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A continuum limit of the lattice gauge theory restricted to the hadron sector is proposed. Details of the
appropriateness of formulating such a limit within a specific scheme of approximation are discussed for the
quarkless hadron sector, The general method is then applied to the gauge fields, with the restriction that
motions occur only along one spatial direction. This leads to a continuum eigenvalue equation for the
spectrum of internal excitations associated with fluctuations in the length of the electric flux line, In
addition, a nontrivial renormalization condition is encountered if one insists on a relativistic form for the
spectrum. A speculative method for dealing with this condition is proposed —the method eliminates the lattice
spacing and removes the coupling constant as a free parameter, as in dimensional transmutation. Alternative
possibilities for restoring covariance in the hadronic sector of the theory are discussed.

I. INTRODUCTION

In most current theories regarding the nature
of confinement, the quantum field responsible for
confinement is on equal footing as a. dynamical
entity with the hadronic constituents it acts to
confine. ' Obvious though this circumstance may
seem, it is seldom taken into account in hadron
spectroscopy. There are at least two reasons
for this neglect. The first is that one might
naively expect the excitation spectrum of the gluon
degrees of freedom within hadrons with flavor
to start at relatively large masses. The second
is that attempts at verifying such expectations by
calculation have been few2 —the calculations are
not easy. In this Introduction, we will first in-
dicate Specific reasons why the calculations are
not easy even within a framework where they
can be attempted. Next, a plan of attack to
make such calculations tractable will be sketched.
The body of the paper is a report on progress
made by using the strategy on a simplified model
where the full complexity of the problem does
not overwhelm.

A. Spectral calculations that include gluons

There are three methods currently available
for attempting calculations in hadronic spectro-

- scopy, including gluons. The first of these is
the string model and its variants. 3 The trouble
with this type of model appears to be that one
gets all or one gets nothing. It has long been
recognized that for model building along these
lines to progress, a certain infusion of qualitative
ingredients from more traditional field theories
might be required. Rather than trying to guess
those ingredients and how they should be incor-
porated into a consistent mathematical frame-

work, one could attempt to construct a string
picture systematically from an underlying field
theory. This we try to do in our approach.

Another approach, which has been remarkably
successful in describing the spectrum of the
low-lying hadronic states containing flavor, is the
MIT bag model. ' This model has also been applied to
study the spectrum of states of large angular
momentum, and has been successful there as
well. Unfortunately, however, results on the
spectrum of. low- lying quarkless excitations
(gluon bound states) have not yet been published
for this model.

A third approach to the problem under considera-
tion is the lattice regularization scheme for
ga,uge field theories. ' This whole approach is
subject to a host of fundamental criticisms
which we need not bother to repeat. I,et us in-
stead revive a certain criticism which is more
pragmatic than fundamental, and consequently
more tractable.

The Hamiltonian version of lattice perturbation
theory in the inverse of the gauge field coupling
constant starts off with the identification of
eigenstates of the electric part of the Hamiltonian.
For example, a quark and an antiquark are
joined by an electric flux line across the links
of the lattice, and the energy carried by the flux
line is proportional to its length. If the length
of the flux line were in some sense a variational
parameter for the problem, it could be argued
that minimizing the length of the flux line mini-
mizes the energy. In the lowest states,

'

the
energy would be proportional to the spatial sep-
aration of the quark and antiquark.

However, the lattice theory is not defined in
this manner. One is required to deal systemati-
cally with the enormous degeneracy of eigenstates
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of the electric part of the Hamiltonian —. one de-
generate state for each place the antiquark can
be located in the lattice relative to the quark, for
fixed path length. The potential lifts a large part
of the degeneracy, but this entails supplying new
labels for the states which indicate how the orig-
inal degenerate set was split.

What can the meaning of such additional labels
characterizing the states of the system possibly
be? Inasmuch as the only labels allowed by the
Poincarb group are masses, momenta, spins,
and spin projections, one must hope that if the
lattice ultimately describes relativistic particles,
the additional labels refer to the spin content of
the states of the system. '

A problem with studying states of gluonic exci-
tation in the lattice theory, then, is that the pro-
cess of classification is exceedingly tedious for
"long" configurations, i.e., configurations where
the electric flux line spans many links. However,
this statement of the problem suggests a method
for its resolution. Since the classification pro-
blem is severe for /ong lattice strings, perhaps
the variations of string configurations over one or
a few lattice spacings can be treated differentially
and approximated accurately by taking a continuum
limit. We arrive by this logic to the notion that
a continuum limit of the lattice theory restricted
to the hadhonic sector may be most appropriate
for describing states of gluonic excitation.

The most difficult step in implementing such a
continuum limit lies in ensuring that the limiting
theory is relativistically covariant. There is
nothing in the lattice-theory Lagrangian which
even suggests relativistic invariance. The task
is complicated further because the theory must be
solved approximately, and a Prim'i there is no
way to assess the effect of a given systematic
approximation procedure on the question of co-
variance. In the absence of a formal structure
within which covariance can be maintained sys-
tematically, we are forced to rely on heuristic
arguments to guide us as far as possible.

B. An outline of, a program

Those readers who are not familiar with the
details of lattice gauge theory dynamics may wish
to read Sec. II A before continuing along the lines
of this discussion. Basically, however, the
qualitative feature of lattice perturbation theory
that we need to draw on now is that the "magne-
tic" piece of the gauge field energy contains
pieces which cancel or add bits of electric flux.
Thus, a given string of electric flux gets
stretched or contracted (among other things) by
the action of the magnetic term in the Hamiltonian.

One of the other things that can occur is that a
closed loop of electric string in the x-y plane
(for example) can suddenly develop a small pro-
trusion into the z direction.

Even an analysis as scant as the above suggests
that three classes of motions are generated by
repeated action of the magnetic perturbation.

(l) String length fluctuations. An exact eigen-
state of the gauge field Hamiltonian will contain
a superposition of eigenstates of the electric
Hamiltonian of different-length electric strings.
The concept of "the length" of the exact eigen-
state is well defined only when the coupling con-
stant (1/g') is small, so there, is an overlap of
the exact eigenstate with a particular bare eigen-
state which is much larger than all other such
overlaps. The spread in lengths of the exact
eigenstate may be considered to be a quantum-
mechanical broadening of the width of the electric
string. When perturbation theory fails, pre-
sumably the smeared object is an incoherent
"whisp" rather than a well-defined "smoke-ring. "

(2) Center of mass-m-otions. By repeated ac-
tion of the potential, an entire path of electric
flux may be annihilated from one set of links and
duplicated on another set of links in such a man-
ner that the motion corresponds to a displacement
of the configuration on the lattice.

