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It is shown that the simple polynomial approximation of transversity amplitudes using complex zeros of
Barrelet type cannot account for the slope-parameter data at any of the energy ranges except for providing
only a qualitative explanation of the bump structure around s ~3 GeV> At high energies experimentally
observed linearly increasing or decreasing trajectories can never account for the slope-parameter data. These
results reflect the fact that the sharp forward peak cannot be represented by finite-order polynomials in the
conventional scheme of parametrization. Using Mandelstam analyticity and information on the real and
complex zeros we propose a new scheme of parametrization to understand the energy dependence of slope-
parameter data for all energies such that the problem of a dynamical understanding of diffraction scattering
reduces to the problem of providing a dynamical origin of zero trajectories. This leads to a formula that
relates the slope parameter with equations to boundaries of spectral functions and real and complex zero
trajectories. An excellent description of the data is obtainéd for all energies with s > 1.44 GeV? using
theoretical elastic boundaries of spectral functions, experimentally determined real and complex zero
trajectories in a limited energy range, and their realistic -extrapolations for higher and lower energies. The
slope-parameter data are found to be very sensitive to small variations of the real trajectory around its
extrapolated value at low energies. Using our formula, real zero trajectory in the range 1.33 <s < 1.62
GeV? has been determined from the slope-parameter data. From the structures observed in the slope-
parameter data we make some qualitative predictions of complex trajectories at high energies. Contrary to
the general supposition that the forward peak cannot be represented by true zeros of the amplitude, our new
scheme of parametrization strongly suggests that the diffractive parts of transversity amplitudes possess all

the complex zeros and the real zero existing away from the forward-peak region.

I. INTRODUCTION

Although many theories have been proposed’ to
explain hadron-hadron collision processes only a
few have been successful in explaining shrinkage-
antishrinkage of forward peaks in diffraction scat-
tering. A brief review of experimental data on
slope parameters and the present status of theory
has been reported in Ref. 2 (hereinafter referred
as paper I). In particular the oscillatory pattern
of the slope-parameter data® in 7*p and K p scat-
tering and the antishrinkage of pp scattering have
eluded predictions of many models. The only fit
to the oscillatory pattern, proposed by Barger and
Cline,* by an empirical merger of Regge and geo-
metrical models, has been strongly criticized by
Weare® who has pointed out that the model is ap-
plicable at energies much higher than the range
where the oscillatory pattern is observed. Many
other theories®7-® which have been developed for
asymptotic energies, but attempt to explain the
slope-parameter data at lower energies suffer,
more or less, from the same type of criticism
advanced by Weare.®

Apart from providing very important informa-
tions from data analysis,® the optimized polynomi-
al expansion (OPE)' has been used to propose
phenomenological formulas for diffraction scatter-
ing.2:5,7,11.12 Byt the formula for the slope param-
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eter proposed in Ref. 7 could account for shrink-
age only. However, in I a convergent polynomial
expansion (CPE) was developed for all energies.
The fundamental requirement for the realization
of CPE for all energies was shown to be the exis-
tence of at least one real zero on the physical re-
gion in the x=cosf plane. This ledto anewformula
which related the slope parameter with equations
to real zero trajectories'® and boundaries of spec-
tral functions. Such a formula has provided a uni-
fied description of the slope-parameter data for
several diffraction scattering processes. Whereas
the criticism of the type advanced by Weare® holds
against the theories of Barger and Cline,* Deo and
Parida,®” and Leader and Pennington,® CPE of I
is applicable for all energies and is free of such
criticism. But the formula in I could not describe
adequately the oscillatory pattern,® although it re-
produced a good average of the data for all ener-
gies. In particular the observed oscillations at
low and intermediate energies including the bump
around s =3 GeV? could not be fitted by the formu-
la even after using four parameters one of which
yields an effective boundary of spectral function
retreating away from the theoretical elastic bound-
ary, a feature unwanted by the S-matrix theory.
However, it was conjectured?® intuitively that the
use of complex zero trajectories’ might yield a
correct account of the oscillatory pattern.
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In this paper we attempt to understand the ob-
served variation of slope parameter in 77p scat-
tering in terms of real and complex zero trajec-
tories and theoretical elastic boundaries, such
that understanding diffraction scattering reduces
to the problem of understanding the dynamical
origin of zero trajectories, the dynamical origin
of the boundaries of spectral functions being al-
ready known. While determining the complex
trajectories from the cross-section and polariza-
tion data by Barrelet’s moment analysis, the sharp
forward peak is usually excluded from data anal-
ysis.’® This is further reflected in the fact, which
has been demonstrated in Sec. II, that the simple
polynomial approximation using recently known
complex zero trajectories’® does not account for
the slope-parameter data. Further, it is evident
from the expression for slope parameter result-
ing from such polynomial approximation that the
experimentally observed zero trajectories, which
are either decreasing or increasing linearly with
energy at high energies can never account for the
slope-parameter data. ‘

