did not include this
term.

The amplitudes generated with a chiral Lagran-
gian are expected to be valid only through terms
linear in the pion momenta—terms of higher or-
der may be strongly model dependent.'® In the
present analysis, we have used the full amplitude.
To test the model dependence of the £-independent
piece of our amplitude, we expanded numerically
T(rN—nmN) in a power series in the pion momenta
and retained only linear terms. The deviation of
the cross-section predictions of this threshold
amplitude from those of the full amplitude (see
Fig. 7) are a measure of the significance of the
model dependence of our results. This numerical
expansion is effected as follows. First, we scale
the three-momenta of the final state pions d, and
d,; by a parameter p <« 1; and then we form the
symmetric and antisymmetric parts of T(zN
—77mN) in q, and g,. This threshold approximation
to the £-independent part of the amplitude is eval-
uated at the appropriate energy according to

Ty, :T[(f’*‘T:(}T), (3.16)
where we write
1 I e QI
Tt(h“ :—2" [T(pq.upQZ) + T(p(:b;i)ql”—]ag_l ,  (3.17)
th
1 > IO
Tt}x—) :% [T(p(h,p’:lz) - T(qu;lJ(h)J . (3.18)

Here, Q is the c.m. momentum of the incident
pion, Q,h is the threshold value of Q, and p is the
scaling factor, The symmetric part of T is a
threshold approximation appropriate to production
of s-wave final-state pions, and the antisymmetric
part, a threshold approximation appropriate to
production of p-wave final-state pions. For the
chiral-symmetry-breaking part of the production
amplitudes, T, we use a symmetric threshold ap-
proximation

1 N QI
(T)w =5 [Te(pdy, pd,) + Tg(pqz,pql)lﬁ—ﬁQ(’?l . (3.19)
th
In Fig. 7, we depict the cross-section predictions
of (3.16) and (3.19) for both £ =0 and £ =-2. We
also present the predictions of a “hybrid” ampli-
tude in which the threshold approximation de-
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scribed above is used only for the £-independent
part of T(N-nnN). For 77p —a*n"n, the £=0
cross sections generated with this threshold ap-
proximation are virtually indistinguishable from
those generated with the full amplitude. Although
not conclusive, this implies that the £-independent
part of our amplitude is model independent. The
=-2 predictions of 7, however, are ~50% lar-
ger than the predictions of the full amplitude at
the uppermost energies. For the remaining charge
states, the differences between o and o, indicates
that the model dependence of even our chiral-sym-
metric predictions is likely to be significant.

C. Comparisons with previous analyses

The arguments in Sec. II A strongly support the
Weinberg model of symmetry breaking (¢ =0).
However, the results of previous 7-production
analyses have not been definitive in this regard.
For example, while Rockmore®® concludes that
the data are consistent with £ =0, the analyses of
Long and Kovacs,12 and more recently that of Lo-
mon,** support the Schwinger model'® (¢ =—-2) in
which the 0 commutator has isoscalar and isoten-
sor terms. In another recent analysis, Olsson,
Osypowski, and Turner find that £ =-0.8+ 0.4
which is 2 standard deviations away from either
model.

The proper assessment of the results of these
analyses is complicated by the different approxi-

mations involved. Olsson, Osypowski, and Turner
consider only the one- and two-point diagrams de-
picted in Fig. 6—the three-point graphs are neg-
lected. Furthermore, they use a threshold ap-
proximation to the 7' matrix

T(mN-77N) 2a(mN-77N)|Q] , (3.20)
where é is the c.m. momentum of the incident
pion and a(rN-7wN) is the T matrix evaluated at
threshold divided by the threshold value of |Q).
‘This threshold approximation is essentially our
TE + (T (the graphs neglected by Olsson, Osy-
powski, and Turner are small) and the curves la-
beled o ("’ in Fig. 7 reprduce the £ =0 cross-sec-
tion predictions of these authors. In this regard,
it should be noted that the figure depicting the to-
tal cross section for 77p —7*7~n as a function of
the pion laboratory kinetic energy, 7T,, in the first
of Ref. 11 is incorrect. However, the plot of
X phase space in the second of Ref. 11 is correct,
as are the threshold expressions for the pion pro-
duction amplitudes in both of these papers.
Rockmore'® also uses the threshold approxima-
tion of Eqs. (3.16), (3.19) and considers 7 produc-
tion from both single-nucleon and nuclear colli-
sions. In the earlier Rockmore paper (the first
of Ref. 13), it is noted that the £ -dependent part of
the effective Lagrangian for 7 production does not
agree with the current commutator calculation of
Chang.'® Rockmore mistakenly concludes that the
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TABLE II. The total-cross-section predictions (in mb) including both the chiral amplitude
(with £ =0) and isobar production. The first number corresponds to the EPP solutions (Table
V), the second (in parentheses) to the SPP solutions (Table VI). These solutions are dis-
cussed in Sec. IV. The cross sections are generated through a Monte Carlo calculation with
2000 points. We estimate (from Tables V and VI) that the errors on the total cross sections

are about +20%.

1340 + 10 MeV 1360 + 10 MeV 1375 £ 5 MeV

Tp— TN 1.39 2.10 2.62
(1.30) (2.15) (2.51)

mp— 1010n 0.75 1.15 1.42
(0.73) (1.12) (1.34)

TN 0.27 0.44 0.61
(0.30) (0.52) (0.63)

mp—nlrp 0.19 0.32 0.49
: (0.21) (0.33) (0.48)
Tp—10rp 0.26 0.63 0.72
(0.34) (0.71) (0.98)

two approaches are not equivalent, the effective
Lagrangian requiring £ =0 to be consistent with the
available low-energy 7p — 7 7"n data and the cur-
rent commutator, £ =—3. However, Olsson, Osy-
powski, and Turner (in the third of Ref. 11) later
point out that the discrepancy between the two ap-
proaches is due to the neglect of certain pion pole
diagrams in the current-commutator calculation.
This last reference is the most current calcula-
tion which uses the threshold approximation; it
gives £ =-0.8+ 0.4, as noted earlier.

In the present analysis, aside from questions of
the model dependence of T, we find that (3.16) is
not a good approximation to the production ampli-
tude at the energies at which data are present for
two reasons. First, the threshold approximation
of Olsson, Osypowski, and Turner neglects pro-
duction of the two final-state pions in a relative
p state. From Fig. 7, we see that for 7p ~71"7"n
the cross-section predictions of 7§’ (6,{"’) and of
TS (057) are of comparable importance at the
relevant energies. Second, we find that isobar
production makes an important contribution to the
production cross section. Especially important
is the interference between the £-dependent piece
of the chiral amplitude and e N isobar channel as
discussed below in Sec. IVC. In Table II, we pre-
sent the total-cross-section predictions of our
analysis. For 77p — 7' 77n, the chiral-symmetric
amplitude accounts for only 20% to 30% of the total
production cross section. It is apparently the use
of the threshold approximation (3.20), particularly
in regard to the chiral-symmetry-breaking piece,
which allows the T(7N-77N) used by Olsson, Osy-
powski, and Turner to compensate for the lack of
isobar production and the neglect of T in their
total-cross-section predictions at the energies
considered by these authors.

Long and Kovacs'? use the full amplitude as gen-
erated by the phenomenological Lagrangian of
Eqs. (3.8)-(3.11) (excluding the small anomalous
magnetic moment term), but neglect isobar pro-
duction in their analysis. Using several different
models for the symmetry breaking, these authors
make predictions for total cross sections for
mp-1trn, 7 ~7"1%, and 77p -~ 77 7% and for
certain differential cross sections for 7°p -7 7*n
and 77p -7 7" n. In a comparison with data on
these processes they find that £ = -2 leads to the
best agreement; however, our numerical work, as
discussed below in Secs. IV F and VIB, implies
that this result is inconclusive because of the
neglect of isobar production.

IV. THE FIT TO THE BUBBLE-CHAMBER DATA

A. Introduction

We took the chiral-symmetry contribution to
T p—~1*1n from Eqs. (A12)—(A15), subtracted
from the symmetry-breaking term in (A12) its P11
and D13 components, added production of what we
consider to be the six potentially most important
isobar states, and determined £ and the six iso-
bar production amplitudes from a maximum-likeli-
hood analysis of the bubble-chamber data described
in Sec. II. The details of this analysis are given
below, while the results are summarized in Ta-
bles V-VIII.

B. Isobar production amplitudes

In Ref. 29 we gave in detail our formalism for
determining partial-wave amplitudes in the isobar
model. Here we reproduce the principal results
in a form close to the actual programming. In Ap-
pendix B we give numerical examples. For the
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FIG. 8. Notation for the reaction N — 1+ 2+ 3 with a
two-particle resonance in the final state.

isobar amplitude we write

Tiw=2 AwX,, (4.1)
a
]

ARNDT et al. 20

where the index « is the collection
a={[7135ini1\’7i1’i2’i3;‘], l,"lfrlsa p’,‘y “'fajs}v ) (4-2)

with ¢ denoting an isospin projection and 4 a spin
projection. a’ is the same set as @ but without
any projection quantum numbers. The indices in
the collection (4.2) are defined in Fig. 8. In the
present analysis we include only the € and A iso-
bars. The basis functions for these states are
given by [C(j,j,j;m,m,m) is a Clebsch-Gordan
coefficient]

X€= \/’Q—C(I%%;zﬂth)C(lIO;iIZZO)C(%l,J, “’iop'i )c(é‘lf‘]; ;u'f) IJ-i - “'f’ /‘L{)

47 R

L [20,+1\/2 ei%gind \ B
XYyt umug (p3)<——1—> W ( ) :’
1f

qs

and

(4.3)

X = C (131 1,4iy8)C(1533 1415ia)C (3113450 4)C (31T 5 1, O1,)

x 2 [C(318; mpm, g+ mICGL T g4 m, oy = (hp+ M), Y (@)Y 1 - oy (B))
m

1/2 1/2 i6 o3 B, ,.(q,)
X(21+1> (_@_) WZ(e smé) 8,192 (4.4)

4 3

q5°

X {2 describes the case when the A is made up of
particles 1 and 3 (7*x); there will also be a contri-
bution X’ from the (7 %) isobar. The two-body
phase shifts, &, for 7N in the 3-3 state and 77 in
the I=J =0 state are taken from the elastic analy-
ses of Refs. 30 and 31, respectively. In the bar-
rier penetration factors B, which are defined by
Blatt and Weisskopf,®? we set the radius equal to
0.25 fm. Our results will depend only very weakly
on the radius value (for reasonable choices), and
we note that for our value the penetration factors
are essentially B, , fOCq’f. The normalization in-
tegrals R are given by '

sin2
Re =h(W) [ 25 0poBoy 2aW,,  (45)
3
sin%
RA,xf2=§h(W)f—l—qn—3—‘L $ub2Bai Wy, (4.6)
2
where '
2
h(W)=p[32(2w)“]'l(%) . @)

In our notation p,, p,, and p, are the c.m. momen-
ta of the 7*, 77, and n, while W,=Vs, and g, are the
subenergy and relative momentum for the j-£ pair
[(Gjk)= (123) et cycl.]. W=+Vs is the total c.m. en-
ergy, and p is the c.m. momentum for the initial
state. Because of the ordering of factors in the
Clebsch-Gordan coefficients in (4.3) and (4.4), our

RA'lf

r

A,.’s will differ by various signs from those of
Refs. 6, 7, and 8. Relevant sign conventions are
discussed in detail in Sec. VIA.