(3) Orbital angular momentum. The same local
string fluctuations which are responsible for the
motions described above give rise to twisting and
contorting motions of the original electric string.
String bits at different links move relative to one
another in three-dimensional space, so these
motions contain what in a continuum would be
called angular rotations. Since the string bits
carry energy and, beyond zeroth-order pertur-
bation theory, momentum, internal angular mo-
mentum is being generated.

There is a fourth class of motions which
arises from the fact that the lattice theory des-
cribes vector gauge fields. The electric flux
lines span links by, virtue of this directionality
inherent in the theory. Spin interactions will not
be discussed in this paper.

Let us now pretend that only the first class
of motions was present in the real problem.
Then if one were to consider a rather long
initial configuration (eigenstate of Hg and treat
it in perturbation theory, at low orders the
fluctuations in its length would be small in
comparison with its overall length. This sug-
gests that a differential approach to the prob-
lem of length fluctuation might be appropriate.
Differential in what? The Hamiltonian opera-
tor causes transitions between the bare states
of the system. .The aim seill be to introduce
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an effective oPerator on suhich Passage to dif
ferentials is nrell defined.

In a similar fashion, small changes in the
shape of a loop configuration will induce small
shifts in the center of mass of the configuration.
Thus, we may hope to treat these motions dif-
ferentially as well, subject to the complications
of relativi. ty alluded to earlier.

The third and fourth classes of motion are
more difficult to deal with. If we succeed in
introducing an overall length variable for the
configuration of interest into the problem, we

may consider it an integral over a differential
length parameter defined along the curve. The
third and fourth classes of motion involve "local"
variations of the oriented differential length
parameter. Vfe propose to study these local
variations by recognizing that the differential
length parameter itself provides a parametriza-
tion of the curve in the three-dimensional space
in which the curve is embedded.

Not all of the above classes of motion are dis-
cussed in this paper. Rather, we focus on the
dilatation modes and center-of-mass modes, ne-
glecting the complications of angular momentum
and spin. %'e do this by analyzing the full theory
within a. restricted kinematical regime.

Even within this restricted analysis, however,
one of the central problems of lattice theories
must be contended with. An interesting aspect
of the present work is that it casts the problem
of eliminating the lattice constant in a form which
resembles in some aspects the traditional pro-
blems of renormalizing continuum field theories.
Hopefully, some of the traditional techniques of
field theory may be brought to bear on this ap-
proximation to the lattice theory —some first
steps in this direction are discussed in the
paper.

C. An outline of this paper

In Sec. II, the Hamiltonian lattice gauge theory
is reviewed to fix our conventions. %e also pre-
sent the general outline of the approximation
scheme concretely, and explain the specific ob-
jects in the theory on which a continuum limit, is
to be defined. In brief, on a spatial lattice
Schrodinger's equation is a finite-order difference
equation in the basis of eigenstates of IJO. Pas-
sage to a differential equation defines a specific
continuum limit of the theory.

Section III illustrates these procedures for a
simplified model which amounts to restricting
the motions of the closed electric flux loops to
occur along one spatial dimension.

Having done this, we discuss the problems en-

countered in passing to the continuum limit in
Sec. IV. It is at this stage that we tackle the
problem of eliminating the lattice parameter by
a variant of dimensional transmutation. ' There
is no guarantee that the hadronic states of the
lattice-regulated theory satisfy relativistic dis-
persion formulas. A nontrivial renormalization
condition arises if we insist that the dispersion
law for the gluonic excitations has the correct
relativistic form. The interpretation of this
condition will be discussed in detail.

In Sec. V we summarize our findings, and
comment on the implications for the later stages
of the program.

II. GENERAL REMARKS ON THE FORMALISM

In this section, we will record our conventions
for the lattice Hamiltonian gauge theory, and
then present the general outline of our approach
for deriving hadronic wave equations within the
zero-width and planar approximations.

H =Ho+&, (2.1a)

(2.1b)

2 Z (UJ +Up)
1

2g
(2.1c)

U~ =Tr U(x, n) U(x +n, m) U ~(x +m, n) U~(x, m) .

(2.1d)

In this equation, g is the gauge field coupling con-
stant, and g is the lattice spacing. The index C
refers to the color degree of freedom, and the Tr
in (2.1d) is over these indices on the U's, which
are matrix representations of the color group.

For all the developments of the theory which
follow, we will delete the indices C and the Tr
over U's. This is not simply for notational
simplicity, but reflects an important aspect of
the approximation scheme to be discussed in
the next subsection. The "planar" approximation
amounts to rules for calculation in the non-Abe. —

lian theory which are identical to those of the
Abelian theory. Thus, we need only record the
canonical commutation relations of the Abelian
theory,

A. Lattice Hamiltonian gauge theory

l. Operators

In the present work, quark degrees of freedom
will not be discussed. Nonetheless, the gauge
field degrees of freedom are a nontrivially inter-
acting system. Their dynamics is governed by
a Hamiltonian operator
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[z(x, n), U(y, m)]=6; ~6; -U(x, n) . (2 2)

The rules of correspondence with the continuum
bare theory are as follows:

U(x, n) =- e""'*', (2.4a)

8„(x)=agA~'"" (x).,
2

v(x, n) =—E„'""(x).

(2.4b)

(2.4c)

Here as in Eq. (2.lb), the canonical momenta
v(x, n) are defined on links joining x to x+n Nnth

n a positive unit vector.
Finally, Gauss's law is

G(x) ~P) =Q[v(x —n, n) —v(x, n)] ~P)
n+

=0, (2.3)
where the operator G(x) generates infinitesimal
time-independent local gauge transformations,
and ~P) is a state in the physical subspace.

