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Renormalization of an SU(n) linear o. model in the one-loop approximation for n ) 4
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A linear SU(n) cr model with spin-zero mesons is demonstrated to be renormalizable in the one-loop

approximation for n & 4. The mesons are assigned to the (n, n*) e(n*, n) representation of SU(n) X SU(n).
The model incorporates both Nambu-Goldstone symmetry breaking and explicit symmetry-breaking terms
linear in the fields. The counterterms are evaluated. As an additional four-point coupling is available in the

SU(4) case, the SU(4) model is considered separately. A number of useful relations among the SU(n) f and

d tensors are presented.

I. INTRODUCTION

The 0 model has been actively studied for almost
twenty years. ' This sustained interest originates
primarily from its ability to incorporate a large
number of general theoretical ideas and its diver-
sity of linear and nonlinear forms. As a result
it has proved to be a useful laboratory for both
theoretical and phenomenological investigations.

For many years the phenomenological studies
employing this model used it only in the tree ap-
proximation, in an effective Lagrangian approach.
In the tree approximation the model can reproduce
most of the results of current algebra and partial
conservation of axial-vector current (PCAC). '
The vector and axial-vector currents in the model
obey an SU(n) x SU(n) current algebra. The cur-
rent divergences can be constructed to be pro-
portional to the fields. More recently, renormal-
izable models have been considered and the cal-
culations have been carried out in the one-loop
approximation. Numerical work with the linear
SU(2) (Refs. 4 and 5) and SU(3) (Ref. 6) models in
the one-loop approximation indicates that the sec-
ond-order corrections are relatively small (10-
15/p) and that the resulting spin-zero mass spec-
trum agrees quite well with experiments.

With the discovery of the fourth quark flavor'
(charm) and the likelihood of additional flavors, '
it is interesting to generalize the linear 0 model
to include these cases. In this paper we consider
the linear SU(n) v model with n) 4 containing
spin-zero mesons. The model incorporates both
Nambu-Goldstone' and explicit linear symmetry
breaking. We undertake an explicit renormaliza-
tion in the one-loop approximation and isolate the
required counterterms. This will enable numer-
ical work at the one-loop level.

Lee&0 and Symanzikii have independently shown
that the SU(2) 0 model with linear symmetry
breaking is renormalizable and that only the
counterterms of the symmetric Lagrangian ac-
quire divergent parts. Crater" investigated the

SU(3) model with spontaneous symmetry breaking
in the one-loop approximation. Chan and Hay-
maker" considered the SU(3) model with the addi-
tion of linear explicit symmetry-breaking terms
in the one-loop approximation. Our approach
parallels that of the latter authors.

In See. II we outline the general structure of
a linear SU(n) o model containing spin-zero me-
sons and incorporating symmetry-breaking terms
that are linear in the fields. The renormalization
of the model with n) 4 in the one-loop approxima-
tion is considered in Sec. III. The renormaliza-
tion procedure in the special SU(4) case is sum-
marized in Sec. IV. Our conclusions are pre-
sented in Sec. V. A number of useful identities
for the f,,, and d, , , tensors of SU(n) are given in
the Appendix.

[F,, MII = 2(X~),p/~, (2.2)

(2.3}

[f —

„M,'] =- -,'(~')„M; (2.4)

with E' and F the generators of SU(n} x SU(n)
which act on the left- and right-hand spaces, re-
spectively. These generators are related to I
and I', the vector and axial-vector charges, re-
spectively, via

E'= —,'(E+F') . (2.5)

The field operators also obey the Hermiticity

II. THE SU(n) LINEAR o MODEL

The SU(n) a model is constructed from the basic
fields M-; and M; (a, b =1, . . . , n), where the upper
(lower) index denotes the n (n*) representation
of SU(n) and the unbarred (barred) indices denote
the left- (right-) hand space of chiral SU(n) x SU(n).
These operators obey the linear equal-time com-
mutation relations
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relation