C. Total production amplitudes

We fit the following six isobar production ampli-
tudes:

PP11(ra), PS11(eN), PP33(14), DS13(1A),
DP13(¢N), and DS33(r4).

Our criteria for these choices were: (1) we took
all final-state s waves, and (2) we took final-state
p waves arising from resonant initial states
(P33,P11,D13). In relation to the extraction of
the chiral-symmetry-breaking parameter, we
also consider the SP11(eN) wave, as discussed
below. It should be noted that, even though our
data are all in one charge channel (7*7 %), we can
determine both I=% and =3 7A production ampli-

‘tudes. This is because the relative amounts (and

the relative signs) of the 7*A™ and 7 A" contribu-
tions are different for the two isospin states.

In computing total cross sections in the isobar
model it is necessary to include the overlaps be-
tween pairs of basis functions for production of
different isobars from the same initial state. The
size of the overlap is a measure of the nonortho-
gonality of the final states. All overlaps have
been calculated in a previous work by two of us3?
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TABLE III. The normalized overlaps defined by Eq. (4.9) and the overlaps with the chiral-
symmetric background. The integrals are computed with a Monte Carlo routine, using 5000
points. The overlaps involving A isobars were computed using X, =X + x.,

(a) Normalized overlaps

PP11(rA) DS13(rA) DS13(1A) DP13(eN)
X x x X
W (MeV) PS11(eN) DP13(eN) DS33(mA) DS33(rA)
1340 0.22-0.067 ~0.84-0.19: 0.60 ~0.21 +0.05:
1360 0.25~0.067 -0.78 - 0.297 0.60 —0.19 +0.07:
1375 0.22-0.047 -0.73 - 0.367 0.59 -0.17 +0.07¢
(b) Overlaps with chiral-symmetric background
1340 MeV 1360 MeV 1375 MeV
PP11(rA) ~0.5+0.2¢ -0.5+0.37 -0.6 +0.37
PS11(eN) 1.3-0.3¢ 1.4-0.47 . 1.56-0417
PP33(rA) 0.3-0.17 0.3-0.1: 0.3-0.27
DS13(tA) ~1.0+0.57 =1.1+0.7¢ ~1.1+0.97
DP13(eN) 0.8-0.2¢ 0.9-0.37 1.1-0.37
DS33(tA) -0.7+0.37 0.8 +0.57 -0.7 +0.67

and were rechecked by a different method in the
present work. We define

Xop= [ X5 Xqdp, (4.8)
where p denotes the four-dimensional phase space.
We note that the basis functions X, (=X,,X1’ X&)

are such that the partial-wave cross section has
the form

0o = 41X3J +3)| Ag | X [CG (is0spin), |*.
The normalized overlaps

Xop=Xop/ (X oo Xas)? (4.9)

are given in Table III for the waves of interest.
Also shown are the overlaps with the chiral-sym-
metry background
BO‘:f X Tegdp . (4.10)

We see from the table that the PS11(eN)and PP11
(TA) have a small overlap, while the DS13(rA) and
DP13(eN) have a very large one. Because of the
latter feature, we were not able to make a clear
separation of the two amplitudes. It should be
noted, however, that the (normalized) overlap in
the isobaric production cross section has a differ-
ent value from the charge state one so that a good
measurement of the total D13 reaction cross sec-
tion would determine the relative amplitudes.

Equation (A12) suggests a total production am-
plitude T of the form

T=Teg+ T+ Y AgiX, (4.11a)

. where T¢g isthe “chiral-symmetry” part of the cur-

rent-algebra amplitude, {7, a generalization of the
chiral-symmetry-breaking part of the current-al-
gebra amplitude, and we have added the term
20A 4. X, to describe isobar production. The iso-
bar sum includes the six waves mentioned earlier.
Up to a constant, T, is the “usual” one-pion ex-
change diagram given in Eq. (3.11) of Aaron ef al.?®
It should be emphasized that the 4 ,, are not the full
production amplitudes, but rather the deviations
from current algebra.

At this point one would like to fit the data with &

" and the six 4,, as fitting parameters. Unfortun-

ately, this is not possible. The reason is that ac-
cording to Ref. 29, we may expand

T =Y ByX, (4.11b)

where the B,, are known, and below 1400 MeV, to
a very good approximation, only three waves—
PS11(eN), DP13(eN), andSP11(eN)—contribute to
the cross section. The fitting procedure deter-
mines the coefficients of the basis functions, X,.
For the PS11(eN) and DP13(eN) waves, the B, of
(4.11b) combine with the A,, of (4.11a) giving new
fitting parameters, and consequently these waves
cannot determine £. It is only the coefficient of
the SP11(eN) basis vector, that appears in the ex-
pansions of T'cg and T, but not in the o' sum in
(4.11a), that can be used to determine the ¢ para-
meter. Therefore, our procedure is, essentially,
to identify £ by the deviation of SP11 production
from the chiral-symmetry prediction. It should
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be noted. that, in the threshold limit, 7', is pure
PS11 because the energy denominator [(p, —p;)?
-m,?| has no z y=p, *p, dependence. Our method
depends on going far enough from threshold to
make an appreciable SP11 component. The SP11
wave is particularly appropriate for this task be-
cause the absence of any (nearby) resonances im-
plies that, of the large waves, it should be the
least affected by unitarity corrections. We note
that at 1360 MeV, T, would give, with £= -2, ap-
proximately 1% of the observed cross section and
would therefore make a 10% difference in the am-
plitude. Thus & could be measurable with the bub-
ble -chamber data.-

Since current algebra applies as all pion four-
momenta go to zero, it would be desirable to de-
termine £ from the spectrometer data.* Unfort-
unately, single-arm spectrometer data determine
only two of the four final-state kinematic variables
and hence may not be amenable to a three-body,
partial-wave analysis. It is therefore an uncer-
tain tool for determining the extent of isobar pro-
duction and hence the deviation of the remainder
from the chiral-symmetry limit. It should be
noted that the work of Nath and Kere®* implies
that €N production in the tail of the Roper reson-
ance should persist at low energies. We find, as
discussed in Sec. IV F, large €N production at
1340, 1360, and 1375 MeV; in Sec. VIB we dis-
cuss a dispersion relation calculation which es-
timates the rate at which the €N production de-
creases toward threshold. It is, of course, dif-
ficult to distinguish the P11- resonance tail eN
production from the one-pion-exchange (OPE)
pion production at low energy; thus, for a reliable
determination of £ one may need to fix the OPE
contribution by means of nonresonant waves, as is
done in the present work.

D. The fitting procedure

We use a maximum-likelihood procedure similar -

to that used by the Berkeley-SLAC collaboration
and described in Ref. 6. The quantity that is min-
imized is x?, which is defined by

2_ ~ Or (E_Ux)z
X —2N(lno+ 6) _ZZ Ino, + Bo ) (4.12)
where N is the total number of event points, ¢ is
the fitted cross section, and o, is the experimental
total cross section with error Ac,. In our fitting
we used the new total-cross-section values inter-
polated from Ref. 4 (with generous errors as-
sumed)

0, +A0,(1340)=1.35+0.15 mb,
0,+40,(1360)=2.25+0.20 mb,

(4.13a)
(4.13b)

0,+ A0, (1375)=2.65+ 0.30 mb. (4.13c)

o,, the differential cross section at the ith data
point, is given in terms of 7' in (4.11) by

0= | T(w,)]2. (4.14)

The symbol w, denotes the four kinematic quantit-
ies necessary to describe an event, which we
choose to be W,, W,, cos,, and cos¢, as defined
in Fig. 3. The theoretical total cross section o, is
obtained from the event point cross sections by

0T=foi(w)d“w. (4.15)

In terms of the conventional likelihood function,

x2 is just =2 InL, where L is the product of the
likelihood for ¢ around o, with error Ao, by the
likelihood for N events of values o, (with total
cross section &). The quantity & is implicitly var-
ied in the analysis (for minimum x?). If Ag,=0,
then G=o0,.

This definition of x2 allows a direct interpreta-
tion of parameter errors which are defined, in the
canonical way, as that change in one parameter
which causes x? to increase by one after x2 has
been minimized with respect to all parameters.
This definition also allows direct addition of other
x? constraints, such as isotopic partial-wave cross
sections. When multiple charge channels are used,
the corresponding % values are simply added to-
gether.

The algorithm for minimization is a standard
one. X2 is first expanded to second order in the
parameter increments

X2 x 2+ BT op +3(ap)TALYD (4.186)

where Ap, is the change in the kth parameter, 8,
is the kth component of gradient (-8x2/8p,), and
A, is the second-derivative matrix A,,=8%?2/
9p ;9p,. Here we have used a vector notation where
BT is the transpose of B.