2. Naive continuum limit

(2.3). It is convenient for purposes of calculation
to rescale the time variable so that Eq. (2.5)
reads

HP(8, f) =i —(t)(8, f}
. 8

Q2—
p())) ~

—4r[() ())) +Up((t)]I(t(8, ))
L L P

(2.5')

with A, =l/g . Then, as is well known, for "strong
coupling" in g, X «1 and (2.5') can be solved ap-
proximately with, e.g., Rayleigh-Schrodinger
perturbation theory.

The constraint condition (2.3) requires dressed
physical states to be those which are generated
by perturbation theory from closed loop of U's.
These closed-loop wave functions are eigen-
states of Hp. One class of these eigenstates has
eigenvalues proportional to their length,

3. Space ofstates
H, I [v(ear) =L,„,v(.err) (2.9)

H [qf) =i „[qf). — (2 5)

Moreover, the rules for the actions of the op-
erators take a simple graphic form if we refer
our states to a coordinate basis defined by

&8~ U(x, n) ~e')=6 (e- e')e"'*' (2.6a)

It is convenient to work in a Schrodinger repre-
sentation,

with Ir equal to the number of links on the path.
However, Eq. (2.9) does not encompass all the

eigenstates of Hp ~ Two further possibilities can
occur. For example, a single plaquette can be
multiply occupied:

H, (V,)"=4n'(V, )" . (2.10a)

Alternately, several disconnected plaquettes can
be occupied simultaneously, e.g.,

&eiv(x, n)
i
e') =i, , 6,(e- e'),

&e i
e'& =6,(e —e')

P

efnL(8LL)
~ L. ~

lfnks(L) - nL

aeie)&ei

(2.6b)

(2.6c)

HpVJ, ' ~ ~ ~ Up & =4(n( + ~ ~ +n ) U "&
~ - ~ Up "&.

i.

(2.10b)

In the non-Abelian theory, Eq. (2.9) becomes
modified in a trivial manner:

I

H'NoN" s' Tr U(n'H r) =NI. . .Tr U, (2.9')
-' 'r' ' I'

$,(8) =&8
i S),

and its norm is

(2.7)

d8L-=z '
(i " e 8' "

&&
- e e' " i) .

L P
2'll

(2.6d)

Thus, a wave function in the coordinate represen-
tation is

where g is the eigenvalue of the Casimir operator
(g, T'T'), with T' the cth representation matrix
in the fundamental representation. ' For example,
for SU, of color, z=&.

Unfortunately, the non-Abelian analog of Eq.
(2.10a) is more complicated. P When, for exam-
ple, two unit plaquettes overlap on links, the
group-theoretic product of the two U's on each
individual link must be taken:

(2.8)

4

U 2 (NON&a)] [[V(oc ) (3) V(o)c )]
)=1

(2.11)

4. Perturbation theory

The general problem of this Hamiltonian theory
is to solve Eq. (2.5) subject to the constraint

Then, to satisfy the non-Abelian gauge condition,
which is a generalization of (2.3), the. overall
group singlet configuration on each vertex of the
plaquette must be extracted.
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The upshot is that the eigenvalue of IIO on the
n-compounded configuration is not of the simple
form 4n', but involves the eigenvalues of the
above-mentioned Casimir operator on the direct-
product representations that contribute to the
overall singlet.

In spite of these complications, the non-Abe-
lian version of (2.10a) does share one important
feature with the Abelian version. It is that the
eigenvalue of Hp on a compounded configuration is
lgxgex than the sum of the eigenvalues of the
plaquettes which are being compounded. Thus,
the single occupancy configurations which satisfy
Eq. (2.9) are not bosonic, in the sense that the
energy of a multiply occupied (compounded) con-
figuration is not additive. "

This feature allows us to distinguish singly oc-
cupied states from multiply occupied states
qualitatively. Furthermore, quantitatively, the
contributions of states satisfying (2.10) or (2.10')
will always be smaller than the contributions due
to states satisfying (2.9) or (2.9') in Rayleigh-
Schrodinge r pe rturbation theory. This is simply
because the energy denominators will be larger
for the (2.10)-type states than for the (2.9)-type
states.

Suppose now that we attempt a certain truncation
sche me which goes beyond ordinary pe rturbation
theory, and amounts to neglecting all compounded
states. ' We expect their contributions to any
given matrix element to be smaller than the con-
tributions due to "simple" loop states for the rea-
sons we just discussed. Nevertheless, one is
inviting trouble with unitarity, and it will require
some luck for the scheme to work. If we tenta-
tively proceed within this truncation scheme,
however, we enjoy a tremendous reduction of
our labor for the non-Abelian theory. This re-
duction stems from Eq. (2.9'). We can compute
the non-Abelian theory as though it were an
Abelian theory. ' It is for this reason that we
only bothered to remind the reader of the rules
of the Abelian lattice gauge theory.

In what follows, we shall call the restriction
to states of the type satisfying Eq. (2.9) the
"planar approximation. " The reason for this
terminology is that a spacetime picture of the
evolution of our specially selected states would
look like a tubular sheet of rubber or hose.
States of the excluded type would modify this pic-
ture in two possible ways. One way would be to
locally alter the "thickness" of our rubber sheet,
so it would not remain uniform. Another would
be to cause the single channel of the hose to bi-
furcate. Figure 1 illustrates these possibilities.
Our approximation is, therefore, a concrete
realization of the topological expansion of Vene-

ziano and collaborators, although the specific
types of contributions to this expansion which we
have been discussing arise from the lattice
theory, and do not appear in the considerations
of those investigators. '4

The more familiar nonleadi. ng contributions to
the topological expansion are the nonplanar con-
tributions illustrated in Fig. 1(d). These repre-
sent multiparticle states, of the type described
by Eq. (2.10b) and its non-Abelian counterpart.
We shall neglect these states as well, and denote
this the 'zero-width" approximation for the ob-
vious reasons.

B. Hadronic wave equations

(n~H~&, 0) =+ ("I& )

If we now truncate the intermediate states,

(2.12)

v. C

(c)

FIG. 1. (a) A rubber tube swept out by a smoke-ring
gluon bound state in space-time. (b) A multiply occu-
pied state has a larger energy per unit length at fixed
time, i.e., it is denser, than the minimally occupied
state. Hence, it is depicted with cross hatches in the
off-energy-shell evolution. (c) A dense piece of the
tube can coexist with the minimal density tube. (d) A
coffee-mug graph, with more than one smoke ring dur-
ing a period of time.