(M', )r =M; (2.6} and

[F',, pj]=idrjkok (2.19)

and transform under parity as

PM-(x, t)P =Mk(-x, t) . (2.7)

These operators of mixed parity can therefore be
decomposed as

[Fr, oj]=-id, (2.20)

We now restrict our discussion to the case n &4.
The bare, chiral-invariant, Lagrangian density is
then

M~ = Z~+ze»a e a (2.8) 2, = —,
' Tr(B,MO'M') ——,

'
p, 'I, +f,I,'+fp, . (2.21)

and

M'=Z'- zc'
a a a& (2.9)

where Z,' and l~ denote multiplets of scalar and
pseudoscalar fields, respectively. For matrix
notation we identify

Mg=M (2.10)

M~ =M~~. (2.11}

I, = Tr(MMr),

I, = [Tr(MMr. )]

(2.12)

(2.13)

Thus the n x n matrices M and M ~ belong to the
(n, n*} and (n*, n) representations of SU(n) x SU(n),
respectively.

The number of even-parity, chiral-invariant,
renormalizable operators that can be constructed
from M and Mt depends on n. For n)4, the only
such invariants are

We assume that the symmetry-breaking Lagran-
gian density transforms as the (n, n*) 6 (n*,n)
representation. The simplest form available is
then

Zs~ =- E)0], (2.22}

+'Frjkr«rOjOkOr+ &;&j&k&r)

+ 2F
rj,kroroj'4& r

—~ ror ~

where

(2.23)

EUkl ~ i"Ual » 2 Uk»
+js T3

rjskr ~& rj kr 2J. & rjkr ~

(2.24)

(2.25)

where E& is nonvanishing only for I= Y=0 operat-
ors.

Employing the SU(n) identities given in the
Appendix, the bare Lagrangian can be rewritten
in the n'-component notation as

&= 28„&rrj"or+ ktj, rt'r~" 0'r 2ir'(-&r&r+ Arrl r)

I2= Tr(MMrMMr) . (2.14)

A'l $k pl

+ijkr r jd~r+ rk d~r+drr d jk r

(2.26)

(2.2V)

These couplings are invariant. under U(n) x U(n).
In the SU(3) and SU(4) cases the additional re-
normalizable coupling

I, = detM+ detM~ (2.15)

can be used. In these cases it is an n-point coup-
ling and is invariant only under SU(n) x SU(n).

The chiral invariants can be rewritten in n -com-
ponent notation using the reduction

RIld

ijkr Ijm mkr frkmf mjr fr t mfm jk (2.28)

To permit a Nambu-Goldstone symmetry real-
ization we define the vacuum expectation value of
the scalar fields. using

(2.29)

A new scalar field with vanishing vacuum expec-
tation value is then defined as

M = Xr(or+iPr), (2.16) Sr=«- &» ~ (2.30)

[Fr &j]=if jk&k ('=' "
[F„oj]=ifrjkok,

(2.1'I)

(2.18)

where Pr and o, are the n'-piete (lan' —1) of
Hermitian pseudoscalar and scalar fields, re-
spectively. Latin indices will be summed from
0 to n' —1 unless otherwise noted. The o, and pr
fields transform as the (n, n*) EB(n*,n) representa-
tion of SU(n) x SU(n) and have the linear commuta-
tion relations'4

Owing to the difficulties inherent in this transla-
tion, we do not normal-order the translated Lag-
rangian. "

The Lagrangian after translation can be written
as

g —ke Sra S, +, S )ra p. —22n S.Sj —w
+ 3Fr jk, (SrSjSkS, + QrQj&trk&f)r)+ 2Fr j kr SrSjpkpr

+ G'r jkS rSjSk —3G
r j kQ rP jSk —E rSr (2.31}
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where
2

V i iJ' idkl ~k~l &

0 ~ fi igikl~k~t &

G'os= ~E~;&i&i

4G;,~=- ~E;;,~r4

E ='+I"& -~E ~ziti&. &i ~

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

5E=E(5f, ~ 5f2) ~

5I = E(5f„5f,),
5R~~="'ua(5A 5f2)+4I' ;g'ai5&&

5GO~& G~& z(5fxi 5f2) yEU at5tt &

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

Perturbation theory is defined as an expansion
in the powers of X defined via 5E, =Z,.(5„',5f„5f„5e)+m',,5$, (2.46)

g(IVI, &) =—,Z(&M) . (2.37)