The change, &p .., whichminimizes the approxi-
mate x?is

Apin=-AT8. (4.17)

Equations (4.12), (4.16), and (4.17) are iterated
numerically until a solution is obtained (8- 0) at
which point the parameter errors are simply

€= (247, )2, (4.18)

Problems arise when the algorithm for Ap , re-
sults in a x2 increase. This normally occurs be-
cause of inadequacy of the quadratic approximation
or numerical instabilities associated with degener-
acies in the parameter space (redundant paramet-
ers). We found it efficient and useful to work with
the normalized eigenvectors of the real symmet-
ric matrix; A™,



"1 -
ATy =Ny (4.19)

v, =0

This enables us to express Ap,;, asa sum of ortho-
gonal changes .

Al’mfzj‘: 7171152 api, (4,20)
J
where
v;=-X;(BTw,). (4.21)

Since the Api,are anorthogonal set, motion along
one of these directions is presumably independent
of motion along the other axes.

Although the full second-derivative matrix, A,
can be calculated, the search algorithm was found
to be more efficient with an approximation devel-
oped in the following way. First let us assume that
Ao, =0 and that the event points have been binned
into equal elements of phase space so that x% can
be written

o
x2=2N(1nox+JLU > -2 E n; Ino,
1

X

(4.22)

where n; =number of events in cell ;. Then 4,
=9%2/8p,9p, can be written

—on T,k 9:,i%.8 _ O
2N o +22’; n; o2 22”;‘ o,
(4.23)
where
920
xS Bp py (4.24a)
90,
i g;; ; (4.24b)
90

I 4.24c
Crthk apjapk ( )

The last term in this expression is very time-con-
suming to calculate, but for large numbers the
following relations can be used

Therefore, we have
E _.u.i&_ Nw E o _N__L.LR_
. nl g, i, Jk o
1

This can be used to give the approx1mate second -
derivative matrix

1 o, 0
Ajy=2Nor, 5 (0 or 22 Lok (4,25)
X
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[Note that in (4.25) we have unbinned the data.]
This approximate A is positive-definite as is nec-
essary for a stable minimizing algorithm.

E. Elastic-production-phase (EPP) approximation

A possibly useful method for reducing the num-
ber of parameters required to codify the data is
to constrain the production amplitudes using in-
formation about the (known) elastic partial waves.
We will do this using a K-matrix formulation, al-
though other formalisms would undoubtedly suffice
and render similar results. The coupled-channel,
dimensionless, T matrix is expressed in terms
of a K matrix though

T=K(1-iK)™?, - (4.26)
and we write

K= cUZR;l/Z. (4.27)

¢ is a diagonal phase-space matrix and K is a
real-symmetric (in the physical region), reduced
K matrix. Note that an element of K is expected
to be constant at a threshold. It is convenient to
split the K matrix into elastic and inelastic com-
ponents as

K=(Ke K’> .
K, K,

The dimensionality of K; depends upon the num-
ber of inelastic channels. An element of K; repre-
sents inelastic-inelastic scattering. K, is a vec-
tor representing coupling between the elastic chan-
nel and the inelastic channels. The equation for T
can now be solved to yield

(4.28)

T,= (—1~_Kt;{—,> N =elastic amplitude , (4.29)

K'=K,+iK5(1 - iK,))"K,, (4.30)
and

T, = (1 -iK,)'K(1+iT,) (4.31)

=vector of production amplitudes .

A number of situations could exist for which the
matrix (1 -iK,;)™ is essentially real. In these
cases the phases of all production amplitudes are
equal to the phase of (1 +iT,):

oo [_Re(T,)
(i)p =tan (ﬁm-é‘:)) . (4.32)

We refer to ¢, as the elastic production phase
(EPP). For open inelastic channels K,
=¢,M/2K,;¢;/? is real but may be either positive

‘or negative, which implies that the EPP for a

given production amplitude is known modulo 7.
A region where EPP seems reasonable is where
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FIG. 9. Argand diagram for an elastic reaction show-
ing the elastic production phase angle ¢,.

the inelastic channels are just opéning (¢;~0;
hence, K,~0). In this case

Ty~ K,(1+iT,). (4.33)

A second situation leading to EPP involves chan-
nels that are kinematically closed, giving imagin-
ary phase-space factors, for which (1 —iK,)™ be-
comes just a real mixing matrix. The graphical
interpretation of EPP is shown in Fig. 9 which
gives the Argand diagram for an elastic reaction
and indicates the angle ¢,. One sees that for an
elastic resonance such as the A, we have T~ 0,
and ¢,~ 0. In Appendix C we include a further dis-
cussion of some aspects of the EPP approximation.
The elastic production phases used in the pres-
ent work are given in Table IV. In the following
section we present the results of analyses with ap-
propriate production amplitudes constrained to
have these phases and analyses in which the phases
were freely searched. The latter phases are re-
ferred to as SPP or “searched production phases.”
We feel that the best representation for A produc-
tion waves is obtained by utilizing the EPP con-
straint. We note that the € production wave
PS11(eN) has a real contribution from the back-
ground and that, as discussed further below, the
phase of the searched component is large. These
facts suggest that the combined (background plus

TABLE IV. The elastic production phases (in degrees)
used for the EPP solutions.

W (MeV) Py Py Dyg Dy3
1340 22.6 -36.1 3.2 0.0
1360 28.5 -32.2 4.3 0.0
1375 32.0 -29.5 5.5 0.0

isobar) amplitude has something near the EPP
prediction for this wave.

F. Results

In our fitting we imposed on the D33 production
amplitude the requirement that itbereal, since the
corresponding elastic amplitude has small phase
shifts at the energies involved, and we kept the
D13 phase at the EPP value for the SPP solution.
We tested these assumptions against the data
by making random starts with these amplitudes
complex and also by allowing the fitting pro-
gram search to complex values from the real val-
ued solutions. In the second case, no significant
improvement in x? was obtained. In the first case
the effect was to increase the number of local
minima, reached from random starts, with bad
values of x2—without uncovering any better min-
ima than those found with the reality restriction.

Because of the large value of the DS13(7A)-
DP13(eN) overlap, the search program exhibited,
in some cases, an instability in which it searched
to large cancelling values of A(DS33-74),
A(DS13-1A), and A(DP13-€N). The meaning of the
large overlap is that, to a good approximation,
both DS13(7A) and DP13(eN) describe transitions
to the same 77N configuration. However, we ex-
pect that the amplitude for making thep -wave eN
transition should be suppressed relative to that for
going to the 1A s wave. For these reasons we set
A(DP13-€N) equal to zero. This implies that the
DS13(7A) amplitude which results from the fitting

TABLE V. The preferred EPP solutions in modulus-phase form. The phase, in radians,
is given in parentheses. Sign conventions relating our amplitudes to those of other analyses
are given in Sec. VIA. The PP33(rA) wave is given in Table VIII.

Wave 1340 + 10 MeV 1360 + 10 MeV 1375 + 5 MeV

PP11(rA) 0.102 + 0,007 0.126 + 0,008 0.179 +0.010
(0.39) (0.49) (0.56)

PS11(eN) 0.201 + 0,007 0.245 + 0.008 0.235 £ 0.009
(1.552 + 0.063) (1.483 + 0.068) (1.362)

DS13(rA) 0.067 +0.007 0.096 = 0.007 . 0,109 +0.007
(0.055) 0.075) (0.096)

DS33(rA) 0.04 +0.013 0.084 + 0.015 0.083 +0.014

' 0) ) 0)
x? 8.0 74.0 9.0
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TABLE VI. The SPP solutions in modulus-phase form. The phase, in radians, is given in
parentheses. Sign conventions relating our amplitudes to those of other analyses are dis-
cussed in Sec. VIA. The PP33(mA) wave is given in Table VIII.

Wave 1340 + 10 MeV 1360 + 10 MeV 1375 + 5 MeV

PP11(rA) 0.084 + 0.007 0.114 £ 0.009 0.162 £ 0.010
(1.128 + 0,110) (0.96 +0.12) (0.975 + 0.090)

PS11(eN) . 0.182 +0.007 0.237 + 0.008) 0.238 + 0.009
(1.444 £ 0.071) (1.471 + 0,068) (1.412 4 0.073)

DS13 (mA) 0.055 + 0.006 0.088 +£0.009 0.090 + 0.009
(0.055) (0.075) (0.096)

DS33(rA) 0.057 +£ 0,012 0.093 £0.015 0.107 £ 0.016
(0) (0) 0)

x? -30.0 64.0 -4.8

has a small part representing DP13(eN) produc-
tion. ’

With the above restrictions on the production
amplitudes, we obtained the following results from
the maximum-likelihood analysis.

1. Preferred solutions

The preferred solutions from our analysis are
presented in Tables V and VI in modulus-phase
form; with the phase in radians. The Table V
(EPP) solutions were obtained by keeping the A
phases fixed at the elastic production values given
in Table IV. Table VI (the SPP solutions) involved
a searching of the PP11(7A) phase. This generally
resulted in x? reductions of between 10 and 20, a
small reduction in the magnitude of most A pro-
duction waves, and a uniform increase in the ratio
of DS33 to DS13 A production.

2. Alternative solutions

The preferred solutions were obtained from hun-
dreds of random starts at each of the three ener-
gies. Generally, the preferred values were dis-
tinguished by substantially lower x?’s than those
alternative solutions which were discovered with
this procedure. An exception occurred at 1340
MeV where the alternative EPP solution given in
Table VII actually had a somewhat lesser x? (-14.4
vs —8), but was of a clearly different character
than the preferred solutions. When the PP11(7A)
phase was released, the alternative solution
searched to the SPP 1340 value given in Table VI.
Attempts to duplicate this solution at 1360 and
1375 MeV were not successful, so we view it as
an artifact of the 1340 data and not as a viable,
stable solution.