Although we have been discussing perturbation
theory as it applies to the lattice gauge theory,
our aim is to construct hadronic wave equations
which go beyond perturbation theory. In a very
general sense, what is sought is a solution of the
constraint equation (2.3), which permits a re-
writing of the Hamiltonian in terms of operators
which couple orally to physical states. There are
many possible ways to approach this general
problem. The present approach has certain ad-
vantages over perturbation theory, which will be
elucidated as the approach is developed.

Consider our Schrodinger equation (2.5). Let
the eigenstates of H, be denoted by ~n), with
eigenvalues &„. I et those eigenstates which are
single-particle and "planar" in the sense dis-
cussed in Sec. II A be denoted by

~

n), with eigen-
values e„. Finally, let

~
g, f) be an exact eigen-

state of H, with energy E, and which leads in
perturbation theory as

~
$„,0) =~m)+X5g„

+higher- order terms. Clearly,
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1=+ n)(n =g n)(n (2.13)

we obtain a new, approximate equation,
I

Zff..&~
I &.& = E.&nl t.& (2.14)

Inasmuch as ~g„) has a zeroth-order overlap
with

~
m), we can restrict our attention to the

"diagonal*' difference equation

Z.(m~q„)=(~„5„,+V„,)(I ~y.). (2.15)

&8
~

a& =, ., V(8 e I ) . (2.16)
r (a)

More specifically, we can choose any starting
point on the contour I' and denote it by x. Then
the next point on I" is x+m&, the point after that
is x+m, +Ps„etc. If I' is k links along, we will

(

require x and at least k unit vectors to label the
points on I". However, since I' must be a closed
contour P&~.

&
m&=0. Furthermore, any site may

be visited more than once, but (8 k) will be of
the desired planar class only if no link gets re-
traced in either direction.

Consequently, a more detailed specification
of &8~a) is

(8~k)=exp i +8„(x+n, ,)fly (2.16')

with x+n~, =—x, and Z enforcing the required re-
striction on the n&.

The huge degeneracy of ~k) referred to in Sec.
I stems from two sources. The most easily
manageable source is the location of the refer-
ence point x in the entire lattice. In spite of
the fact that x is in no way the center of energy
of the configuration, it is possible to deal with
this degeneracy provisionally by forming plane-
wave states, Z-, e"'(8~k).

Much more serious than this x problem is the
degeneracy due to all the possible ways of

To justify our reference to' (2.15) as a difference
equation, let us reflect on what form the wave
functions (k

~
g„) actually take in the lattice gauge

theory.
From Sec. IIA, we have

choosing the n's. Even for an elementary
plaquette, in a three-dimensional lattice there
are eight boxes all labeled by x and a pair of
unit vectors. On each of these, we can further
choose whether the path circulates in accordance
with the right-hand rule, or in the opposite direc-
tion.

So really, one should write symbolically

&»&,(p) =pe"'*0(x i& fn}) (2.16")

where the index j labels a particular configura-
tion of 6's in the set of all possible n's that lead
to a closed loop I' of length k.

In principle, the
~

t/j ) are calculable in pertur-
bation theory from the

~

m). Consequently, the
coordinate-space wave functions (8

~
g„) also re-

quire additional labels of the kind displayed in
Eq. (2.16"). In view of these observations, Eq.
(2.15) for our specific theory can be written in
the symbolic form

~(m)(p) Q 3C(m, m')(p p&)~ &m')(pi) (2 17)
m', 5', u'

That is:
(i) Since the theory is displacement invariant,

we expect some center-of-mass p to be conserved,
even though it may not be the p introduced in
Eq. (2.16").

(ii) The perturbation V can cause transitions
from paths of length m to paths of length m'.

(iii) The perturbation V can change a given
configuration of n s into another configuration in
the same set of tot@. path length m.

We are now in a position to attempt to guess
a continuum form of the Schrodinger equation
for purposes of discussion. In the equation
below, X refers to the center of mass of the
extended hadron, and (B/Bx) refers to a lattice
difference operation which passes to a derivative
in the continuum limit. The derivatives B/By'
are defined in the same way with respect to each
y' of sets {y'}of relative coordinates among the
constituents of the composite hadron. The index
m on the wave function Q remains to indicate
the zeroth-order energy of the state:

(2.16)

We have explicitly assumed a nonrelativistic (M+P2/2M) spectral form. But this equation is clearly
problematic. Evidently, the operator

Sy'U y', , ;y y' X, y' =- ~ ~ ~ dy&&y2 ~ ~ &y„'~ y&, y' ~ ~ ~ y' - 'y~ . O' 'X y' ~

tl Yi
(2.19)
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C. Second-order hadronic wave equations

In the preceding subsection, we developed a
wave equation based on the actual theory under
consideration, and speculated on the form it
might take if the naive continuum limit existed.
We continue in this vein, but present two ap-
proaches which are superficially of relativistic
form. Thus, we obtain Klein-Gordon instead of
Schrodinger wzve equations.

The first approach is simply to "square" Eq.
(2.18). Notice that even if the spectrum of the
theory is Galilean, E~=m+P'/2m, then @'=m'
+P to lowest order in O'. Thus, by using IP,
one separates the center-of-mass momentum
from the mass operator. As will be seen, the
theory will not actually give a spectrum of this
form. Nevertheless, it is easier to compare the
spectral relation that is obtained with conventional
propagators if H2 is employed. That is, for any
time-independent II, Eq. (2.5) also implies that

82
II (4f&=- „2 Itf&. (2.20)

It is only necessary to parallel the arguments
leading to Eq. (2.18) to obtain

82
—

Bf, q ™(x,(y))

refers to the internal degrees of excitation of the
system, and itself poses an eigenvalue problem.
Pictorially, our lattice loops on paths I' might be
expected to go over into "smoke rings" of as-
sorted shapes in the continuum limit, with a quan-
tized spectrum of energies, and quantum wave
functions describing the shapes of the smoke
rings.

This in itself is comprehensible. What is not
clear is what the mass parameter M in the center-
of-mass kinetic energy refers to. That is, how

does one consistently obtain an equation of the
form (2.19), with M bearing a definite relation-
ship to the eigenvalues of the internal operator
V? In hope of circumventing this problem, we
turn to examine an alternative procedure.