Using CPE of I we propose a new scheme of
parametrization for the transversity amplitudes
near forward angles such that they possess the
same complex zeros of Barrelet type and the real
zero in the backward hemisphere, but still exhibit
the forward-peak structure and satisfy Mandel-
stam analyticity in the x plane. This leads to a
new formula that relates the slope parameter to
boundaries of spectral functions and real and com-
plex zero trajectories. Using the available data
on the real and complex zero trajectories® in a
limited energy range and their realistic extra-
polaticns to higher and lower energies, and theo-
retical elastic boundaries of spectral functions,
the slope-parameter data can be well explained at
lower, intermediate, and high energies with one
parameter only. At lower energies the formula
is very much sensitive to the type of extrapolation
used for the real trajectory only. Thus using the
slope-parameter data we determine the real zero
trajectory for 1.33 <s <1.62 GeV?, the path of
which can be verified by other methods. From
the second bump structure around s~ 5.2 GeV?’
the present analysis predicts emergence of new
trajectories with small imaginary parts and/or
the existence of critical points in the imaginary
parts of two of the already existing trajectories
around this region. The long-standing discrep-
ancy of the slope-parameter data in the range 20
< s<'50 GeV? from smooth extrapolation of the
data at other energies can be resolved if similar-
ly new trajectories emerge around this energy
region. Contrary to the conventional belief that
zeros are associated only with nondiffractive
parts of the amplitude, our analysis strongly

favors the idea that the diffractive parts also
possess the same real and complex zeros as the
nondiffractive parts.

In Sec. II we briefly review the problem of as-
sociating the diffraction peak with zeros of the
amplitude. We calculate the contribution due to
Barrelet zeros using simple polynomial approxi-
mation and demonstrate its disagreement with the
data. We also obtain some useful conclusions -on
the relation of the zero trajectories to the slope-
parameter data. Section III deals with the new
scheme of parametrization and the derivation of
the new formula for slope parameter. In Sec. IV
we compare the results of calculation in the new
scheme with the slope-parameter data and deter-
mine zero trajectories from the data at low ener-
gies. Here we also make qualitative predictions
about zero trajectories for high energies. In
Sec. V we summarize our results and state our
conclusions and limitations of this approach

II. BARRELET ZEROS AND THE SLOPE-PARAMETER
DATA

As against the real zeros of Odorico type!® the
existence of which, in some cases, get strong
support from the Veneziano model, Barrelet!?
established the extence of complex zero trajec-
tories initiated by Gersten.!” It may be pointed
out that in his analysis Odorico’® attributes the -
presence of zeros as due to the nondiffractive
parts. To obtain zero trajectories from the dif-
ferential cross section and the polarization data,
Barrelet’s method of moment analysis'*™8 is ap-
plied to the partial angular interval a < x =cos#
<b with a weighting norm #,(x). Barrelet' em-
ploys a set of pseudopolynomials, such that

fbpl(x)P,, (), (x)dx =5, . 1)

The differential cross section in this interval is
then represented as

40 _ S5 4 p ) @)
T — p X),
aa= &b

where the moment A, is determined from the
formula

A= "2 0 eIy ) ®)

A similar polynomial expansion as (2) but with
different coefficients is also adopted for fitting
the data on Pdo/dQ

do &
Pie= Y Bt @

where P is the experimental data on polarization.
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Here N, and N, are truncation points in the series
such that A,;(B,) smoothly goes to zero when

1= N,(N,). Combining (2) and (4) a polynomial of
degree determined by max(N,,N,) in x is obtained
for the transversity corss sections,

=22 (14P). G

The roots of this polynomial in the x plane are
then determined numerically which in general
turn out.to be complex. The loci of real and im-
aginary parts of these zeros lying inside the
Lehmann-Martin ellipse for various energies
yield zero-trajectories. Barrelet'* originally
developed his method for individual experiments
that cover a finite portion of the total physical
interval in x. Barrelet also stressed that the
nearby zeros may be unambigously established
even on the basis of data which may not have been
adequate for a full amplitude analysis.'*** Since
the forward peak in diffraction scattering depends
exponentially on ¢ for any fixed energy, one does
not expect it to be represented by finite-order
polynomials.**1%:! In Barrelet’s program'® based
on moment analysis it has been recommended
that the extreme forward peak be ignored. It has
been!®:*® argued that the sharp forward peak has
no relation to the true amplitude zeros and inclu-
sion of this peak in the data analysis can only ob-
scure information residing in other angular re-
gions. Barrelet,*:15:18 however, also stressed
the possibility of a norm that assigns comparable
importance to all angular intervals. If such a
norm is used for constructing orthogonal poly-
nomials, the diffraction peak may not be an im-
pediment in obtaining informations on zeros from
the data analysis. Recently the existence of such
a norm has been shown by Chew!® for 7*p scatter-
ing at P,,, =1.77 GeV/c. But even after chosing
the norm properly, the degree of polynomial and
hence the number of complex zeros have increased
from six in Barrelet’s work to ten in the work of
Chew.'® Following Barrelet’s method of data anal-
ysis' in a partial interval in x, which explicitly
excludes the near forward and the backward peak
regions Barrelet ef al.'® have obtained two com-
plex zero trajectories for each of the transversity
cross sections in the range 2.5 <s <4.5 GeV?, as
shown in Figs. 1 and 2. These authors have also
obtained a real zero trajectory of the differential
cross section corresponding to the dip position
near the backward direction. To find out the real
zero trajectory the authors have not used moment
analysis, but adopted a local parametrization of
the differential cross section near the dip region.
Another genuine difficulty for excluding the
extreme forward and backward regions from mo-
ment analysis may be due to lack of polarization