3. PP33(wA) solution

For those random starts which included search-
ing of the PP33(1A) wave, this amplitude invarif
ably searched to quite a small number and the re-

sultant solutions were basically those listed in Ta-
bles V, VI, and VII. In order to determine more
precisely the PP33(mA) amplitude we resorted to
a one-dimensional x? mapping in which we fixed
the amplitudes at their EPP (Table V) values,
fixed the phase of PP33(rA) at its predicted elas-
tic value, and then varied the modulus of the am-
plitude thereby producing a sharply minimized x?2
curve; the results are indicated in Table VIII.
Table VIII also includes results from a similar
procedure using the SPP (Table VI) solutions.
These results are used, with extrapolation, to
evaluate the AmA coupling constant in Sec. V.

4. £ parameter

We used the same methodology for determining
the £ parameter at each of the three energies as
was used for determining the PP33(7A) amplitude;
namely, a x?> mapping using the EPP solutions
from Table V. Our procedure for determining &
involved, first, replacing the chiral-symmetry-
breaking contribution of Eq. (A12) by the full one-
pion-exchange diagram of Aaron et al.?® The form-
er (specifically, the multiplier of £) is recaptured

TABLE VII. The alternative EPP 1340 solution dis-
cussed in Sec. IV F in modulus-phase form. The phase,
in radians, is given in parentheses.

Wave 1340 + 10 MeV

PP11(rA) 0.092 + 0.007
0.39)

PS11(eN) 0.149 + 0.008
(0.66 +0.14)

DS13(rA) 0.065 + 0005
(0.055)

DS33(rA) 0.004 = 0.008
0)

X2 ~14.4
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TABLE VII. The PP33(rA) solution as discussed in Sec. IV F in modulus-phase form. The

phase, in radians, is given in parentheses.

Wave 1340 £ 10 MeV 1360 + 10 MeV 1375+ 5 MeV
PP33(rA) amplitude (from EPP solution)
PP33(rA) —0.004 + 0.020 0.055 + 0.013 0.030+ 0.016
(-0.65) (~0.56) (-0.50)
X2 -9.6 69.0 7.8
PP33(tA) a.mplitude (from SPP solution)
PP33(rA) —0.047 £0.012 —-0.091 +0.013 » —0.084+0.010
(-0.65) (~0.56) (~0.50)
x? -33.0 59.6 —6.6
from the latter by multiplying by 5. Other charge states
- 3 m,? . Using the above results for the isobar model
Rl= - — —L—(W,,e®" sind 1. (4.34 :
16m f,? (Wee ,,,/q,,,,) ( ) amplitudes and the expressions of Appendix A for

The results for the coefficient of the one-pion-
exchange diagram, let us call it £, are (for one
particular set of starting points):

£(1340 MeV) = —0.06+0.30, (4.352)
£(1360 MeV) = +0.60+0.50 , (4.35b)
£(1375 MeV) = -0.30+0.30 . (4.35¢)

These give, when averaged, 220.081 0.40; the
values of £ were obtained from the mapping pro-
cedure described above in Sec. III. They are
sensitive to the starting values; the errors, we
believe, are realistic ones.

To find the value of the conventional & we need
to multiply £ by the factor R. We have evaluated
R in three ways: (a) taking the limit W, — 2, and
using the £ =0 77 scattering lengths; (b) taking the
limit W,, -~ 2m, and using the §{=-2 77 scattering
lengths; and (c) averaging over the Dalitz plot.
The results for R, in these three cases, are

R,=-IL, (4.36a)

R,R,=-4. (4.36b)
These give

£,=-0.2+0.9, (4.37a)

£, .=-0.3+1.6. (4.37b)

£ is thus consistent with zero, although we cannot
rule out, on the basis of the present data, the
value £ =-2. The reader should recall that our
method for determiriing £ is essentially to ask for
the deviation of the amount of SP11(¢N) production
from the amount predicted by chiral symmetry.
Because of the small size of the SP11(¢N) one-
pion-exchange cross section,? the extraction of

£ requires some delicacy.

the chiral-symmetry-background amplitudes, we
may calculafe the cross sections for all possible
charge state processes with a proton target. The
results are given in Table II. Comparing these
results to the chiral-symmetry contribution of
Fig. 7, we see that the large percentage of €N pro-
duction in 7'7"% implies that production of non-
zero-charge dipion states should be significantly
closer to the current-algebra predictions than is
the production of zero-charge states, to which

€N production contributes.

V. AnA COUPLING CONSTANT

In this section we use the results of the isobar
analysis to determine the value of the A7A coup-
ling constant. Our method is first to use the
PP33(rA) production amplitudes to compute the
total cross section for this channel from the rela-
tion

o:%(J+§)C,2[A}2, (5.1)
where p is the c.m. momentum of the initial state,
C; is the product of the relevant isospin Clebsch-
Gordan coefficients, and A is either the SPP or
EPP amplitude from Table VIII. We then com-
pare (5.1) with the same total cross section cal-
culated from the Feynman diagram of Fig. 10.
This diagram involves the 7NA coupling constant,
which we can fix from the A width, and the ArA
coupling constant. The “experimental” values of
A will thus give a direct determination of the
ATA coupling.

In order to evaluate the diagram of Fig. 10 we
must overcome two difficulties that are present
in the field theory of a spin-2 particle. First, no
completely consistent method of quantization is
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/
\\17'(0) j ma,) y miq)

N(P) N(P)

FIG. 10, The Feynman diagram for PP33(rd) produc-
tion.

J

available; some anticommutators are necessarily
incompatible with a positive definite metric.338
We shall not let this stop us from doing pheno-
menology but shall endeavor to be as consistent
as possible. Second, the off-mass-shell couplings
and the propagator involve extra parameters, one
of which is free and can be chosen for convenience
and others whose values are chosen to fit a con-
sistency criterion. Denoting the spin-3 field by
the 16-component Rarita-Schwinger?’ vector spin-
or y*, we write the Lagrangian for a spin-3 par-
ticle with no interactions as®®

L=4 7% Gagy® + W(BLyg + 687,) — 5(3WE+2W+ 1)y, 5]8,0f + Hoc. + 3m,a 0% gog — BW +3W+ Uyult?,  (5.2)

where we use the metric and y conventions of Bjorken and Drell.’® No physical result can depend on the
value of the parameter W, which may be chosen arbitrarily. The spin-$ propagator also involves W and

takes the form

900 =10 - ony = G, T ) [0+ b s

__(p? - mAZ)

3my,

1

2
0P =P+ 3 p"i)"]

3m,°

Since the form of the propagator simplifies con-
siderably with ‘W= -1, we shall use this value in
our calculations. .

As noted above, the interaction terms of the La-
grangian involving spin-3 particles contain addi-
tional parameters. The TNA vertex, for example,
is given by -

Zenad(Sap + X0aR)PF0%0 . (5.4)
The most general form for A is
A=3W(1+42)+2Z,

where Z is another parameter. This expression
was first obtained by Nath, Etemadi, and Kimel®
who showed that Z is required to be 3. In later
work by Hagen® it was shown that Z=3 is re-
quired in order to satisfy the Johnson-Sudarshan
theorem?® that the constraint equation continue to
exist in the presence of the interaction (5.4). For
W= —1 this condition implies that the time com-
ponent 3’ should not appear in the field equation
that results from varying 3°. Thus the expense
of eliminating the final terms in (5.3) by choosing
W= -1 is to have A=-1 and additional terms in
(5.4).

In our work we have replaced the resonance de-
nominator of Eq. (5.3) with the isobar propagator
of Woloshyn, Moniz, and Aaron’:

dt w,+E, kio(k?)
2m)° W.E, (wp+Ep)*-s "'

1 e
AD(s)—_:s—m,?+§]0‘ i

1 ('w+1
2W+ 1

)[(4&112 - 2w“-7+ 1 mA) YLy + 2wu1 T fp"‘]} .

(5.3)

r
The form factor

n__ &
) = e

and m,=6.83 fm™!, B=1.8 fm™!, and g=3.14m,".
This expression has been shown to fit the 3-3 par-
tial-wave phase shift for 7N scattering with a x*
which is as low as other three-parameter fits, and
it has a substantial theoretical foundation. The
values of the A7A coupling constant are sensitive
only to the imaginary part of the resonance de-
nominator; we tried a number of other forms of
the parametrization of the propagator with the
result that the values of g,,, could be substan-
tially increased over those quoted below only witha
width of the form Ty(g/g,)®. Such expressions,
however, give very bad fits to the 7N scattering
phase shifts.

The coupling constant in (5.4) is related to the
decay width by

m,®

F(my ' mtm, ) [(m + my) = m,’]’

' (5.5)

Zena’=1921T,

where
Fla,b,c) =[a® +b*+c? - 2ab - 2ac - 2bc]'/?,

and m,, m, and m, are the A, N, and 7 masses,
respectively. Using I, =0.110 GeV gives the
g1+ pa++ coupling. The coupling constant for other
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charge states is obtained from this value using
appropriate C — G coefficients. We note that, in
our opinion, the appropriate A mass to use in
(5.5) is the real part of the position of the pole of
the A propagator (~1211 MeV), rather than the
resonance position (~1236 MeV). In our numeri-
cal work we have used both masses; we find that
the resulting values of the A7A coupling constant
differ significantly.

Consider now the A7A vertex. Here again there
are extra terms with extra parameters. For a
pseudoscalar-type coupling we have

Zaral®Vsl Gos ~ Ya (AW + AW + A+ )]0 . (5.6)

This choice of coupling is, of course, not unique.
The alternative axial-vector-type coupling is
considered below. The consistency criteria®®
fix the parameter A to be 3. The reader may
note that for W= -1 and A=3, 3" does not appear
in the 69° field equation. Again, there is an extra,
off-mass-shell term in the vertex, if we choose
W=-1.