/I' '(x trl")"=(Q! U(8~I, t) Il'"(it)),
r„H&

(2.21)

where X denotes a given reference point for a
closed contour 1„, n links long.

The operator

r„(X,f) =, , fI(ee. r', f)
r„(x)

(2.22)

is a Heisenberg field, so it follows that

(Z, —E„)'C = -&ni f'„(x, t)
i
q' '(p) & .

~ t

Next, f„' can be computed using the Heisenberg
equations of motion. If, within the planar, zero-
width approximation, it is possible to rewrite

(2.23)

«I[»[H f;ill&&=Z(&~ &. (x') ~g&~„...(x', x),

(2.24)

then we will have succeeded in obtaining an equa-
tion of the form (2.18'). All subsequent discus-
sions regarding passage to the continuum limit
and renormalization will be the same as for the
earlie r. approach.

In the specific model studied in Sec. III, the
operator method based on Eq. (2.22) runs into
trouble within the zero-width and planar approxi-
mations. We reserve further comment until the
conclusions, after the specific troubles that are
encountered have been explained.

D. Continuum limit and renormalization

exist, and a process of renormalization is re-
quired.

Before discussing this further, let us briefly
introduce another approach which leads to an
equation of the form Eq. (2.18'). The approach
which follows will not be used in this paper, so
the reader may wish to skip ahead to the next
section on a first reading. Within our field theory,
there exist multilocal operators which couple a
physical state of the system to the fully dressed
vacuum. For example, with our previous nota-
tion, we define

(2.18')

The coefficient of s'/BX' has been denoted
w(y';y) by analogy with the polarization operator
7i(P') of an ordinary field-theory propagator.
Similarly, the pieces in H' which refer only to
the internal excitation configurations in Q have
been denoted by M', the (mass)' operator. These
analogies are quite useful, because, in fact, the
naive continuum limit to reach (2.18') does not

To validate the approach that is being advo-
cated, it is necessary to replace the "suppose
that*' abstractions of the preceding subsection
with a concrete, implementable framework for
calculation.

This is no simple problem, and we do not pre-
tend to be anywhere close to a solution. Even
so, some things can be said which may serve to
focus attention on the vital components of the
problem.

First of all, even the zeroth-order term of the
wave equation is ill-defined in the continuum



20 HADRONIC WAVE EQUATIONS FROM LATTICE GAUGE. . . 521

limit. Restoring the correct dimensions to the
energy, one has &„(x:(g /a )P„, where P„ is the
true, dimensional perimeter of the path n lattice
units long. This is no different from the result
in any other approach to lattice gauge theories.
One would like to be able to replace g with a
length parameter of relevance to hadronic phy-
sics, such as the Regge slope, g ~n'.

Beyond the zeroth order, Eq. (2.18') will con-
tain, in general, other terms which are super-
ficially divergent as p-0; finite terms, obtained
when differences pass to derivatives, providing
compensating g's in numerators; and terms which
tend to zero as p-0, from very high derivatives.

Thus, as was mentioned earlier, the right-hand
side of Eq. (2.18') will look very much like the
expansion for the inverse propagator of a cut off
field theory. Unfortunately, the fact that some
of the divergences are quadratic in the cutoff
makes the analogy discouraging, as that is symp-
tomatic of a nonrenormalizable field theory.
What is worse, even if the coefficients of higher
powers of (s /BX') vanish as the cutoff is re-
moved, we see already at this stage that nothing
ensures a relativistic spectrum at all mass
levels because of the possible presence of
(((y, y') .

The upshot of these remarks is that we. do not
really expect the conventional renormalization
principles to be directly applicable to our wave
equation. On the other hand, there may exist
enough of a resemblance that some of the tech-
niques of conventional renormalization theory
can be brought to bear either directly, or in a
slightly altered form. "

There is not much point in pursuing an abstract
discussion of these issues much further than this.
It mill be much more profitable to bring the prob-
lems to life in the context of a specific example.
The example to mhich we now pass simplifies
much of the discussion by freezing out all the
nontrivial degrees of freedom of the problem
except one —the path length itself. Even when
only this degree of freedom is allowed, g-0
infinities occur and must be dealt with.

III. A SIMPLIFIED MODEL AND ITS.
APPROXIMATE SOLUTION

In this section, we study a restricted class of
motions of the quarkless hadrons present in the
gauge theory. The restriction that is introduced
enables us to focus on the dilational degree of
freedom of these mesons. This degree of free-
dom can be characterized by a total length para-
meter g, and the specific problem that is ad-
dressed is how the hadron mave function depends

on this parameter. " In attacki. ng this problem,
we follow the general strategy outlined in Sec. II
to obtain a wave equation.

A. Definition of the model

We continue to use the Hamiltonian of Sec. II,
but restrict our attention to a one-dimensional
array of plaquettes in the x direction as in Fig.
2. Thus, on the restricted lattice, the scaled
Hamiltonian is

H =H() —A. V, (3.1a)

Ho
—— g n, m

n, m

(3.1b)

with I=1 (2) corresponding to x (y), respectively;
X=1/g', and

V=g[a(x) +a'(x)], (3.1c)

with 8&„& a box on a unit plaquette with lower left
corner (xx, Oy), and circulation given by the
right- hand rule.

In the space of the model, it is possible to
introduce a reflection xx —xx. Under this op-
eration, which we denote by P, one has

P: a(x) -a'(-x-1). (3.2)

Thus, H is invariant under P, and states may be
labeled by a P eigenvalue.

The states of interest in this model, subject to
the approximations described in Sec. II, will be
closed loops of U's, stretched along the x direc-
tion. Thus, an n-link gauge-invariant "right-
handed" configuration can be labeled

ff 1

q '"'(x) =II@(x+j),
j=0

(3 3)

and a "left-handed" configuration is simply
yt("'(x). However, under P, one has

P: q '"'(x) - i( ""'(-x- n) . (3.4)

FIG. 2. A lattice one unit wide and infinitely long in
the x direction. A plaquette B(x}is indicated in accord-
ance with the right-hand rule, and relabeled by x =
(xx, {)y}.

Thus the linear combinations that transform into
each other under P are

[+(n)(x) ++t(n)( x n)]

-+[y'"'(x)+qt'"'(- x- n)] . (3.5)
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It will be enough for us to consider the P+ states
of the system.