Re4; & Ret; (GeV?)
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FIG. 1. Real parts of zero trajectories as a function
of s, The data points are from Barrelet et al. (Ref, 16)
and the solid lines are the extrapolated curves used in
the calculation. The dotted line is the physical region
boundary corresponding to the backward direction.

data in these regions. With the knowledge of the
zeros of an analytic function one can construct a
polynomial approximation for it. As stated above
if some portion of the forward peak has been ex-

- cluded from moment analysis, the simple poly-

nomial approximation constructed out of complex
zeros determined by moment analysis, may not

adequately extrapolate well into the forward peak
region. To check this we calculate the contribu-
tion to the slope-parameter data by the polynomi-
al approximations using complex zeros obtained

by Barrelet et al.'® Recently Carter'® has deter-
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FIG. 2. Imaginary parts of zero trajectories as a
function of s, The data points are from Barrelet et al,
(Ref, 16) and the solid lines are the extrapolated curves
used in the calculation. The meaning of different data
points has been clarified in Ref, 16,
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mined complex zero trajectories of differential
cross sections for several processes. At present
we will use only Barrelet-type complex zeros
which suit our purpose best.

Defining F*(s, x) to be the transversity ampli-
tudes'*'!® which are related to Z* by the relations

Z¥(s, x)=|F*(s, x)|2, (6)

and using only the complex zero trajectories® of
Ref. 16, we write

Fo(s,0) =A@ [] (=), ™
F(s,x)=B(s) [] w-x)), @)

where x;(x}), with i=1,2, are the complex zeros
of F*(F~) in the x plane whose positions are de-
pendent upon s. For simplicity we have neglected
possible phase factors which, however, do not
affect our analysis. The simple polynomial ap-
proximations given by (7) and (8) represent the
data on Z* and =~ correctly in the partial angular
interval.?® The slope of the forward peak is de-
fined as

d . do

b(s)-_—ElnE ) - 9)

Using formulas (6)-(9), the formula

%=2iq2(2* +37) (10)

and the normalization condition

. - do
z t=0=2 '”0:;1—5 (11)

t=0

leads to the following simple expression for the
slope parameter:

2. [ Ret;(s) , Reti(s)
”(S)=‘:§[ui(s)12 * w,.(s)nz] (2)
where we have used
Ret,(s)= —2¢?[1 — Rex;(s)], )
13

Imt,(s) = 2¢% Imx,(s),

and similar e:;pressions for Ret;(s) and Imt¢,(s).
In the analysis of Barrelet et al.'® there is an am-
biguity regarding the sign of the imaginary parts
of the trajectories. Formula (12) is not affected
by such ambiguity. Using zero trajectories of
Barrelet et al.'® we now calculate the right-hand
side of (12) for different values of s. Since in the
analysis of Ref. 16 zero trajectories have been
determined in a limited energy range, we use lin-
ear extrapolations of trajectories for higher and
lower energies as shown in Figs. 1 and 2. Judg-
ing from the trend of the data these extrapolations
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FIG, 3. Fit to the slope-parameter data in the range
1.33 <s <10 GeV?, Curve I shows the fit by the formula
(12), and curve II is the fit by (21) described in the text.
The dotted curve in the range 1.33 <s <1.62 GeV? is
the continuation of the curve II which has been used
to extract the real trajectory £y(s) plotted as curve

© II'in Fig, 4.

are not unrealistic. Contribution of (12) has been
plotted as curve I in Figs. 3 for different values of
s. The discrepancy of the calculated values from
the experimental data exists for all energies and
is prominent for high and low energies. Near the
bump region around s= 3 GeV? there is only a
qualitative agreement. From this result we con-
clude that the simple polynomial approximation,
using Barrelet-type complex zeros obtained from
moment analysis of cross-section data residing in
partial angular intervals, does not represent the
forward peak correctly.

Looking to the formula (12) it is easy to find out
the reason for such discrepancy at high energies.
In different diffraction scattering processes the
slope parameter at high energies is either con-
stant or increasing logarithmically with energy.?
At least the real parts of zero trajectories by
Barrelet! for n*p scattering, Barrelet et al.'® for
mp scattering are linearly decreasing functions
of s for high energies. The quantity Ret,(s)/
[t,(s)|? will decrease as s™ for large s if either
of the real and imaginary parts varies linearly
as s or both vary linearly as s. Thus linear tra-
jectories as observed experimentally can never
account for the slope-parameter data at high en-
ergies in the Barrelet type of parametrization.