From (5.3), (5.4), and (5.6), the matrix element
for the diagram we are considering is given by

gA“v'AOgw’nA*gﬂ'pAOq?‘Quﬁ(pf)(gaB ~ Yk
X% by + 1) 75l &ow = WIS B; + QL gou — wvaJulpy)
(5.7)
y

%j“@"ys{gaey" +[BW+3(B-1))(ghvs + 847 + [(GB+ D)W + DW+ D - 3B+ {lr v %}0%8,0 .
a

where the momentum labels are the same as in
AAppendix A. There are a large number of terms
involved in squaring the eighty term sum in Eq.
(5.7) and summing over all spins, but we have
managed to calculate' the total cross section ex-
actly by using the computer code SCHOONSCEIP. 4!
We define a A7A coupling constant, g, by fac-
toring out the Clebsch-Gordan (CG) coefficient

ga0ea’ = [C(31353,-1,9) I

When we compare our cross section with Eq. (5.1),
this CG coefficient, and those which must multiply
the coupling constant given by (5.5) to get g,,.,,&?
and g,-,,0% Wwill cancel the C,* factor in (5.1).
Using (5.1), we then get an equation for g? of the
form,

(5.8)

=clAl. (5.9)

47r

A is the experimental number for the PP33(rA)
amplitude as given in Table VIII; C is the result of
the calculation of this section. Table IX gives
the values of C and g2/47r for the various energies,
for two values of m, and for the two solutions for
A.

In addition to the pseudoscalar coupling of (5.6)
one can equally well consider a ArA coupling of
the axial-vector form, i.e.,

(5.10)

TABLE IX. The ATA coupling constant as determined for various combinations of the A
mass, isobar-analysis solutions, and pseudoscalar (P) versus axial-vector (4) interactions.

g2/an g%/4r

w M, Coupling 10°% C (SPP) (EPP)
1340 MeV 1211 MeV 2 9.32 19.7114:8 0.1+33
1360 1211 P 4.31 35.7 9.2 13,083
1375 1211 P 2.54 17.9 30 2.3*31
1340 1236 P 16.90 35.7 34 0.3*3:4
1360 1236 P 7.75 64.1*13:8 23.4*1%-4
1375 1236 P 4.58 32.3 1§44 4.1+2:$
1340 1211 A 11.10 23.413:8 0.2:52
1360 1211 A 4.8 39.6:131 14,518
1375 1211 A 2.71 19.1:8:3 2.4733
1340 1236 A 21.00 4441382 0.3111:1
1360 1236 4 9.00 746133 27.2734
1375 1236 A 5.11 36.0118:4 4.6+63




When the A is on the mass shell, this coupling is
identical to the one in (5.6). Consistency of the
constraint equations fixes the various parameters,
in this case to B=D=1. It is useful to notice
that, for these values, (5.10) reduces to

%—;‘n'-'fieaswiﬁ“y”zpsa“d) : (5.102)
Using this coupling we can again calculate C from
Eq. (5.9); the results are given in the bottom half
of Table IX.

Since the values of the coupling g given in Table
IX correspond to the definition (5.8), they must be
multiplied by a CG coefficient to find the coupling
for the particular charge state of interest. As
seen from the table, g depends slightly on whether
(5.6) or (5.10) is used, with the axial-vector coup-
ling values being slightly larger. The value chosen
" for the mass of the A, however, has a much stron-
ger effect on the result for g. A value slightly
above the resonance position, m, =1236 MeV,
gives values for g2/41r twice as large as those ob-
tained if m, is taken as the real part of the pole
position, m, =1211 MeV. This is almost entirely
due to the difference in g,,, as calculated from
(5.5).

What value does theory predict for g? From the
pion-nucleon coupling, SU(6) gives the A™— A**7©
axial-vector coupling constant??

2 2 foii. \?
Eartglat+ =9 Q_(%) ~T7. (5-11)

ar T T 4w\ g

Here G%/4m =3, L is the average mass of the
mesonoctet, 700 MeV, and M, ,is the average mass
of the baryon decuplet, 1450 MeV. The predicted
~ value for the g% of Eq. (5.9) is thus

2 2

& —[c(313;309 ]2 Satra o 30,

- 47

5.12
yo (5.12)

The AmA coupling constant has also been treated
in U(12); the resulting value is in close agreement
with the SU(6) answer.*

We can also make a theoretical prediction of g
by extending the Goldberger-Treiman?! relation

to spin- particles (see Appendix D),

Zra v =V2mu(g4) w0/ fs - (5.13)

(ga)peab is the axial-vector coupling constant for
the semileptonic decay A% — A’e¥. This is unknown
but can be calculated with some confidence in a
model, such as the MIT bag model, where the nu-
cleon g, is predicted accurately.”” In the bag
model, one finds '

(5.142)
(5.14Db)

(ga)ara0=1.30,
(gn)aenr=1.13 .
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Usually, in using the Goldberger-Treiman (GT)
relation f, is fixed to give 14.6 for g,,,0°/4r. Thus
we have f, =0.622m,, if we use the experimental
value for the nucleon axial-vector coupling, g,
=1.25, or we have f, =0.544m,, if we use the bag-
model prediction of 1.09 for g,. In these two
cases we get

gZ

2—=102 or 133
47
for m, =1236 MeV (100 or 130 if m, =1211 MeV).
These numbers agree fairly closely with the SU(6)
result, as expected, since both methods give good
values .for the nucleon-pion coupling constant.®
The startling thing is that, with the possible ex-
ception of the solution at W= 1360 MeV for m,
=1236 MeV, the theoretical values (5.12) or (5.15)
are several times and several standard deviations
larger than the experimental values given in Table
IX. Further it is hard to see how the A values of
Table VIII could be seriously in error since an A
equal to, or larger than, 0.1, as required to agree
with (5.12) or (5.15), would correspond to a PP33
(rA) isobar contribution of more than 5% of the
total cross section. But it also seems. that the
GT relation should remain true for spin 3. Al-

(5.15)

“though there are additional terms in the matrix

elements of the axial-vector or pion current from
those retained in Eq. (5.13), they vanish as the
momentum transfer (pion momentum) goes to zero.
The PCAC smoothness assumption therefore im-
plies that these terms should not significantly af-

fect our result for g,,,. Furthermore, there are

theoretical reasons to expect that the appropriate
mass to use in our calculations is the real part of
the position of the pole of the A propagator (~1211
MeV), rather than the resonance position (~1236).
Also the restrictions which give the EPP solution
for A, rather than the SPP solution, seem very
reasonable. Each of these things severely in-
creases the disagreement between theory and
experiment. :

Finally we note that the preliminary results
from the Berkeley-Carnegie-Mellon elastic-
phase-shift analysis?? provide an upper limit for
A(PP33 —7A) if we make the reasonable assump-
tion that there is no other significant P33 produc-
tion mechanism. Using the values of n and 6 at
W equal to 1356 or 1394 MeV from this analysis,
we find that

|A| =0.02:0:05 (1356 MeV),
, (5.16)
|A| =0.012:07 (1394 MeV).

Extrapolating the C values of Table IX to these
energies and averaging over the two types of coup-

ling, the two values for m,, and the two different
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energies we find

2
%—: 2L (5.17)
The maximum value for g?/47 from the 1-standard-
deviation error for any energy, m, value, or coup-
ling type is 52.

The Berkeley—-Carnegie-Mellon group also has
" inelasticities and phase shifts at 1321 MeV, which
yield a similar value for !Al . We did not include
these data because the extrapolation of C could
not be done accurately. C would, of course, be
larger so that these data would not give as good
an upper bound on g?/4y from the 1-standard-de-
viation error, although the values of g2/411 would
still be consistent with zero.

VI. CONCLUSIONS
A. Comparison with Herndon ez al.

There is one previous partial-wave isobar-model
analysis, by a Berkeley-SLAC collaboration,® with
which our results should be compared. Both
analyses use, in principle, the same data set, al-
though the number of events we found on the tapes
supplied to us (4000 with energy below 1380 MeV)
does not correspond to the number (5200 with
energy below 1380 MeV) reported in Table III of
Ref. 6.

We reproduce in Table X the results of Herndon
et al.b for isobar production at 1310, 1340, and
1370 MeV. We recall that our results for the
amplitudes for €N production are only approxi-
mately comparable with those of Ref. 6 since we
include a chiral-symmetric background separ-
ately. To carry out the comparison we must con-
sider the question of sign conventions which was
mentioned briefly in Sec. IV. In order to compare
the results of isobar analyses with the predictions
of various models of strong interactions, it has
been generally agreed to adopt the following stan-

dard conventions in constructing the isobar expan-
sions [i.e., Egs. (4.3) and (4.4)]:

(i) The baryon should appear first in all Clebsch-
Gordan coefficients (CGC’s).

(ii) The particle-isobar orbital angular momen-
tum should appear before the channel spin in all
CGC’s.

(iii) The angle in any Y}, is measured to the first
particle in the corresponding isospin CGC.

Neither we nor Herndon ef gl. followed the latter
conventions, so below we relate our amplitudes
and those of Ref. 6 to those defined by the above
standavd conventions:

A,(present) = +(-1)%i4,(Herndon)n
=+(=1)"*"/*% 4, (standard)y, (6.1)
Ae(i)resellt) = ~(-1)%iA (Herndon)n '
=A (standard)n ‘. (6.2)

Here [; is the initial orbital angular momentum.
The reader is reminded that our incident pion is
taken along the —z axis, while that of Herndon et
al. is along the +z axis. In (6.1) and (6.2) n(=+1)
defines the overall phase between our amplitudes
and those of Ref. 6. An overall minus is irrele-
vant to Herndon ef ql. This is because the phases
of their amplitudes are determined by a partial-
wave, coupled-channel, K-matrix calculation from
resonant elastic phases. It is not irrelevant to
our fit, however, since we determine all isobar
production amplitude phases relative to the chiral-
symmetry background, which has a phase that is
determined by the signs of g, .y and f,. In princi-
ple, the sign of the product g,y f, could be deter-
mined by an analysis of 7°p—7"7"p in which the
photon exchange amplitude is included along with
the chiral-symmetry background. We believe that
our isobar amplitude's, as listed in Tables V and
VI, have the “correct” overall sign to make them
consistent with the sign of the threshold chiral-

TABLE X. The low-energy solutions of Ref. 6. The marginal (-)’s indicate waves with a
relative sign change between the definition of our basis functions and those of Ref. 6.