The spatial degeneracy of the problem can be
taken into account by forming the combinations

where a~—= (1+e'~). The cases when n or m are
equal to one require special treatment, because
V can take those states to the bare vacuum state.
Explicitly,

+(n)y) g[q)(n)(X)&(pn++t(n)(X)& (P(n+n)]1
44m

(3.6a)

((()(")(q)
I
vl 0& =v'47( 5,5(q),

( '""(q)
I
vlq '"(»&=6., 26(P —q)~, .

B. Ordinary perturbation theory

(3.8b)

(3.8c)

lq (")0)&=((""'(»Io& ~ (3.6b)

(q
' '(q) I())'")(»&=6., 6(p- q) (3 7)

Certain useful details of calculations such as that
leading to E(I. (3.7) will be reserved to a later
part of this section.

Within the zero-width planar approximation
scheme described in Sec. II, the basic matrix
element required for developing the model is

(q (™(q)
I
v

I 9 '"'(P)&=~(P —q)(6....«, +6...«,*),
(3.8a)

With the normalization conditions defined in (2.8),
these states are orthonormal

We record the results of the ordinary Ray-
leigh-Schrodinger perturbation theory to the
second order in V for later reference. The
states l(t)(")(p)& are eigenstates of H„with eigen-
values e„=2(n+I), as in E(I. (2.9). The pertur-
bation will mix these states with (n a 1) configura-
tions, and this has the effect of "broadening" the
x extent of the gluon wave function. In addition,
however, these transitions are responsible for
displacing the bare gluon bound states in the +x
directions, and it is in this manner that the mo-
mentum dependence of the energy develops. "

It is straightforward to compute

IQ)= Io&+-', v'4v ) Iq"'(0)& '+v(()'I("('(0)&.

(3.9)

Similarly, retaining only the connected parts,

I

G'"'(f » I'+& = I(o'"'(»&+-'»" lq '""(»&-"*
I
~'" "(»&j+-'"["'I( '"'"(»&+nl'I &'" "»&] . (3.10)

C. The truncated Hamiltonian

1. A false start

H9 (x, 0)
I
G& =p ~'"'"'(x, x') ~ "' (x ),

X q tt (3.12)

It is evident that the operator (t)(x)(n) defined
in E(I. (3.3) will couple the state IG(")(p), I)+)
—= IG) to

I Q) at some finite order of perturbation
theory. In particular, if m=n, there will be a
nonzero overlap at the zeroth order. Thus, it
seems natural to consider the wave functions '

4)'"'(x, t) =(Ql y'"'(x, t)
I
G) (3.11a)

(z, -z„)'(I)(")(x,0)=(QI [H, [H, (( (")(x,0)j] I
G) .

(3.11b)
The double commutator of H with p(x)(") can be
computed from the canonical relations (2.2), and
gives a result of the form (Q IH(t)(x)(") IG), where
II is an operator containing both canonical coor-
dinates and canonical momenta.

After lengthy computation, it is possible to
rewrite

5={V',())(")(x)]- 2')'"'(x) V, (3.13)

which is zero by the canonical commutation relations,
since V and (t) each contain only field variables
B(x) and B(x)t. However, let us compute the
matrix element of this operator between (Ol and

(t)(")(p)&, by inserting intermediate states
y (n)(q)&.

with the "wave operator" t)("'"'(x', x) expressed
as a power series in A. .

Unfortunately, the procedure sketched above
suffers from a subtle but fatal drawback within
the zero-width, planar approximation. The pro-
blem is that thehe nonperturbative approximations
violate unitarity. As a consequence, within the
present model, the canonical commutators are
violated, and the passage from (Q

I
[H,[H, Q(x)'"']] IG)

to (QIH(t)(x)'") IG) is invalid. It is best to demon-
strate this point with a specific example. Consi-
der the operator
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1=1»&01++ d~ I(o("'(~)&&(o("'(~)
I

-=I»&01+& Im&&m
I

(3.14a)

(3.14b)

2. The Hamiltonian in the single-particle subspaee

&0161~'"'(t ) &
=2'.[VO.V:&k I~I".I I ~(."l&+&01~'"'(x)

I
&V..&k I

VI(""'(t )&

(0
I
Vlm&(mlg '"'(x) I»(k I VI ~'"'(t,) &

The right-hand side is, in general, different from zero, which illustrates that [V, Q(x)'"'] e0 within our
scheme of truncating the resolution of unity.

It can be shown by tedious calculation that if V and Q(x)("' are not commuted, but rather computed con-
sistently in all their possible orderings, then the right-hand side of Eq. (3.11b) does reproduce the cor-
rect energy shift (Ea —E„)' to second order in X. However, it soon becomes intractable to construct a
nonperturbative wave equation for 4 within this framework. We turn to a slightly different approach.

The problem of commuting operators can be circumvented by working with expressions which do not
involve commutators. Thus, we are led to consider the following second-order equation [cf. (2.21)]:

(3.15)
tnt k

In this equation, we are approximating 1 by /~1 k)(k I, where the lk) are "single-particle states, " in-
cluding 10), as in Eq. (3.14a). Within thii approximation, H„has a very simple form, which follows
from (3.8) for n and m unequal to zero:

(((("'(q) IHI q ("'(t )& =69 - e)[~„6„,.—&(a,6„,„.(+a,'6„,.()]. (3.16)

3. The ~ave equation (long loops)

(3.17)

In this subsection, we shall write the wave operator for the cases when n»1. This simplifies several
expressions, because overlaps with 10) can be neglected. To be precise, abbreviating 1=—10) (01
+1m& &ml~ since &0=0 and (01V10)=0, we have

H'=[1m». ~~&nl]-&[1m)H V~0(01] ~[10)VO&~(nI]+x'[Im&V„ov„&nl]+x'[10&lv 1&01].

(In this equation, the states lm) do not include 10).) For example, (nl V)0)=0 unless n=l. Thus, H„„p~
will only couple in to the states

I
m =2) and

I
m =1) . We have, then, for large n

(nlH Ig'"&) =H ~~ (m lG'"') .