This is effectively an expansion in the number of
closed loops. The variable & is used only for pow-
er counting and is set equal to unity at the end of
the calculation. This expansion preserves the
symmetry of the Lagrangian order by order. "

As the final step in the restructuring of the Lag-
rangian, we introduce the X factors andthe second-
order counterterms giving

2=29 S,B~S)+ 28 Q,.s~p ——'(m'+X'5m')' S S

—~(m2+ X 5m') ~q(f&, Q)

+ —'X (E+ X 5E),,„,(S,.S,.S S, + &f), P, Q„(f&,). .

+ 2X (E+ X 5E),, q, S(S,

+ X(G + X'5G)', ,„S,S,S~ 3X(G +—&'5G) ~q „Q,Q,S, . .

We conclude the general case by stating the cur-
rents and their divergences. After translation
the vector and axial-vector currents are

V" = ' f„,,(S,B—S, +&]),..9 "Q,..) +f,, $,.& S,. (2.47)

~~=de;;& S -dc~&"» (2.48)

respectively. Employing the Gell-Mann divergence
relation" one finds

(2.49)

(2.50)
'I

The SU(4) case requires some special considera-
tion as the additional I, four-point coupling is al-
lowed. The bare, symmetric Lagrangian is

——(E+ X'5E))S), (2.38) ,'Tr(B,MB'—M')—,' p'I, +f I,'—+f.,I, +gI, .

(2.51)
where the second-order counterterms are denoted
by the &. These counterterms can be separated
into divergent (D) and finite (b) components, i.e. ,

(2.39)

Naturally this separation is arbitrary; however,
~

I

the finite parts of the divergent Feynman integrals
encountered in the theory can be chosen in a nat-
ural way. Once this is done the a terms are well
defined. The divergent parts of the counterterms
are used to cancel the divergent parts of the in-
tegrals. All physical quantities are then finite.
This renormalization procedure is considered in
detail in the one-loop approximation in Sec. III.

In the definitions of the masses and coupling
constants of the translated Lagrangian, all basic
Lagrangian constants appeared linearly, except
the $,. To ensure that the symmetry of the Lag-
rangian is maintained, only terms to a given order
of X can be retained in the counterterms. Con-
sequently, to second order, the counterterms of
Eq. (2.38) are related to the basic Lagrangian con-
stants by

As 2» is unchanged, the only major effect of I,
is to modify the F and F couplings. In this case

E J~i
= ~ l uai+ (f + 'II) ~"~~

+ '(f. —m)J';;~(- (2.52)

1 1
EU, at

= 2&~&gai+A o pi+ f u2a2&

—-'«~l;ai —&,ai»
where

A )) 8 6 0 ~)0 ~~&)0

—2(5,,5,,5»+5 symmetric terms)

+ M(5 zd», + 3 symmetric terms) .

(2.53)

(2.54)

The remainder of the analysis parallels that given
for the general case. Equations (2.49) and (2.50)
are valid only for i @0 in the SU(4) model. The
renormalization in the one-loop approximation for
this case is considered briefly in Sec. IV.
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D), =De,. = 0.. (3.1)

At the conclusion it is clear that Dp, 2, Df» and

Df, are, in fact, sufficient to cancel all second-
order divergences. The Feynman rules for the
Lagrangian of Eq. (2.38) are given in Fig. 1.

—)E)

III. ONE-LOOP RENORMALIZATION FOR THE GENERAL
CASE

In this section we demonstrate that the linear
SU(n) [n )4] v model is renormalizahie in the one-
loop approximation. As indicated above, we in-
corporate both Nambu- Goldstone symmetry break-
ing and explicit symmetry-breaking terms linear
in the fields and transforming according to the
(n, n") 6 (n*,n) representation of SU(n) xSU(n). It
is shown that all the divergences can be canceled
by employing only the counterterms of the sym-
metric Lagrangian. These divergent counterterms
are evaluated.