1340 MeV 1370 MeV

1310 MeV

TA PP11 +0.030 +0.047;

(=) DS13 —0.096 + 0.00527
(=) DD13 -0.022 +0.006i
PP31 +0.022 +0.007:¢
=) DS33 -0.027 —0.033;
=) py DS13 +0.030 +0.018i
(=) py PP11 —0.0039 + 0.011;
(=) p; PP31 +0.030 +0.0117
(=) €N PS11 -0.027 —0.1125

SP11 —0.0041 +0.017:
DP13 0.068 +0.0071¢

+0.,048 +0.0757
~0.068 ~0.035¢
~0.020 +0.0027
+0.036 +0.0117
-0.038 —0.0477
+0.054 +0.043;
~0.0088 +0.0267
+0.045 +0.0167
~0.037 ~0.130¢
+0,031 +0.0237
+0.037 +0.0207

+0.117 +0.102¢
-0.126 —0.011:
-0.067 +0.0307
+0.066 +0.0017¢
—-0.076 ~0.053¢
+0.102 +0.043%
—0.0038 +0.0357
+0.079 +0.00497
—-0.089 —0.1607
-0.0003 +0.0407
+0.086 +0.00257
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symmetry prediction of Olsson and Turner.!!
Thus, we find that =-1 in (6.1) and (6.2). In
order to facilitate understanding of our conven-
tions, we give numerical results for our ampli-
tudes explicitly in Appendix B.

The comparison between our amplitudes in
Tables V and VI and the Herndon ef ql. ones in
Table X [corrected by the phases of (6.1) and (6.2)
with = -1] is rather good. It should be noted
that we include p production through the antisym-
metric part of the chiral-symmetry contribution.
p production from the isobar amplitude of Herndon
el al. amounts, at 1340 MeV, to a cross section of
about 0.14 mb, neglecting overlaps. In this re-
gard, one should note that Herndon ef ql. use a
total experimental cross section of about 1.0 mb,
whereas the spectrometer experiment? obtains a
cross section of 1.35 mb. Our antisymmetric
chiral-symmetry 77 cross section is, from Fig.
7, about 0.17 mb; thus the (small) “p pieces” agree
well.

With regard to the A amplitudes, the values of
the largest, PP11, agree well between the two fits
in magnitude and phase. Herndon et ql. included
the nonresonant higher waves DD13 and PP31
which we omitted while we included the small (but
important) resonant PP33. The common small
waves DS13 and DS33 agree well. The waves
which were not included in both fits amount to a
very small percentage of the cross section.

We consider the general agreement in phases
between the two fits (with the overall i equal to
—1) very important in arguing for the basic va-
lidity of both analyses in general and, in parti-
cular, for the basic validity of the two very dif-
ferent methods used for determining the phases—
coupled-channel K matrices versus interference
with the chiral-symmetry background.

B. Corrections to the current-algebra prediction

In Sec. IV we presented the results of our analy-
sis for the chiral-symmetry-breaking parameter.
From the deviation of SP11(eN) production from
the chiral-symmetry prediction we concluded that,
conservatively, £=-0.3+1.6. This result can be
checked, and a further comparison with the re-
sults of Herndon ef ¢l.® can be made by counsider-
ing a dispersion relation for the PS11(eN) ampli-
tude. Our procedure involves estimating the size
of the right-hand-cut corrections to T, =T+ 7,
above the three-body threshold at W,=1217 MeV.

In this section we designate the PS11(eN) pro-
duction amplitude A(W). We assume that near the
three-body threshold A(W) goes as g(W— W),
where g is the initial-state c.m. three-momentum.
The (W- W,) factor ensures the (W - WT)2 pro-
duction-cross-section behavior. We estimate

TABLE XI. PS11 solution of Herndon et al., Ref. 6,
expressed in our phase convention [cf. Eq. (6.2)].

W (MeV) ReA(PS11) ImA(PS11)
1310 0.027 18 0.11173
1340 0.03713 0.129 87
1370 0.089 27 0.159 83
1400 0.176 21 0.13271
1440 0.200 80 0.19531
1470 0.25013 0.218 94
1490 0.208 44 0.219 47
1520 0.217 49 0.200 63
1540 0.17237 0.222 57
1650 ~0.029 47 0.306 47
1690 -0.05215 0.14788
1730 +0.047 47 0.158 61
1770 +0.072 87 0.291 52
1810 -0.11502 0.323 00
1850 -0.274 36 0.145 30
1890 ~0.318 05 0.051 66
1930 -0.29598 —0.152 28
1970 -0.18003 -0.256 02

the correction to T, by assuming that as W~ Wy,
A(W) goes to Ag,, the PS11 projection of 7,,, and
by using this assumption to make a subtraction in
a dispersion relation for A(W). Thus,

AW) [ Acy ) L W=w
q(W=Wyg)  \g(W-Wwy,) m
W‘WT
o[ Disc[A(W')/q'(W’—WT)]dW,
e, (W — W) (W = Wy) '
(6.3)

For the purposes of a rough estimate we break
the integral (6.3) into two parts, (I) W= 1310 MeV,
and (II) W<1310 MeV. In region I we evaluate the
imaginary part of A(W) using the PS11 solution of
Herndon et gl.® given in our Table XI. In region
II we set the lower limit of the integral in (6.3) at
Wy (rather than m + m,) and proceed as follows:

1. Assume that the Watson phase theorem?*® ap-
plies, so we may write

DiscA(W) = e®r™ ging (W) A(W) . (6.4)

In this equation 6 is the P11 elastic 7N phase
shift. We have used the subscript R to emphasize
a fact evident from Tables V and VI; namely,
that the tail of the broad Roper resonance at
~1470 MeV contributes to 7 production, even at
very low energies.

2. For 6y we use the empirical, analytic expres-
sion

wW- W, \?
tanG,(W) ~6,(W) = (m) 5(1310) . (6.5)

Thié gives results fairly close to the analysis of
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Ref. 30, where 6x(W) varies from about1.5°to15°
as W goes from 1210 to 1310 MeV. Equations
(6.4) and (6.5) together with our original assump-
tion about the threshold behavior of A(W) yields

. N g(W) ( W - Wy )3
DiscA(W) =ImA(1310) q(1310) \1310 - W,/ °
(6.6)

Substituting (6.6) into (6.3) and setting W= W, in
the integral gives the dispersive correction 54
(from region II) to the current-algebra prediction
for A,

1 qgw) [(W-Wg )2

A= T [1310) (1310 T) ImAUS10). (6.7)
By using Watson’s theorem at a higher energy
than it is valid [after all, the phase of A(W) at
1310 MeV is approximately 90° and not the 15° of
(6.5)] we have underestimated the size of dA.

The phenomenological contribution to (6.3) from

region I is roughly equal to that obtained from re-
gion II, so the full 84 is about twice that given by
(6.7). Using this approximate result, the disper-
sive correction to the current-algebra cross sec-
tion for 7p - n'77n is

6%0=4mX2[20A[%(4)

~ w- WT )4 2
"0'1(1310—WT |20 Im A(1310)[? mb .

(6.8)

The effect of the correction (6.8) on a determina-
tion of £ from total-cross-section measurements
can be approximated by comparing Oy-2y Og=o, and
[(0,-0)*/2+(8%0)*/2F = ¢*°™*. We do this in Fig. 11
for two values of ImA(1310), 0.1 and 0.2 at the
ends of what seems its plausible range; for the
two different ways of calculating o,.,, full diagram
and full threshold approximation (including the
threshold approximation for the coefficient of £);
and for energies below 250 MeV pion lab energy
(W - W,=60 MeV).

From Fig. 11 one can draw the following con-
clusions:

(1) A pure current-algebra amplitude with £=-2
and the coefficient of ¢ computed in the threshold
approximation gives by itself the entire total cross
section and is therefore inconsistent with the data
if our estimate of the size of the dispersive-part
correction to the current-algebra amplitude is cor-
rect.

(2) A pure current-algebra amplitude with &= -2
and the coefficient of £ computed without making
the threshold approximation would be consistent
with the total-cross-section measurement, after
adding the dispersive part correction, providing
ImA(1310) is at the low end of its range—around

0.1.%°

(3) If the above estimate is correct, £=0 and
A(1310) ~0.15 are consistent with the cross-sec-
tion measurements at 229 and 255 MeV,

(4) If the above estimate is correct it will be ex-
traordinarily difficult to determine & by total-
cross-section measurements unless they can be

 made in the region below W~ W =29 MeV (T,,,

=195 MeV). This is because the interference term
between the dispersive correction and the current-
algebra term vanishes only like W- W,.

C. Summary

The principal results of this work are:

(1) Low-energy bubble-chamber data (1330-1380
MeV) for 77p ~ n*7n gives an (E,, z,) distribution
in agreement with the preliminary single-arm-
spectrometer data? (Sec. II).

(2) Section III presents graphs of the current-
algebra predictions for five production cross
sections for the full, tree-approximation, pheno-
menological-Lagrangian amplitude, and for the
threshold approximation. Note that these two agree:
well for 77p — n*n'n for the chiral-symmetric con-
tribution; and that the two calculations for the
chiral-symmetry-breaking term (coefficient of &)
differ appreciably.*®

(3) Our isobar-model fits show that the dominant
pion-production mechanism below 1380 MeV is
production through the tail of the Roper P11 reso-
nance (see Tables V and VI).

(4) The small penalty in log-likelihood paid for
modeling the PP11(7A) production phase through
the coupled-channel K-matrix elastic-production-
phase approximation supports the validity of this
approximation (see Secs. IVE and IVF).

(5) The bubble-chamber data by themselves are
consistent with both £=0 and £=-2; more events
are needed to discriminate between these two pos-
sibilities. Our technique of determining £ from the
contribution of the chiral-symmetry-breaking term
to nonresonant partial waves appears capable of
giving an answer for the value of £ in spite of the
large eN production in the tail of the Roper reso-
nance (see Sec. IVF4). Our value for £ from the
bubble-chamber data is

=-0.3+1.6. (6.9)

(6) The large value for the eN PS11 production
cross section and the disagreement between the
full and threshold-approximation chiral-sym-
metry-breaking terms indicate caution in inferring
£ from low-energy total-cross-section measure-
ments.*® At the energies accessible to Gram
et al.* dispersive corrections to the PS11(eN)

wave are the same magnitude as the difference
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FIG. 11. Cross-section curves in the region W — Wy=20—60 MeV, Tj;=195-250 MeV. 0 ={[o(t=0)]}/2+(62g)1 42
where ImA(1310)=0.1, 0.2 for i=1,2. The two experimental points are the most recent (unpublished) results from the

spectrometer experiment, Ref. 4.

between the £=0 and £= -2 amplitudes (see Sec.
VIB).