Making use of (3.16), we have

E '«("'(t» IG'"'& =2

(3.18)

(3.19)

a,„,(p) =e„'5„„,—X(q„+e„',) (a~6„,„,+a~ 5„,„„)+& (2a~ ap6„, „+ap'5„.„2+a~*'6„.„,j) .
A configuration-space version of this equation may be written using

]
q(m)( ) df e(Dx(+(m)(P) lg(n))

2m -.
We obtain

(3.20)

(3.21)

E P'"'(x) =g 4 (x y)(t '"'(y)
n', g

where

&n, n (» X) =-s.'6...6.„-&(~.+~. )[6.;.-((6.„+6„,() +6.;..((6., , +6„.-()1

(3.22a)

+X'[25„„,(25„„+5„„„+5„,,) +5„,„,(5, „+25„„,+5„„2)+5„,„,2(5, „+5„„~+25„,,)] . (3.22b)

It will be useful in our later considerations to refer to the perturbation theory expansion of these wave
functions
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q'"'(x-y)=6„6, „--,'X[6 „„(6,„+6,„,)- 6 „,(6, ,+6„„,)]. (3.23)

We are now ready to discuss the physical interpretation of our wave equation in the quasicontinuum limit.
(In the next subsection, the rules of calculation used throughout this section are reviewed. Readers
familiar with these rules may wish to pass directly to the next section. )

D. Calculational details IV. THE PHYSICAL INTERPRETATION OF THE MODEL

G„=(0[A,A, ...A„/0), (3.24)

where ~0) is the ground state of Ho, and A„A„.. .
etc. , are gauge-invariant operators. In the
coordinate representation, this reads

G = $8*8g 0 ~ ~ ~ g„0) 00 (3.25)

The normalized zeroth-order vacuum wave func-
tion is

The matrix elements used in this section are all
of the form

A. Passing to the quasicontinuum limit

o'=2(n+l)a. (4.1)

Thus, we can write at once

As mentioned in Sec. II, the nontrivial step
involved in passing to the continuum limit is to
provide a suitable physical interpretation for
the discrete labels used in the wave operator and
in the wave functions. In the simplified model
under consideration, the real-space length of the
plaquette P(x)'"' is

$0(8) =1, (3.26a)
e„=o/a. (4.2)

and the operators in (3.25) are of the form

a~(8) =Q (B„,B„~~ B„+B„, B„), (3.26b)
x]&&)

as can be seen from Eqs. (3.3), (3.6).
Thus, keeping in mind that o' —o' =2a(n' —n) (4.3a)

We shall call replacements such as (4.1) a
"quasicontinuum" limit, because continuum vari-
ables have been introduced, but the lattice spacing
has not been eliminated.

Furthermore, we can consider two different
path lengths, labeled by n and n', and write

B,(8) =exp(i[8, (x) +8,(x+1) —8,(x+2) —8~(x)])

(3.27)

or

5o' =2gAn . (4.3b)

$8B„(8)B„(8)=6, „. (3.28)

We remind the reader that the "planar approxi-
mation" allows no more than one B or B~ at any
plaquette labeled by the corner site.

Consequently, a matrix element Q„may be cal-
culated by assigning a "plug" to each B and a
"socket" to each B~ that appears in the product
II&,A&. One simply inserts the plugs into the
sockets in all possible ways. If there are any
loose plugs or sockets left over, Q„vanishes.

with x=(xx, Oy), and the definition (2.6d) for the
measure D8, it is clear that G„vanishes unless
each B is contracted with a B . The weight as-
signed to each such contraction is a Kronecker 5

on the x indices, since e' e "=1, and the mea-
sure D8 contains factors (2w)

' to fix the normali-
zation:

Then a function defined on the integers n might
have a variation

or

BE
F(n+~n) -F(o+6o) =F(o) +6o

Bo'

BE
F(n+ 1) -F(o) + 2a

Bo

(4.4a)

(4.4b)

Thus, our goal will be to express the quantum-
number changes n-n+4n as differential varia-
tions of the wave functions on the length of the
path to which n refers. We will find, however,
that (4.4) is too naive for our applications, as it
does not separate relative motions from center-
of-mass motions.

Part of the action of the Hamiltonian is to pro-
vide the standard rigid-body translations of
plaquettes of fixed length in space. A specific
term of superficial order X' in Eq. (3.22) is of
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this type:

Ea'q'"'(x) ~ 2X'[2y'"'(x) +y'"'(x+1)+q'"'(x- 1)]

2

—2).' a'
2

g(")(x)+4&'")(x)'
ax' (4.5)

Therefore, the term above contains a contribu-
tion to the c.m. motion of the plaquette, and an
additional piece which amounts to an energy cor-
rection.

Next, we examine the term of superficial order' in Eq. (3.22). This term requir'es careful scru-
tiny:

8 82 2 82
F&+F2=2 1+2a—+2a — 2+—

z F(x, a).80' 80' 8 BX
(4.10)

All we have done is disentangle the c.m. motion
from the relative motion.

It is important to note that the ansatz Eq. (4.9)
is a significant input to the quasicontinuum cal-
culational scheme. From perturbation theory
alone, we have, as was noted earlier,

g'"+"(x) =- -'y[y'"'(x)+g'"'(x+1)]+0(y') (4.11a)

This equation can be cast in the form

2~(N)(x) a —+— =—(I+X)P,8$ x sg
Bn 4 Bx

(4.11b)

'( y)((f +f )[~(n-)&( )+'in-()(x+1)]

+(f +f )[~(n+1)(x) +~(n+1)(x I)]) (4 6)

The wave functions in this expression themselves
lead as order A, in perturbation theory, so swithin

perturbation theory, the right-hand side of (4.6)
is

so that as X-O, the solution is g(x, n) = e "'$(x, 0).
The wave functions that satisfy our continuum
wave equation may or may not be in qualitative
agreement with perturbation theory results such
as the above.