Consequently, in this demonstration we assume
that only the terms of the symmetric Lagrangian
require divergent counterterms to cancel all
divergences to second order and set

+ CPOSSed

FIG. 2. Feynman graph representations of the diver-
gent contributions to the four-point proper scalar vertex
to second order.

ii &mt' kl km'n'

d4l
xDi, D'[(/ —p)2],D'[/']„,

+ crossed terms. (3.2)

To isolate the divergent parts of the Feynman
integrals we expand the propagators about the
point p =0 and the arbitrary chiral-invariant
mass rn'= v' gxvxng

To begin, consider the four-point proper scalar
vertex. The diagrams to be evaluated to second
order containing divergent terms are given in
Fig. 2. Straightforward evaluation of these dia;
grams gives the relation

d4L
DF,,„,= 4F, , +, ,~2

( ),D'[(/ —P)'] .D'[/']„„,

m2, ,
—(/l2 —2/ ' P + V2) 5, ,

(/2 ~2)2

(3.3)

rJ

~k

/j
k

l D~t k'].„.

—61G~ kJ

6)Gij
d4lB„, , (p') = '

(2 ),D[(/ —p)'], jD[/']„, .

Using Eq. (3.3), one finds

(3.4)

This expansion is valid whether or not there is
particle mixing and allows the divergent parts of
integrals to be easily identified.

Equation (3.2) contains the logarithmically di-
vergent integral

j I

I& ~~k
/

X
4j'

/
j4k W)

i ~k

j w)

8' Fijkl

8i Fllki

n
Si ij kl

—i8ms-2
Ij

I ~j —)Sm@.
,',

FIG. 1. Feynrnan rules for the Lagrangian of Eq.
(2.38). Solid lines represent scalar fields and dashed
lines pseudoscalars.

d/ 1
ijikl(p ) ij ill (2v)4 (/2 il2)2 (3.5)

= 5,, 5,B(v') .
The convergent integral B,, »(p2) is defined as

B,, ,„(P')=B,. ..(p') —5,,5„-B(")

(3.6)

(3.7)

i jkl ( ijmn klmn ikmn il mn il mn ikmn

f jkm& kl 2m& ikkm~ i kkm&

+Fi, „Fi, „)B( ) .

Employing the identities in the Appendix,
I'„„F„„andI"„„F„,„can be reduced to

(3.8)

Including the crossed terms explicitly, Eq. (3.2)
can now be rewritten as
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",m m

r
h

+ crossed

m m

h h

+ crossed

FIG. 3. Feynman graph representations of the second-
order, divergent contributions to the four-point proper
scalar-pseudoscalar vertex.

FIG. 4. The divergent diagrams in the three-point
proper scalar vertex to second order.

I'„„E». „=f,'[(n'+4)5, t5a. t+2(5„5»+5,, 5»)]+ —,'f fa[8n5tt5»+2n(5t&5~5to+5at5t05»)+4j', .» ]t

+ ga'[4ndt, d~t+. 85„.5a, +2(5,a5»+ 5tt5»)+2~n(5tod»t+ 50dtat+ 5~dt, t+ 5tod&a)] (3.9)

ft n 5t&5at+ ~ftf~[8n5tt5at 2n(5t&5~5to+ at to &0)]

+ 4f,'[4ndtt. „d a, +85t&5at+ 2(5ta5»+ 5„5»)—2~2n(5„dt„+ 5t,dtat+5aod, »+ 5»dtt )]. (3.10)

Equation (3.8) can next be rewritten as

DE,», = 8P
& at [f,'(n'+ 4) + 4nf f, + 3f,']B(v ) + 8Jat»t (3f f, +nf aa)B (v') .