(7) SU(6) and the (generalized to AnA) Goldber-
ger-Treiman relation both predict a reduced ArA
coupling constant of approximately g2/41~100.
However, our fits imply (see Sec. V) a considerably
smaller value,

g2
2 ~40+20, (6.10)
47

(8) Our results for the partial-wave isobar am-
plitudes, on the whole, agree quite well with those
of Herndon et al.® (see Sec. VIA). This agreement
is particularly significant in view of the very dif-
ferent methods used for determining the overall
phase; our analysis determines the overall sign of

the isobar production amplitudes with respect to
the well-defined chiral-symmetry-background
phase.

(9) From the results of our 7°p - 7*r™n fits we
predict in Table II the total cross sections for all
other relevant charge states, at 1340, 1360, and
1375 MeV.

In conclusion, we strongly urge the experimen-
tal community to produce a more extensive set of
full-kinematics wnN data in the low-energy (thres-
hold to 1350 MeV) region for more than one initial
and final charge-state choice. We think that the
two applications addressed here—determination
of the tensor structure of chiral-symmetry break-
ing (£) and determination of g,,, —by themselves
warrant further intensive experimental effort.
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APPENDIX A: PION PRODUCTION AMPLITUDES FROM
THE PHENOMENOLOGICAL LAGRANGIAN

We collect here our expressions for the 7N - 7mmN
invariant amplitudes, for all possible charge states,
which follow from the Lagrangian of Eqgs. (3.8)-
(3.11). Our specification of energy-momentum
four-vectors is 7(Q)+N(p,) ~ 7(q,) + 7(g.) +N(p,);
note that this differs from the notation used in ot-
her sections. Our invariant amplitude, T, is re-
leased to the S matrix by

(a) 7(@)+p(p) = 7(q)+ 7gs) +n(p))

s . m54(Pf+q1+q2“Pi—Q)

Fi= 0 (27r)'”2(EiEf2w12w22w9)”2 T(7N - 77N) .

(A1)

We follow the conventions and normalizations of
Bjorken and Drell.®® To simplify the expressions
for the amplitudes, we define the following:

F=u(p)vsulp,), = (A2)
F(A)=u(p JMvsu(p)), (A3)
G(A,B)=u(p )4 Brsu(p,), (A4)
H(A,B,C)=u(p )A B Cvsu(p,). (A5)
We will also need the quantities
D;=(2p;*Q+m)™, - (A6)
Di=(2p;-Q-m,)7", (AT)
Dy;=(2p;*q, -m )7, (A8)
D= (2p;oq,+m )", (A9)
Dy;=(2p;*q,-m,)7, (A10)
D, =(2p;-q,+m?) . (A11)

Following Rockmore,!® we refer to diagrams (a)
in Fig. 6 as “one-point” diagrams, (b) as “two-
point” diagrams and (c) as a “three-point” diagram.
Letting 7'? denote the contribution from the i-point
diagram and T the contribution proportional to
the nucleon anomalous magnetic moment, we ob-
tain the following expressions for the invariant
amplitudes:

Tw=i E ?1']1? vz ElmF+ 2F'(q,)+8mF -———-—-————-fff’_"})i‘):’i";ff] , (A12)
To-i £ Z?l—z VE [4mF+ 6F/(q,) - 2mD, gy, 43+ @) - 2mD,G(Q, g, — 4,)+ 2mD, Gla, + @, 4,)
+2mD Gg, - q,, Q)], (A13)
9= _; (5’_7_;)3 2T [2F7(q,) + 2mD Gy, Q) + 2mDy Gldgn, 41) - 2mD, G(@, 4) — 2mDy , Clgy, 45)
-4m®D Dy H(Q,q5,q,) - 4m*D; D, Hig,, 45, Q)], (A14)
0= i S8 L2V (D4 Dy)(-a3 QF (@) - D+ D)ay 0, Q)
+D,,H(qy,q,,Q)+D,H(Q,q5,q,) + D, ; Hqy, Q,9,)+ D H(g,,4,, Q)] (A15)
(b) 7(Q)+p(p,) = 7%gy) + 1%(g,) +n(p))
= _; &2 71% V2 [-2F’(Q)—-4mF 24, 'qz(;z_q;;?;z)f"'_'rg; gm;], (A16)

7= _; B 1 V2 [-4mF +6F'(Q) - 2mD,;G(q,,9.+ Q)

2m 417

- ZszfG(qz, g+ Q)+ ZmD“G(qz +Q,4q,) +2sziG(Q1+ Q, g2)], (A17)
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3
T3 = —z<~2g7—’;> V2 [-4mF+4F'(Q) - 2mD G(Q,q, +q,) — 2mD, G(q,, >+ Q) — 2mD,,G(q5, 4, + Q)

+ ZsziG(q1+ Q, q2)+2mD1iG(q2‘+Q,ql)+2mD,~G(611+612, Q) — 4m,2DfD2iH(Q,ql, Q'2)
- 4m2DfD1,-H(Q7 q2> ql) - 4m2D1fDiH(qu 92 Q)
- 4m2D2fDiH(42; 41> Q) - 4m2D1fD2iH(q1y Q, C12) - 4m2D2fD1iH(qz, Q, 511)] ’ (A18)

=i 'gl 4KfV2 Zr[ (D1f+D1i)Q2 “QF'(q,) - (sz'*‘Dzi)fh "QF'(g,)

+D1fH(41:an Q) +szH(Q2,Q1> Q)+DuH(CIz» Qs (11)+D2iH(fI1r Q,q5)]. (A19)

(c) Tf*(Q)‘*‘P(P )= 77+(41)+ 7(qs) +n(pf)

) 2q, *q,+ tm 2

1) = .é’,,_ \/-Z_[ZF’ 8 F q1°9> T ]’ (A20)

g - 4f (q1+q2)+ " (Q“h"‘h)z—m ?

T®= _; g,, 4f V2 [~8mF — 8F(q, +q,) + 2mD, ,G(q,, 4>+ Q) + 2mD,,G(qs, 4, + Q)
—2mD1iG(q2+Q’q1)—2MD21-G(6I1+Q,CI2)J, (A21)

T”"’(zm) 22 [2F"(Q) - 2m D, G(gy, Q)+ 2mD, G(Q, q5) - 2mD,,6(qz, Q)+ 2mDy G(Q, 0,)

—4m2D1fD2iH(q1: Q;Q2)“4m2D2fD1iH(CI2a Q;(h)]y (A22)
T = éi 4';"2 2V2[-D,;+D, )q, *QF (q,) — (Dy;+ Dy )q, - QF"(q,) + Dy H(g,, 45, Q) + Dy Hlgys 44, Q)
+D,,H(q;,Q,4,)+D;; Hq,,Q,4) |- (A23)
(@) 7(Q)+p(p,) = m°q,) + m(gx) + p(p))
w_ _; 8r 1 [ qz Q“'Q1'Q+q1'5h+1§'gmﬂz] A24)
T'P=4 om Af 2 2F'(q,)+8mF © g g P , (A24)

1
7= _; é.%;.vﬁ 7 [~4m F - 6F"(q,) + 4mD, G(q, @+ q,) — 2mD, ,G(q,, @+ q,)

+4MDiG(q2'ql, Q)_2MD1iG(Q+q2?ql)]’ (A25)

3
o= _; (i%) 2[-2mF - 2F"(q,) = 2mD, [G(q,, 45) + 2mD, ,G(qz, ;) + 2mD, g5, Q)

+2mD G(g,, @ - 2mD Glq,, Q) - 2mD, ,G(Q,q,) ~ 4m®D D,  Hlq,, q,, Q)
+4m2D,.D2fH(q2,q1,Q)+4m2szD1,»H({Iz, Q,q)], ‘ (A26)

1 , ) ’ ’
=i '2g—;£n' 41}"2 P [2(‘12 ‘Q-q,°Q—¢, '511)F+ 4mD2f‘I1 *QF’(q,) ~ szl,‘fh “QF'(q,) —4mD g, *q.F (@)
T

+2mD, ;q, *QF"(q,)+2G(gy, Q) — 2G(q,, Q) +2G(g,,q,) - 47”D2fH(CI2, 715 Q)
+ 2mD1fH(q1: g2 Q) + 4MD,~H(512: 41, Q) ~ 27nD1iH(72’ Q, ‘ll)J . (A27)

(e) m(@)+p(p,) = 7°4qy)+ 7(gs) +p(p )

wo_; Se ' Q°(q‘2-q1)‘+ql°q2+%5m”2] A28
- 4fﬂ[2F(q1)+8mF el (428)

= _; S 1 I_ 4mF - 6F"(q,) — 4mD G(Q, go = q1)+2mD1fG(Q1;(12+Q) %DziG(QL+Q’q2)

+2mD, G(¢>+Q,q,)], (A29)
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3
79 = _2(57’;1> 2[-2mF - 2F'(q,) + 2mD,;G(q,,Q) - 2mD, ,G(Q,q,) — 2mD,G(Q, q,) + 2mD, ,G(q,, q,)

+2mD,G(Q,q,) — 2mD, ,G(q,,q,) +4m*D, D, . H(q,,Q,q,) - 4m®D, D, H(Q,q,,q,)

+ 4m2Dsz,-H(Q,CI1:CI2)] ’

Ky

. g, 1 , ,
T = _ Zg—m 27? P [2(‘11 ‘qatq,°Q~4q; 'Q)F'47”Df‘_h ‘g F (Q)*-ZWLDU([Z ‘QF (‘h)

PR

APPENDIX B: ‘AN EXAMPLE OF THE NUMERICAL
RESULTS FOR OUR AMPLITUDES

(A30)
+4mD2iq1 'QFl(Ch) - ZWLDHQ2 'QF’(‘h) - 2G(qZ7 ql) + 26(‘12) Q) - 2G(CI1’ Q)
+4MDfH(Q:(I2yCI1)—2”1D1fH(CI1?CI2; Q)"‘4WLD25H((11, Q’qz)"'szliH(Qw Qs‘h)]'
(A31)
]
f | X o 1%dp =a4m(*| CG(isospin) |2,
(B3)

We give here explicit numerical results for our
amplitudes for one bubble-chamber event in order
to allow a detailed check of our conventions and
our results, We choose an event at approximately
1360MeV given by

Vs{=1099 MeV,
Vs, =1199 MeV,
2, =—0.4935,
cos¢ =0.1055,

(B1)

where the kinematic variables are defined in Fig.
3. From these values we reconstruct the four-
momenta of the initial two and final three particles
to be (in MeV)

p(initial proton)=(0,0,335,997),

p(initial 77) =(0,0, —335,363),
py=p(n*)=(-164,73,84,242), (B2)
py=p(17) =(~6,-73,12,158),

ps=p(n)=(170,0, -96,959).