Although the formula (12) fails to account for
the quantitative description of the slope-parameter
data, it is very clear from Fig. 2 that curve I has
the potentialities to reproduce the bump structure
around s=~3 GeV?, In the next section we pro-
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pose a new scheme of parametrization which
apart from exploiting such a potentiality yields a
very good description of the data for all energies.

III. CONVERGENT POLYNOMIAL EXPANSION FOR ALL
ENERGIES AND A NEW SCHEME OF PARAMETRIZATION

Since the simple polynomial approximations (7)
and (8) fail to account for the slope-parameter
data, it is natural to suppose that the functions
A and B possess additional x dependence at least
in the forward peak region. We propose to con-
struct the functions A (s, x) and B(s, x) by the the-
ory of analytic approximations specifically devel-
oped in I using Mandelstam analyticity to account
for the forward peak structure at all energies.?
Analytic properties of scattering amplitudes are
due to nature of forces responsible for scattering
of hadrons. S-matrix theory places maximum
emphasis on the nearest singularity. The ratio
of the real to the imaginary part of the forward
amplitude is known to be small at least for high
energies and the absorptive part is mainly re-
sponsible for diffraction. In the x plane the do-
main of analyticity of the absorptive part is
different from that of the real part and is decided
by the theoretical boundaries of spectral functions
computed from box diagrams. Series expansion
in orthogonal polynomials'#!® in x, given by (2)
and (4) and also the formulas (7) and (8), do not
possess the desired branch-point structures in
the x plane.

Being closer to the forward direction the right-
hand cut should have more influence over diffrac-
tion scattering than the left-hand cut. Moreover,
since the diffraction peak is observed even at low
energies a convergent polynomial expansion is
necessary for all energies. Unlike the earlier
works®? CPE in I has been developed satisfying
these criteria. The primary requirement for
the realization of CPE for all energies was found
to be the existence of at least one real zero on
the physical region in the x plane. Further the
convergence of the polynomial expansion was
shown to be faster in the case where the position
of the real zero occurs closer to the backward
direction, and the position of the left-hand cut
lies farther away than the right-hand cut. The
existence of the real zero very near the backward
direction’® not only ensures existence of CPE for
all energies in 77p scattering, but also the con-

_vergence is accelerated because of the closeness
of the position of zero to the backward direction
and the asymmetry of the cut plane of analyticity.
Thus assuming that the diffractive part of trans-
versity amplitudes possess a real zero in the
backward hemisphere in addition to possessing

the same complex zeros of Ref. 16 and following
the method of I, we approximate A and B func-
tions of (7) and (8) by CPE in terms of Laguerre
polynomials in the mapped variable z,

A(s)—~A(s, x)=exp[-z/2] Z a,(s)L,(az),

n

. (14a)

B(s)—-B(s; x)= exp[-—az/Z]Z b,(s)L,(az),
! (14b)

where
z2=g(x)z,, (15a)
gl)= [XIT::%;)T, (15b)
2, = (cosh™a0,)? , (15¢)
x.+1\/x, —x

w°:<x+—1><>x—.+x>' (15d)

Here a is any real constant which may, in gener-
al, depend upon s,x, (=x_) is the start of the
right- (left-) hand cut in the x plane related to
the elastic boundaries of spectral functions p,
(pg,) by the relations

x+:l+§§2~,
' (16)
x-:1+_tl§_'_Az—"
2q° 2¢°s
with A= (@m?-m, )%, In (16)
te=min(tp, t,p) ,
17

ty =min(t,;, 1),

where ¢;, (t,,) are the theoretical boundaries of
spectral functions pg, (p,,), computed from box
graphs.? It is evident from Eqgs. (14) and (15)
that A(s, x) and B(s, x) have a common real zero
at x=~x,(s). In the present case we are inter-
ested for scattering near forward angles. Itis
to be noted that even for lower energies and the
values of |¢| with |¢|<t,, z~t/t, andthere is an
additional -convergence of the series in (14).
Thus for small { we can write

A(s,x)~a’(s)exp(-az/2), (18a)

B(s,x)~b’(s)exp(-az/2), (18b)
where a’(s) and b’(s) are unknown functions of s.
Now using (18) in Egs. (7) and (8), using the re-

lations (6) and (10), we write in the forward-peak
region

do

@~ O] | -m)e -]

+d(s)] (x - ) (x —xé)[z] (19)

Xexp(-az),
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where d(s)=|b(s)/a’(s)|?. Using the normaliza-
tion condition (11) we determined d(s) in terms of
zero trajectories

£,(s),(s)
ti(s)ts(s)
Formulas (19), (20), and the definition (9) then
lead to the following expression for the slope
parameter in the forward direction:
16aq* ( 14 te )
telt,(s) P 42+ 1, - A/s
_ i (Ret.(s)+Retf(s) )
[£,(s)12  18(s)1?