From Eqs. (2.24) and (2.40) we also have

1DF tt'at DftPjtat + aDfaPj tat

Consequently, the required counterterms are

Df, =8[f a(na+4)+4nf f, +3fa ]B(va)

(3.11)

(3.12)

(3.13)

Dfa = 16fa(3f, +nf, )B(v') . (3.14)

(3.15)

Employing the identities in the Appendix,

F„„F» „=f,'(n'. + 2) 5,,5a, + ,' f f [8 a5„n5» ——2n(5, , 5~.5» 5at 5to5») +2j'at,.»]

With these values for the second-order counterterms, the four-point proper scalar vertex is finite in
the one-loop approximation. Similarly, these counterterms remove the second-order divergences in the
four-point proper pseudoscalar vertex in an identical calculation.

The four-point proper scalar-pseudoscalar vertex requires separate consideration. The diagrams con-
taining divergences to be evaluated to second order are given in Fig. 3. Requiring the divergent parts of
the amplitude to vanish, one obtains

A

DFu at 4(Ftt', mnFatmn+Ftt~Fat ~+2Ete, anFtm, tn+2Fte, tnEtm a„)B(v ) .

+ ,'f, [ n4d, td»+—85,.t5a, —. 2(5ta5tt+5«5»)+2/2n(5, .0d»t+5»d, a,
—5»d,.tt —5«d,.»)] (3.16)

, aa t t ft ty at fifa tyat ~fa [-4nfta f tt+2( tt at tt ta)] '

Equation (3.15) can now be rewritten as

DFtz» =8[(n'+4)f, '+4nf f, +3f,']5,, 5aB(v')+8fa(3ft+nf, )j'» t(tB)v.

From Eqs. (2.25) and (2.41) we also have

DEtt. at =Dft5v5at+ 'Dfa+~tat .

(3.1V)

(3.18)

(3.19)

Consequently, the counterterms of Eqs. (3.13) and (3.14) also render this four-point vertex finite.
The three-point proper scalar and scalar-pseudoscalar vertex calculations reduce to those given above.

First consider the scalar vertex. The diagrams containing second-order divergences are given in Fig. 4.
Requiring the divergent part of the amplitude to vanish, one has

Substituting for G' and Go using Eqs. (2.34) and (2.35), and using

DG tea Y ~tDF oat (3.21)
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li

ji

', m. m'

n- n'
k + crossed

FIG. 5. The divergent diagrams in the three-point
proper sca!ar-pseudoscalar vertex to second order.

/
( I

I m h j ] fl1i ih
ln n(

pp ' ( wv ~

n ---n j

FIG. 6. Feynman graph representations of the second-
order contributions to the scalar mass.

[setting D(,.=0 in Eq. (2.42)], Eq. (3.20) reduces to Eq. (3.8). Consequently, the divergent part vanishes
by employing the above counterterms.

The diagrams to be considered for the three-point proper scalar-pseudoscalar vertex are given in Fig.
5. Setting the divergent part of this amplitude equal to zero gives

(3.22)

Again, substituting for G~ and G' and using

DG( a'f .~(DF .ar (3.23)

this relation reduces to Eq. (3.15}. This amplitude does not require any additional counterter(ns.
The Feynman diagrams for the scalar mass to second order are given in Fig. 6. Requiring that the di-

vergent part of this amplitude vanish, one has

D;,= 4F„j3i ,D'(l. ']„„+4F„gi,D'[l']„„dl s 2
" . dl

4 4
]8Gs Gs D& Ds ) p2 . Ds p j8G4 G4 D& DI E p2 Dl p 3 24

The quadrically divergent integral

d4L
A(,. =i

(2 )4D[P],, (3.25}

one has

dl 1
(2~PP (3.26)

is separated into its finite and divergent parts
using Eq. (3.3). Setting

Employing the identities in the Appendix and com-
paring terms gives

D p,
' = 8[(n2+ l)f, + 2nf, ][A(v') + (V2'- v')B(v2)] .