Note our convention of having the initial nucleon
along the +Z axis. In Tables XII and XIII we give
our results for the basis functions of Eqgs. (4.3)
and (4.4), respectively, for u,=%3 and p; =+ 3.
The phase-~space factor is adjusted such that each
of these basis functions satisfies

TABLE XIi. Our results for the €N basis function of
Eq. (4.3).

Wave 108X (=4, m=-1)  10° X, (=1, =1

PS11 0
DP11 - 2.62 +0.7127

—2.64 0,717
2.98 +0.808%

a=2 foreN,
a=1 for mA.

We define amplitudes A related to the chiral-
symmetry invariant amplitudes of Appendix A by

T =ia8L . (B4)

Acs =22,A%) in the threshold approximation is the
amplitude of Olsson and Turner.!! We obtain for
Acg at our kinematical point

Acs(py,p2) == 0.174 X103 +0.157x10™% (u,;=—5)

==-0.137x1073-0.231X107% (u,=+3).
. . - (B5)
If we interchange the pions we obtain
Acs(py, 1) =0.991X107* - 0.240%107% (u,=-3%)
==0.774 X107 +0.106 X107 % (u,=+3).

(B6)

In the threshold approximation of Olsson and
Turner!! Acs(gy,9;) is symmetric under interchange
of gy and q,. Our values for the coefficient of &,
A;, are real and are given by

Ay==0.193xX107% (u;=—1%)

=0.484X10"" (p,=+3). - (BT)

In our calculations we replace A, by the one-pion-
exchange e-production diagram of Aaron et al.?’—
but not using the scattering length approximation
for e*°mmsind,,/q,,. Call this more general form
B;. As discussed in Sec. IV C we must subtract
from B, its contribution from the two partial
waves PS11 and DP13 that are being varied in the
fitting procedure; call the remainder B,. We have
at the kinematic point under discussion

B, =0.105%10"%+0.285x10"% (u,=-1%)
=-0.263x10"% - 0.713x107% (u;=+3),
(B8)
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TABLE XIII. Our results for the 7A basis function of Eq. (4.4) for the two possible A

charge states.

103 X(Al—rn 103 ng:)vr‘h
= -1 =1 1 =1 =_1 =1 -1
Wave (Ni—-;-, b= =5 (Fli—f', Mf'—-z-) (I»l,'—-é-, Iif—f-—z-) (Mi—g’ I“"f“'?‘)
PP11 ~0.157 - 0.6074 0.336 +1.10¢ 0.223-0.101: 0.247 - 0.3767
PP33 0.483 - 0.4107 -0.223 +2.15¢ 0.571 —-0.419; -1.27 +1.127
DS13 ~0.397 - 0.959¢ -0.723 -0.,02937 -0.829 - 0.561% ~0.587 —0.79617
DS33 —0.251~0.6077 —0.457 - 0.0186% 1.05 +0.709¢ 0.742 +1.017

B,=0.234X107%+0.634x107% (u,=-13)
=-0.518X10"4 = 0.141X10™% (p,=+3).
(B9)

The reader should note that the phase of the one-
pion-exchange contribution to T in Ref. 29 is not
that of Appendix A of this work; B, is given in Ref.
29, not T,. He may also note that A, and B, are re-
lated (approximately) by the factor of —4 of Eq.
(4.36Db). '

APPENDIX C: THE ELASTIC-PRODUCTION-PHASE
(EPP) APPROXIMATION

"This appendix treats briefly the EPP approxima-
tion, which was used to model certain production
phases in one of our two fitting procedures. This
was done in order to reduce the number of param-
eters to be determined.

For the case of a single inelastic channel, one
may write the elastic amplitude, T,, and the pro-
duction amplitude, T, as follows:

Ty =(K, -idg)/[1 ~dy K, +K )], (cy)
Ty=K,/[1-dg -i(K,+K;)], (C2)
where dg is given by .
dx =K K;-K’ (C3)
in terms of the elements of the K matrix
- K=(§0 ﬁ") (C4)

We consider here the T’s to be the Argand ampli-
tudes, i.e., T,=(ne%®-1)/2i. The phase of T, is
given by .

¢o=tan"'[(K, +K;)/(1 -dy)]. (C5)
The phase of T, is related to ¢, by
b =g ~tan Y(dx/K,). (C6)
The EPP approximation is
K; <1, ‘ (C7)

Since we expect K; to be proportional to the prod-
uction-channel phase-space factor, we expect (C7)

to be valid sufficiently close to threshold. Using
(C7) in (C1) and (C2), one obtains

T,=(K, +iK,))/(1 +K 2 —iK,), B (e1:)
Ty=K,/(1+K, —iK,). (C9)
Thus, in this approximation T, is related to T', by

TO:(1+iTe)Ko’ ¢OE¢»' (C10)
This is the approximation used in the fitting as an
alternative to varying the phase of T, independent-
ly. We expect it to be valid in the region of the
Argand diagram where the elastic amplitude begins
to come off the unitarity circle, providing we are
not near a resonance,

The approximation of taking the K matrix to be
factorizable, -which also relates the phases of T,
and T, is commonly used in the neighborhood of
resonances. It is equivalent to taking all elements
of the T matrix to be dominated by a simple pole.
In this approximation, we have dg =0 and the phase
¢,0f T, is equal to the phase ¢, of T,.

For the energies of the data fit in this work these
two approximations give similar predictions for
production phases. Consider, for example, the
PP11(nA) amplitude which, because of the prox-
imity of the highly inelastic 1490 Roper resonance,
should be a bounding case. The elastic phase shift
at W=1375 MeV is 6§ =38° The phase of the elas-
tic amplitude is ¢,=47°, while the EPP prediction
is ¢,=32°

APPENDIX D: STRUCTURE OF THE AXIAL-VECTOR
VERTEX FOR ArA AND THE GOLDBERGER-
TREIMAN RELATION

In this appendix, we extend the Goldberger-
Treiman relation to spin-3 particles. First, how-
ever, we must determine the structure of the
axial-vector vertex, which we write as

(AP AM(0) 1 AD)) =ua(p M **ugp), (D1)

where u4p) is a spin-3 Rarita-Schwinger tensor
and M *** | a rank-three pseudotensor whose form
is to be determined below. Since the spin-% par-
ticles in (D1) are on the mass shell, the spinors
ug must satisfy the free Dirac equation
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F-m)udp)=0, (D2)
and the subsidiary conditions

Yousp)=0

pPudp)=0. (D3)

In the determination of M *** below, the indices
o, B, and u refer to (D1).
We first consider terms of the form

ab .Bp

g%%g"°, g gh, gPrg®, g*oghrgh” (D4)

where g is the metric tensor and 5, p, and v are
free indices to be contracted with the available
four-vectors. There are three linearly indepen-
dent four-vectors, which we choose to be y (the
Dirac y matrices), g=p' —p and P=p’' +p. Of
the possibilities represented by the first term in
(D4),

g% ys, %" ys (D5)

have the proper parity and G parity. Of the second
and third terms only the combination

(a°¢"*+q8" s (D6)
survives G parity, while from the final term, we
have

a°a s, 4°0°¢"ys. (D7)
J

(Ap)1A*(0) 1 AQ) =i opNgald®le ** + hald")e **q*

All other possibilities either violate G parity or
are equivalent to some linear combination of the
above.

One other remaining possibility is to consider
contributions involving the totally ant1symmetrlc
tensor €, i.e., terms of the form

eaBub’ Eaﬂﬁvgup aﬁupgﬁﬁg (DS)
with all possible distinct permutations of super-
scripts. As mentioned above, there are only three
linearly independent four-vectors available for
contractions with the free indices in (D8), vy, ¢,
and P. The identity

pao B LB a o u_ B aBup

(g™ —gh oy P — g By +y Oy Py = e 4y, (D9)

(for general «, B, and u), and the subsidiary con-
ditions (D3) effectively eliminate contractions of

e with y from consideration since they are equiva-
lent to combinations of terms already considered.
Furthermore, we know

#a(D VP udp) = ta(d')(2m xy° = i0q, udp), (D10)

so that contractions of ¢ with P are equivalent to
some combination of contractions with y. Thus,
only €*##%;, survives, but this has the wrong G
parity.

Collecting (D5), (D6), and (D7), we have

+11(aM)a%a% " +flaDa%a a" +5f5(a*Na e B+ %" )y sudp). (D11)

Thus we have
linr;(A(p’)l 3,A%(0)1 AP
=iite(p ") 2m 584 (0)8°**lysuq(p). (D12)

The PCAC hypothesis

2,A5x) =fm a(x) (@=1,2,3) (D13)
leads to
gA*w'AozﬁmA[gA(O)]A+A°fw (D14)

in the limit that the pion four-momentum goes to
zero. We have assumed, in the normal fashion,
that the matrix element of the axial-vector current
is a smoothly varying function of ¢. A standard

" quark-model calculation will not support more

structure than is present in (D12). Thus, the limit
that we have considered (¢* — 0) enables us to re-
late the AmA coupling constant to a bag-model de-
termination of (g4)as.

*Present address: 2571 via Campesina, Palos Verdes
Estate, CA 90274,
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1A complete compilation of data from these early ex-
periments is given in Ref. 5.
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