i=1

2

d(s)= . (20)

b(s):

(21)

Formula (21) relates the slope parameter to the
real and complex zero trajectories and the
boundaries of spectral functions. First term in
(21) was used in I to give a unified description of
the slope parameters for pp, pp, K*p, and mp
scattering with the knowledge!® or certain assump-
tions on the real trajectory ¢,(s), and using theo-
retical or effective boundaries of spectral func-
tions wherever necessary. The real zero trajec-
tory enters into the expression (21) along with
the cut contribution because of the minimal re-
quirement for the existence of CPE for all ener-
gies. We will see in the next section that formu-
la (21) agrees very well with the data at lower,
intermediate, and high energies with only one
parameter.

IV. ZERO TRAJECTORIES AND THE SLOPE-PARAMETER
DATA

A. Comparison with the data

Using experimental information on zero trajec-
tories in the energy range 2.5 <s <4.5 GeV? and
their linear but realistic extrapolations for higher
and lower energies as shown in Figs. 1 and 2, we
tried to examine how far the formula (21) can fit
the data for all energies. For the best fit we
found @ =0.35. The fit has been denoted by curve
II in Fig. 3. Except for some disagreement for
$<1.44 GeV?, a plausible explanation for which
will be suggested later in this section, it is very
clear that curve II gives a very good fit for low,
intermediate, and high energies. For the linear-
ly increasing and decreasing trajectories, the
contribution of the second term in (21) will be
zero for very high energies. If the real trajec-
tory t,(s) is a fixed-u-type zero lying nearer to
the backward direction, the first term in (21) will
be a constant for s —«,

It is very important from the point of view of
S-matrix theory and Mandelstam analyticity that
for the best fit we have used only the theoretical

boundaries of spectral functions. Use of as many
as four free parameters in the formula of I and
an effective shape of spectral function boundary
for /;, retreating away from the nearest bound-
ary allowed by the S-matrix theory, could des-
cribe only an average of the data. Also the sim-
ple polynomial approximation of Barrelet type,
using information on zeros determined experi-
mentally, could not yield even a qualitative de-
scription of the slope-parameter data for all
energies, although a qualitative description of

the data only near the bump region was obtained.
In the present case, however, use of only one
free parameter, theoretical elastic boundary,
experimentally determined real and complex

zero trajectories, and quite realistic extrapola-
tions of them for higher and lower energies has
yielded a spectacular description of the data.
Such a good fit has emerged because of our as-
sumption that diffractive parts of amplitudes poss-
ess the same zeros as the nondiffractive part, in-
cluding the real zero close to the backward direc-
tion. The first term in (21) becomes a constant
as s —, But actually the slope-parameter data
show a Ins type of increase for large values of s.
It is possible to account for this type of logarith-
mic increase by considering energy dependence
of @. An analytic approximation for & by means
of a convergent polynomial expansion is possible
by means of a conformal mapping which uses
Mandelstam analyticity of the s plane. This
type of parametrization has been used to estimate
asymptotic behavior of slope parameters and sug-
gest new scaling variables for diffraction scatter-
ing.’*+!2 The same type of analysis'? to take into
account energy dependence of o can be repeated
here. It turns out that,'? in place of «, there is

a function of s involving two unknown parameters
which account for the high-energy behavior beau-
tifully well.

One objection against our fit may be that the
zero trajectories have not been determined from
theory, but taken from the analysis of the differ-
ential cross section and polarization data. Even
then, in addition to many other good qualities
mentioned earlier and subsequently, we empha-
size the following merits of the present analysis:

(1) Our analysis suggests a new form of para-
metrization which can include the forward peak
to get useful information regarding true zeros of
the amplitude, whereas in Barrelet’s method the
forward peak was thought to be an impediment in
getting information on zeros. This point has been
further clarified later in this section while deter-
m'ining the zero trajectory and making predictions
about zero trajectories from the slope-paranieter
data.

(2) We have given an explanation of the observed
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behavior of the slope-parameter data in terms of
theoretically known elastic boundaries of spectral
functions and the zero trajectories, such that un-
derstanding the dynamics of diffraction scattering
reduces to understanding zero trajectories. At
present a dynamical explanation of some of the
real zero trajectories exist in the Veneziano
model.'® Although no consistent dynamical theory
for the origin of complex zero trajectories has
emerged yet; we hope some may emerge in near
future.

B. Zero trajectory from the slope-parameter data

One bad feature of the fit given by curve II in
Fig. 3 is that at lower energies there is an infin-
ity at s 1.41 GeV?, a feature not wanted by the
experimental data. At low energy the first term
in formula (21) is very much sensitive to the real
trajectory #,(s) and completely dominates the total
contribution to the slope parameter. In this en-
ergy region our results of calculation are not
sensitive to small variations of complex trajec-
tories occurring in the second term in (21). The
infinity arises at s=1.41 GeV? because our linear
extrapolation of the data on #,(s) crosses the s
axis at this point.