(3.31)

The pseudoscalar mass calculation parallels
that above. From the diagrams of Fig. 7

Dm~, =4F, [A{v )6 „+(m'„„-v 6 )B(v )]

+4F,, „[A(v')6„„+(m~'„- v'6 „)B(v')]
DA, , =A (v') &,, + (m'(q —v 6,q)B (v~) . (3.2V) —36G(~ „G~„P(v') . (3.32)

4&~%'F—e.
From Eqs. (2.44) and (2.32)

s2Dm()=D @6(~—4(~(PF(~, ~, .

(3.29)

(3.30)

This reduction gives

Dm', , =4F,~„„[A(v2). 6„„+(m'„- v2& „)B(v )]

+4F(& „[A(v')6„„+(m~„- v'& )B(v')]

—18(G;„„G;„+O'„„G'„,,)B(.v') . (3.28)

Substituting for m', m~, G', and G~ and com-
paring the result with Eq. (3.8), one finds

Dm', , =4(F,~ +F,, „)[A(v') + (p,' —v')B(v')]

This can be reduced to

Dm
f& =4(F(&„„+F„,„„}[A(v')+ (V,'- v')B(v')]

—4(q),DF, (3.33)

Using Eq. (2.33) this relation can easily be shown
to give the same constraints as above. Thus, the
divergences encountered in the second-order mass
calculations are canceled using only the counter-
terms of the symmetric Lagrangian.

We next consider the vacuum expectation value of
the scalar field. Setting the divergent part of the

i m 'n-- -- m-- --j | m m'——jp- 'n'

FIG. 7. Feynman diagrams for the second-order
pseudosc alar mass contributions.

I m
n

FIG. 8. Feynman diagrams for the scalar one-point
vertex to second order.
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A"
rn n

I

m'
I

FIG. 9. A Feynman diagram that contributes to the
second-order axial-vector-current-pseudoscalar-field
vertex.

i jkl [&g ( i)kl +ifkr) + fi J(Al

+3K fk)g(2A k"&+ J& kr '&(gkr)

+ 2f,f, (16J',,„+3J',,„)]B(v')

and Eq. (3.12) is

(4.1)

amplitude from Fig. 8 to zero gives

DE, =3G',.. „[A(v')6 „+(m'„v'—6 )B(v')]

—3G ~„,.[A(v') 6„„+(mk„—v'& „)B(v')].
(3.34)

Following the program outlined above, this re-
duces to

+ —', (Df, —,'Dg)—J',
qk,

In this case the required counterterms are

Df~ =4(40f~k+32f f2+6f2 +g )B(v ),
Df. = 4[4f.(4f +3f }'-g']B(v'),

and

(4.2)

(4.3)

(4.4)

DE, =4(E,,„.+E,, „)[A(v')+(p. —v')B(v')]$,

—~&~4&r»*;ki. (3.35)

From Eqs. (2.46) and (2.36) DE, is also given by

DE; = &;D&'- ~ &~&k&rDF;, kr (3.36)

Combining these equations and comparing them
with the mass calculations, the symmetric count-
erterms are clearly seen to cancel alldivergences.

An additional potential divergence must be con-
sidered when employing current-field vertices.
Consider, for example, the axial-vector-current-
pseudoscalar-field vertex diagram in Fig. 9. The
amplitude for this diagram contains the integral .

dkl (2l —p)"
(2p)k P»][(I )»] ' (3.3'I}

IV. THE SU(4) CASE

The program in the SU(4} case follows that of
Sec. ID. We need only consider the effect of the
additional detllf + detM ~ term.

Consider the four-point scalar vertex. In the
SU(4) case Eq. (3.11) becomes

Formally this integral is linearly divergent. How-
ever, explicit evaluation of the integral gives a
finite result. The only manifestation of the form-
al divergence is a surface term that contributes
to the finite result. This term cannot be retained
as it violates the Ward-Takahashi identities. A

regularization procedure is used to remove the
surface term. ""Consequently, this type of ver-
tex does not introduce a new divergence and can
be handled in the above scheme.

