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Quantum-chromodynamic effects in polarized electroproduction
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The quantum-chromodynamics (QCD) higher-order effects (next to the leading order in the running
coupling constant) are calculated for the moments of structure functions in polarized deep-inelastic
electroproduction. The QCD correction to the Bjorken sum rule is obtained and compared with the existing
data.

In quantum chromodynamics (QCD) the theoreti-
cal formulation of deep-inelastic lepton-hadron
scatterings is well established in the framework
of operator-product expansions and the renorma-
lization-. group equations. ' The moments of struc-
ture functions are related to the coefficients of
the lowest-twist operators appearing in thee light-
cone expansion of the product of currents. The
Q' dependence of these coefficient functions is
governed by the renormalization-group equations.

The coefficient functions in unpolar iz ed electro-
production in the leading order of the running
coupling constant g is well known. ' The g' cor-
rections beyond the leading order were calculated
by several authors. ' ' Recently, the calculations
of the full g' corrections including the two-loop
anomalous dimensions have been carried out. ' "
Similar calculations in the case of polarized
electroproduction are straightforward. In fact
the coefficient functions in the leading order have
already been calculated. " " The g' correction
to the leading order, however, has been totally
unknown in polarized electroproduction. In this
paper we shall present the results of our calcula-
tions for this g' correction.

The polarized electroproduction is described
by two structure functions" "6, and G, in ad-
dition to the ordinary unpolarized structure func-
tions W, and W, . In the following it is more con-
venient to use g, and g, which are defined" by

g, =Mp ~ qG, and g, = (p q)'G, /M, where p and M
are the momentum and mass of the target particle
and q is the momentum of the virtual photon with
Q' = —q'. The moments of g, (x, Q') and g, (x, Q')
with x = Q'/2p q satisfy the relations

J
1

x" 'g, (x, Q') =a„C,„(Q'/p', g),
0

J
1
dxx" 'g2(x, Q ) = —[(n —I)/n]a„C, „(Q2/g2, g)

0

—ld.C,.(Q'/t ', g),
where p is the scale pa,rameter, g is the QCD
coupling (renormalized), a„and d„are the nucleon
matr ix elements of composite operator s,"'"and

Cy and C,„are the coefficient functions in the
light-cone expansion of the product of electro-
magnetic currents. " We consider, for simplicity,
only the nonsinglet combination of the structure
functions where no operator mixing takes place.
The extension to the case of singlet combinations
is straightforward.

The functions C&„(i= 1, 2) are given by solving
the renormalization-group equations

I t

C,„(Q'/g', g) = C;„(I,g) exp — r;„(g (t', g))dt'
I 0

where t =-,'In(Q'/p') and g is the effective coupling
constant with g (t=0, g) =g, and r;„ the anomalous
dimensions of the relevant quark composite op-
erators. For later convenience, we expand here
r;„(g) and C&„(l,g) in powers of g:

r;.(g) = r&.g'+ rl.g'+o(g'),
C,.„(l,g) =1+c,.„g2+O(g4) .

We have performed calculations of c;„(i= 1, 2)
both in the conventional renormalization method
with momentum cutoff' and in the minimal-sub-
traction scheme of 't Hooft using dimensional
regularization. ' In the former, since we work
with zero-mass quarks, the subtraction has been
made at off-mass-shell points corresponding to
off-shell momentum of external lines. " In the
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latter, we calculate the current correlation func-
tion of quarks through the order g [Fig. 1(a)],
subtract from it the operator matrix element
[Fig. 1(b)], and obtain c;„. Here we present our

results obtained by the latter scheme of the mini-
mal subtraction in the dimensional regularization.

The results for c;„(i=1, 2) are" "

—9+—+ + —,+3 —. —4G,(R) 1. 2 2 1 1 2 1 1 1P —.+4+ —Q —. (n=1, 3, . . .),16II n n+ 1 n, =I j I=I j II(II+ 1) (6)

C,(Jt) n 1 4
Ca = ~in+ 2 5+ —2~ —.+216, n 1 n n 1 n

(7)

where C,(A) = —,'for SU(3) color.
In calculating c,„and c,„we also obtain one-loop

anomalous dimensions for nonsinglet operators.
Corresponding to two independent operators Ay
and R„defined in Ref. 11, we find"

e (R) 2 1
(8)nn+ ~ 22

n

n-1, , ~

where n in the above Eqs. (8) and (9) corresponds
to n+1 and n+2 in Eqs. (2.18) and (2.23) of Ref. 11,
respectively. %ith this substitution our result
Eq. (8) agrees with those of Refs. 11, 12, and
13 21

It can be shown that the anomalous dimension

y „ I elevant to QI„(Q / p, g) 1s of tile saIIle forII1 as
that of the nonsinglet operator in the unpolarized
case. This statement, in fact, can be seen to be
valid for the one-loop anomalous dimension py„
in Eq. (8). For. the two-loop anomalous dimension
y',„we may use the results for the nonsinglet op-
erator in unpolarized leptoproductions which were
already obtained in Ref. 8. Thus by combining
their results for y',„with Eq. (6) we can immed-
iately carry out a phenomenological analysis of
polarized electroproduction. The statistics of
existing data on polarized electroproduction are
not yet high enough to allow for the moment analy-
sis of structure functions and we do not pursue
any further in this direction.

The moment sum rules (1) and (2) for the case of
n= 1 deserve particular attention. Equation (2)
for n = 1 reduces to the Burkhardt-Cottingham
sum rule, "and it has been shown that there is no
g' correction. " The sum rule (1) with n= 1 is
especially interesting. y,„must vanish for n = 1
since it is the anomalous dimension of the axial-
vector current. Setting n=1 in Eqs. (1), (3), and
(6) we obtain the g' correction to the Bjorken sum
rule'4

P . 1G~
1 g (10)

where g'/411 = 12/[(33 —2f)in@2/A ] with f the num-
ber of flavors. In terms of the quantities A,&,
which may be more familiar to experimentalists, "
Eq (10) can .be rewritten as

(b)

FIG. 1. Diagrams contributing in order g2 to (a) the
current correlation function of quarks and (b} the opera-
tor matrix element. The wavy line denotes the virtual
photon and the dashed line the gluon.

Assuming four flavors (f=4), we plot in Fig. 2
our prediction based on Eq. (11) with G„/3Gv
= 0.417 (Ref. 24) for A = 0.5 and 0.7 GeV as a func-
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tion of Q'. We see that the g' correction to the
Bjorken sum rule is quite large in the wide range
of Q'. 25 The data point shown in Fig. 2 is the only

FIG. 2. Comparison of the g correction to the Bjorken
sum rule Eq. (11) with the experimental data from Ref.
23. The solid (dashed) line corresponds to our predic-
tion with A= 0.5 GeV (0.7 GeU).

existing experimental value measured at SLAC."
Our prediction is consistent with the data. Here
one should note that in obtaining this experimental
value, A", was assumed to be zero and an extra-
polation of the data to the low-x region was made. "
We expect that future measurements of both A~

and A", for a wider range of x at several points
of Q' may serve as a clean test of QCD.

Finally we wish to make a remark on Crewther's
relation" in which the factor K appearing on the
right-hand side of the Bjorken sum rule and the 8
ratio in e'e annihilations are related to the
Adler's anomalous constant S. We find that the
QCD correction to K is compensated by that to
Jt (Ref. 27), resulting in S being free from the
QCD correction. "
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