‘Now we ask the following question: Can the
slope~parameter data determine at least the tra-
jectory fy(s) at low energies? To answer such a
question we fix the value of o at 0.35 which has
been determined from fit to the data at all other
energies. Since as it has been emphasized in I
the CPE holds at all energies, we now use the
formula (21) to determine the trajectory ¢,(s) at
low energies. At present the only possible reason
for disagreement with the data at low energies
appears to lie in a suitable extrapolation of #,(s)
in this region. It is quite probable that our ex-
trapolated trajectories at low energies may not
be good approximations to the actual trajectories.
Since at low energy our formula is not affected
by small variations of complex trajectories, but
very much affected by such variations in the real
trajectory £,(s), we take the complex trajectories
to be the same as shown in Fig. 1 and vary the
trajectory {,(s) for s <1.62 GeV? until full agree-
ment with the slope-parameter data in this energy
region is obtained. The best-fit curve used to ob-
tain /,(s) in this manner has been shown by the
dotted line in Fig. 3 for 1.33 <s<1.62 GeV2. The
zero trajectory ¢,(s) determined from the best fit
to the slope-parameter data in this energy region
has been shown by curve II in Fig. 4. Curve I
in Fig. 4 is the linear extrapolation of {,(s) as
given in Fig. 1. The dotted curve in Fig. 4 shows
the boundary corresponding to the backward di-
rection Ret=-4¢®>. We see from this figure that
the real zero trajectory obtained from the slope-

\
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FIG. 4. Real zero trajectory t, as a function of s.
Curve I is the linear extrapolation from the data., Curve
IT has been computed using the dotted-line fit to the
slope-parameter data for 1.33 <s <1.62 GeV? as shown
in Fig. 3. The dotted line is the physical-region bound-
ary corresponding to the backward direction.

parameter data bends from the linear extrapola-
tion and towards the backward direction at first
gradually and then rapidly as the energy approach-
es the threshold values. Because of the lack of
experimental data on the slope parameter close

to the threshold energy, the zero trajectory /,(s)
could not be continued to the threshold. As de-
scribed here our method of parametrization has
determined the real zero trajectory f,(s) from

the slope-parameter data for the first time for

m°p scattering. The existence of such trajector-
ies can be verified by other means by following
the method of Barrelet'* or by others.'® In

view of the rapidly growing interest in the phenom-
ena of zeros,'®*™® determination of zero trajec-
tory by such a simple scheme of parametrization
is important.

C. Some qualitative predictions about zero trajectories from the
high-energy data

Looking to the pattern of the slope-parameter
data at high energies and the manner in which
the trajectories have contributed to account for
the data at other energies, it is now possible to
make some qualitative predictions about zero
trajectories. To make such predictions let us
examine how the bump structure around s= 3 GeV?
could be explained. Experimentally observed
complex trajectories ¢, and {; which emerge rough-
ly at s=1.75 GeV? continue to have the magnitudes
of their real parts small even at s=2.75 GeV?
around which there exist critical points reducing
the imaginary parts close to zero. The contribu-
tion to the second term in (21) due to a complex
trajectory, which has the form —Ret,(s)/|t,|?, is
more the closer Re!; is'to zero, provided that
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|Imt;|<|Ret,;|. Such a condition is seen to be
fulfilled by the trajectories ¢, and ¢] near s=3
GeV? and to some extent by the trajectory ¢}
which give rise to the bump structure. It may be
noted that whereas a qualitative fit to the bump is
obtained by the second term containing complex
trajectories, the rest of the data is well fitted by
the first term in formula (21) around the bump
region. Thus in the presence of the first term
in formula (21), a bump in the slope-parameter
data arises when |Ret;|<<1 and |Im¢,|<<|Ret,|. It
is to be noted that Ref; is to be negative for a sub-
stantial contribution.

From the experimental data plotted in Fig. 3
and also by Lassinski et al.,? it is very clear that
there is a bump around s=5.2 GeV%. Such a bump
structure could not be accounted for by the pres-
ent formula which contains continuously and lin-
early rising or falling zero trajectories. Using
our observation mentioned above, the bump struc-

ture can be explained by the present parametriza-

tion only in the following ways: (a) Since we have
-Ret, and —Ret'=0.6 GeV?, the bump can arise if
Im¢, and Im¢] possess critical points for s=~5.2
GeVZ2. In that case these imaginary parts will
not be linear as shown in Fig. 1. However, such
deviations of the imaginary parts from linearity
will not cause substantial changes to the fit at
other energies except around the desired region
near s=5.2 GeV2. (b) With or without condition
(a) being fulfilled, the bump can also be explained
if new trajectories emerge near s=5.2 GeV?® with
very small but negative real parts and very small
imaginary parts. The same structure will be
observed if the trajectories emerge earlier, but
the new trajectories continue to have their real
and imaginary parts small with |Imt,|<|Ret,|.
This will give rise to critical points in the new
trajectories around s=5.2 GeV?,

Thus from the observed bump strueture around
s~5.2 GeV?, our analysis predicts the existence
of critical points in the trajectories ¢, and ¢;. If
these trajectories do not possess such critical
points, but their imaginary parts continuously
rise as shown in Fig. 2, new trajectories must
emerge around s=5.2 GeV? with small but nega-
tive real parts. Critical points in the imaginary
parts of at least some of these new trajectories
must occur very near s=5.2 GeV?, At present
zero trajectories for such higher energies have
not been determined.