In summary, we have demonstrated that in the
linear SU(n) v model only the counterterms of the
symmetric Lagrangian are needed to renormalize
the theory in the one-loop approximation. Neither
the implicit Nambu- Goldstone symmetry breaking
nor the explicit linear symmetry breaking altered
the values of those caunterterms.

D: = 48g(f, -f,)B(v') . (4.5)

V. CONCLUSION

We have demonstrated the renormalizability of
the SU(n) linear o model with mesons in the one-
loop approximation for n ~ 4. The model incor-
porates both spontaneous symmetry breaking and
explicit linear symmetry-breaking terms. In all
cases, only the counterterms of the symmetric
Lagrangian acquire divergent parts.
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APPENDIX

In this appendix we present the SU(n) identities
used throughout this paper. These identities in-
volve the standard X matrices" and f,» and d,»
tensor s.'~

The algebra of SU(n) consists of all n x n trace.-
less Hermitian matrices. " The standard basis is
chosen as the set of n'-1 matrices X' such that

Tr(X'X~) =26,~. (A1)

These matrices correspond to the Pauli matrices
for SU(2) and the standard X matrices for SU(3)
and SU(4).

To this set we adjointhe matrix

The scalar mass calculation proceeds exactly
as before. The counterterm D p.

' is not affected
-by theg term and is

D g' = 8(17f,+ 8f,)[A(v') + (p' —v')B(v')] . (4.6)

As in the general case, only the counterterms of
the symmetric Lagrangian are required for one-
loop renormalization.
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(A2)

Consequently, we now have a set of n' matrices
obeying Eq. (A1) with

[D«, Dr] =rf«ra

Tr(Fg, ) =n(&„- 5;o5yo»

Tr(D,D, ) =n(5«r+ 5«o5« o)«,

(A20)

(A21)

(A22)

A«X' = (d „,+if„,)X,
(g«gr] 2if-«rkzk

(A3)

(A4)

(A5}

Tr(E,D«) = 0,

respectively.
We also need the additional relations

(A23)

[~«X']=2d (A6) Tr(F«F«Fk) =iaaf«rk, (A24)

The f,» and d,» are the usual totally antisymmetric
and symmetric SU(n) tensors, respectively. The
extension to the index 0 and U(n) is straightfor-
ward: Tr(D«DrEk) =i ,'nf«rk, - (A26)

/2

k)
= a" «rk +

2 ~ ( «o rk ro «a

(A25)

pij

@ply &~y p

d„~=Pl&2Pl &jp o

(Av)

(A8)

(A9)

X/2

Tr(D«D&Dk) = ',nd«»+ 2
-(5«o6»+ 6&o6«a+ 6ko6«r),

(A27)

Tr(D,D«DkD«) =.~(d«r d»-f ~Q „,)

f«lmftafk frrarf«mk fkref«!m

f«ra«d~qk+f«r„d«~k+f k, ~d «r~= 0,

f«rmfklm «km jim rkar «lm r

f« kfrra
= ( «r «o ro}

"kdrrk= ( r+ «o ro}

(A10)

(A11)

(A12)

(A13)

(A14)

The f an«i d tensors obey the following basic
identities:

+ a( «r ar+ arr+ 'r a}

&2n+ (6;od«kr + 5«od, kr.
+ 6aod«gr + 5« od «r a} r

Tr(D,D,F„F,) =an(.d«r„d ar f«rmfekr)

+ &( «r al «a rr «r rk)

(A28)

«r'af irk

It is convenient to define the matrices

(Fr) „=rf«&k

and

(A15)

(A16}

4 ( o»r+ rod«ar

6 d«rr 6 d, ) (A29)

[F««Er]=if«IaFa r

f«rlkk r

(A18)

(A19)

(D,) „=d„,. (A17)

Equations (A10) through (A15) can now be rewritten
as

T'(F«rEaF«)=~a(d«r d kr f«rmfmkr}-

+ '(5«r 6ar + 6«a6&r + 5«r 'ra)

(6. y
4 W fp gI«r~ ~p fyg

+ 6kod;;«+6«od;rk). (A30)
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