There is a remarkable enhancement of the
slope-parameter data of Foley et al.?! at still
higher energies for 20< s <50 GeV2, These data
have been used along with others for higher and
lower energies for data fitting taking into account
Mandelstam analyticity in both s and cosf planes.'?
It has been found'? that the data of Foley et al.?*

deviate remarkably from the best-fit curve which
fits all other data at higher and lower energies.
Such a conclusion regarding a remarkable dis-
crepancy of these data from what would be ex-
pected of a smooth extrapolation of the remaining
data at lower energies has also been obtained by

'Hohler and Staudenmaier,?? Krubasik,?® and Ambats

et al.?* No explanation has been furnished yet
about the possible cause of such discrepancy.
Continuing our argument we predict that new zero
trajectories emerge, and the imaginary parts of
at least some of the new trajectories possess
critical points in this energy range. Such qualita-
tive predictions as described here around s = 5.2
GeV? and in the range 20 < s <50 GeV? can be ver-
ified by using Barrelet’s moment analysis'? or fol-
lowing the method of Carter.?® In view of the
rapidly growing interest in the phenomena of zeros,
these qualitative predictions from such a simple
scheme of parametrization is nevertheless im-
portant,

V. SUMMARY, CONCLUSION, AND LIMITATIONS

Prior to this work and paper I there did not
exist even a qualitative explanation of the shrink-
age-antishrinkage pattern of the forward peak as
a function of s. The only work (Barger and
Cline'*) which attempts to understand the energy
dependence of the slope parameter for 7*p scatter-
ing in the region of oscillation has been strongly
criticized by Weare.® The range of applicability
of the model*-® is ‘much higher than the energy
range where the oscillatory pattern of the data
exists. On the other hand, along with providing
a unified description of the slope-parameter data
for several diffractive processes, the CPE of
paper I could reproduce an average of the data
for m*p scattering for all energies. But this was
possible for 7°p scattering only after using four
free parameters one of which yields an effective
boundary of spectral function p,, retreating away
from the theoretical elastic boundary, a feature
objectionable from the point of view of S-matrix
theory. In spite of this basic flaw the CPE of I
was the only one in the literature which provided
a good account for the slope-parameter data for
different processes. The basic requirement for
the realization of CPE for all energies has been
shown to be the existence of one real zero in the
physical region of the x plane. Recent analysis
of the data on the transversity cross section and
differential cross section by Barrelet et al.'®
shows that there exist, in addition to such real
zeros of the differential cross section, complex
zeros of transversity cross sections. In the pres-
ent paper we attempt to understand shrinkage-
antishrinkage of forward peak for n°p scattering
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in terms of real and complex zero trajectories
such that the problem of understanding diffraction
scattering reduces to the problem of understanding
the origin of zero trajectories. In the method of
moment analysis proposed by Barrelet' and used
by Barrelet ef al.'® to obtain zero trajectories
from data analysis, only transversity-cross-
section data in a partial angular interval are used
excluding the sharp-forward-peak region. It has
been remarked that the inclusion of the forward
peak may be an impediment in getting information
on true zeros by moment analysis.!*15:1% This
leads to the suggestion that the forward peak may
not be associated with true zeros of the ampli-
tude.'*+15:1% One may also argue that the variation
of the forward-peak slope may reflect, fully or in
part, changes in the angular dependence which in
turn are determined by zeros. If zeros of an ana-
lytic function are known, one can construct the
function easily.

To verify how far the simple polynomial approx-
imation obtained from the experimental informa-
tion on complex zeros of the Barrelet type ac-
counts for the energy dependence of slope-param-
eter data, we have first calculated its contribu-
tion for all energy ranges. It is found that there
is not even a qualitative explanation at low and
high energies, although there is a qualitative
description of the slope-parameter data only
around the bump region. It is noted that in the
Barrelet-type parametrization, zero trajectories
with linearly increasing or decreasing real and/or
imaginary parts, which happens to be the observed
trend, can never account for the slope-parameter
data at high energies. Also the slope parameter
is not affected by sign ambiguity.

Using CPE of I we propose a new scheme of
parametrization assuming that the amplitudes near
forward angles possess the same real and com-
plex zeros as obtained by Barrelet ef al.’® In Ref.
7 the slope parameter was related to boundaries
of spectral function. In paper I it was related to
boundaries of the spectral function and the real
zero trajectory. The new scheme of parametri-
zation proposed here leads to a formula which re-
lates the slope parameter to the boundaries of
spectral functions and real and complex zero tra-
jectories. Using the data on zero trajectories by
Barrelet et al.'® in a limited energy range and
their linear but realistic extrapolations for higher
and lower energies, an excellent description of
the slope-parameter data is obtained for all ener-
gies, except for s<1.44 GeV? with one free pa-
rameter and a theoretical elastic boundary of
spectral function. Thus the objectionable feature
existing in earlier analyses? is removed. Further
since the CPE has been specifically? developed for
all energies, no such criticisms as raised by

Weare® apply to the present analysis. The loga-
rithmic increase observed at very high energy
can be accounted using Mandelstam analyticity as
it has been done in Ref. 12.

The formula is found to be very sensitive to
small variations of the real zero trajectory from
its linear extrapolation, but unaffected by such
variations in the complex trajectories. Thus a
possible reason for disagreement at low energy
has been attributed to be due to deviation of our
linearly extrapolated real trajectory from actual
trajectory. Using the available slope-parameter
data for 1.33<s<1.62 GeV? we have computed
the real trajectory in this energy region. The
computed trajectory deviates from the extrapo-
lated trajectory and approaches the backward
direction at first slowly and then rapidly, as en-
ergy decreases and approaches threshold.

From the observed bump structure in the data
near s=5.2 GeV? we also make some qualitative
predictions about zero trajectories. We predict
that the imaginary parts of two zero trajectories
t, and /] possess critical points around s> 5.2
GeV? and/or new trajectories with small real and
imaginary parts exist around this region. Simi-
larly from the data of Foley ef al.?! we predict
further new trajectories with small real and imag-
inary parts to exist in the range 20 <'s <50 GeV?2.
At present this appears to be the only explanation
for the unusually high values of the experimental
data.

Determination of a real zero trajectory using
the slope-parameter data for low energies and
such qualitative predictions about complex tra-
jectories as described here are important in view
of the rapidly growing interest on the phenomena
of zeros.®™® Such predictions can be verified
following other methods adopted for analysing the
transversity-cross-section data’®'® and the data
on differential cross sections.'® Contrary to the
conventional view'3:!5 that dips and zeros are
associated only with the nondiffractive part and
inclusion of the forward peak spoils information
on zeros, our analysis strongly suggests that the
diffractive part possesses all the observed zeros
occurring away from the forward peak region.
Barrelet’s method has been used to determine
complex zeros'*™% from the data on transversity
cross sections. Recently Carter!® has determined
zero trajectories using differential cross-section
data. The present analysis shows how to obtain
real zero trajectory in a limited energy region at
low energy using slope-parameter data.

In the future if a dynamical understanding of the
existing zero trajectories emerges, the present
paper will help us in understanding the diffraction
scattering at least for 77p scattering. The
boundaries of spectral functions have been
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fully understood in terms of box diagrams. Out
of the existing complex and real zero trajectories,
the Veneziano model provides some dynamical
explanations only for real zero.trajectories in
some cases.'® In view of the increasing interest
in the phenomena of zeros,'®*™® we hope some dy-
namical explanation of all the zero trajectories
may emerge in near future.

Before concluding, we must point out certain
limitations of the present scheme of parametriza-
tion. Following Barrelet,'* we have assumed the
functions A(s, x) and B(s, x) to possess the same
analytic structures as the invariant amplitudes and
complex and real zeros as observed experimen-
tally. But it is well known that helicity amplitudes
possess additional zeros and singularities of kine-
matical origin. In the present work no method has
been prescribed to subtract such possible kine-
matical effects. We have also assumed the dom-
inance of the absorptive part for the contribution of
transversity amplitudes near forward angles and
neglected possible contributions due to poles which
may play a significant role at low energy. Our in-
corporation of the real zero at x=-x,(s) through
the function g(x) is not unique; a functional form
g(x)=[(c +x)/(x +x,)]? would serve the purpose
equally well with ¢ different from unity. This
modification, however, can be shown'? to result
in a readjustment of the constant in the forward
direction, and hence does not introduce more pa-

rameters into the theory. The mapping function z
has been shown? to introduce a spurious cut

in the mapped plane completely overlapping

the physical region. This cut does not affect ana-
lyticity property? since the function z possesses
only those singularities allowed by dynamics. In
the work of Ciulli'® and Barrelet!* results on the
convergence of polynomial expansion in mapped
planes have been taken to hold in the presence of
“artificial” cuts which completely overlap the im-
ages of the physical region. Such conformal map-
pings explicitly affect analyticity property intro-
ducing branch points at unwanted points. Although
the effects of such branch points are removed by
Ciulli'® using a suitable combination of the mapped
variables for expansion, they exist in the polyno-
mial expansion of Barrelet.'* In Barrelet’s work
the transversity amplitudes have been taken to be
analytic in the upper- and lower-half planes, sep-
arately. In the present case we suppose that the
spurious cut introduced by z will not affect con-
vergence of representations®:'? proposed here so
long as the cut is confined onto the physical region
in the mapped plane.
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