In any case, we are now in a position to write
the right-hand side of Eq. (4.6) in the quasicon-
tinuum limit, for large f„-g/a:

RHS(4.6) = X f„[g'" (x+1)—t/i'" (x —1)]. (4.7)
82 2 82

RHS(4.6) -(- 8X) —1+2a, +— 2a 8cr 8 BX

(In obtaining this equation, we have approximated
e„+&„„=2f„.) Inspection of Eq. (4.6) leads us to
expect that the quasicontinuum limit of the right-
hand side will involve mixed derivatives in x and
ino. The perturbative result, Eq. (4.7), sug-
gests that only s/sx should appear. What is
going on/

To clarify the situation, let us refer to Fig. 3.
The wave functions are, of course, defined on
the configurations displayed. We would like to
extract the-dependencies of these functions on
"center-of-mass" (X). and "relative" (l) variables,
g(x) (")- $(X, l), where l=n. To this end, con-
sider functions F(X, l) defined on these configura-
tions:

—2a y(x, o).8
80'

82
z, 'y(x, o) = m'(o) -f(a), y(x, ~), (4.12a)

Two terms in Eq. (3.22) proportional to
X 5n n'+'2 and X 5n n'-2 e a t b d scussed
The shift in the c.m. is extracted in a manner

analogous to Eq. (4.8), and then Eq. (4.9) is
applied to give the perimeter change. Collecting
these terms, and all those already discussed,
we obtain the quasicontinuum wave equation

F, =F(x+—'(n+1), n+1),

F2=F(x+2(n —1),n+1).
(4.7a)

(4.7b)

(4.12b)

Evidently, as the path length l changes, the cen-
ter of mass X shifts relative to (x+—,'n). We have
as a consequence of those shifts

2 82
F(+F2 ——2+ —

2 F(x=x+~n, n+1) . (4.8)
2 BX

We shall then write for the relative motion

F(X, l+b, l) =F(X, l)+a~1
I

+
2 (b.l)

BE a 28 E
2 Bl2 '

(4.9)

X+n+ I

X+0

x-i

X+6

(n)( )

X-Q

and for the total motion, FIG. 3. We consider P& ) (y)=+(X=y+ —m, $ =m).
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(4.12c)

In obtaining (4.12), we rescaled the time to di-
mensional units, i.e., Eo'-(2a/g')'Eo . It is
now necessary to discuss the normalization of
this equation.

B. Naive dimensional transmutation

The first question of renormalization involves
passing from the discrete labels to continuum
variables in g:

'(q g) g qg (.m) («) g( m) («)

dx *X,o X, (x .
~ OO

(4.13)

These renormalizations can be handled by
(jj(«) '"' Zg(X, o), and since the wave equation is
linear in $, they will not alter its form. Let us
pass directly to examining the equation itself.

Let us try a factorizing ansatz in Eq. (4.12):

r/r(X; o) =e' «(jI(o, P ),

[~'(a) +P'f(o)14.(& P') =e„'(P )(j„((( P )

(4.14a)

(4.14b)

For sufficiently small A. , it is known from Sturm-
Liouville theory that Eq. (4.14b) has an ascending
spectrum of discrete eigenvalues &„, which de-
pend parametrically on the coupling A, the spacing
g, and the c.m. momentum P . I et us discuss
this point more fully.

We can rewrite Eq. (4.14) in the form

82
m'(o) =m (o) —16K

BQ
(4.12')

We shall proceed using this substitution for
simplicity.

Next, observe that there is a range of P' over
which, as the limit P -0 is taken, the eigen-
values (—functions) e„'((jt„) go smoothly over into
the eigenvalues (-functions) E„2((ji„) of the equa-
tion

m'(o)(j„((r) =E„'P„(o). (4.16)

(Crudely, one requires that the potential should
not change sign. Also, however, the potential
should not develop any new critical points, nor
change inflection points into maxima or minima,
as a function of P, for the desired continuity of
the eigenfunctions and eigenvalues. )

It may be worthwhile to think of 2((/a = A as a
momentum cutoff. Then P «A defines small P,
and the coefficients (2/a —P ), (1/a P'/4) in-
V(P2, o) remain close to their P =0 values. So
we can just treat Pf as a perturbation onto
V(0, o).

Rescaling 8'=2K' 'p, we have

4 2 2

———p +—+ (X p +4k. ) g=Ng
18 8 p aP 232 43
p Bp Bp 16 4

o so that W is always real. (We choose the
positive branch of the square root, of course. )
Alternatively, we can pass to a new equation
which we trust in the large-o, small-A. limit, but
which is mathematically consistent down to
o =0. All that is required is that we modify the
internal kinetic energy piece,

8 4o 8 2 = 2——16K —+V(o, P ) (jI =e g, (4.15a)
BO' 0 80'~

(4.15b)

Changing variables to 4o'/a —163(=W', we obtain

X„=-3"'(a'e '+&)

or

e„'(P') = E„'+P'f„+~ ~ ~,

where

(} —= X ~ (a E„,+3)(

(4.1 ta)

(4.17b)

(4.18a)

(4.18b)

g W BW BW
W +y WP2 =q2 . 415c

This equation has the form of a radial wave equa-
tion in cylindrical coordinates, for a wave
function independent of the azimuthal or z coor-
dinates, in a potential V(W, P').

Qur change of variables gives an imaginary
W if (o/a&4K). For small coupling 3(, this oc-
curs for very short paths. However, we do not
trust our wave equation for small paths, and
this complication is an artifact of our approxi-
mation.

One way to proceed is to restrict the range of

is a dimensionless increasing function of inte-
gers n determined from the eigenvalue equation
(4.1Va) for P'=0, and

f =-'X'"(p '+43("') . (4.18c)

In this equation, p„ is the expected value of p in
the nth discrete eigenstate.

Evidently, the coefficient f„can be interpreted
as being proportional to the speed of light in the
formula (4.18). Inasmuch as in the Hamiltonian
lattice theory, the units of measurement of time
and space have been defined incommensurate with
c=1, we have the freedom to rescale the units
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of spatial momentum to yield e =1 at the end of
our calculation.

However, since the rest-mass scale is glso
determined by the lattice spacing "p,"we should
consistently exercise this remaining freedom by
introducing a "renormalized" energy equation at
a level of our choice labeled by n=¹

Thus, I„ is a function of two variables, A. and
We shall, however, attempt to implement

a very naive form of cutoff independence of the
physical parameter m„by the following argument.

Choose an "g" arbitrarily, and determine a X

such that Etl. (4.20) is satisfied, given m„. Then
choose a different "g" and ask how A. must change
so that (4.20) continues to be satisfied. Evidently,
if a- ita, we must have G„(X)- it G„(X), so

=f8 +P +eee ~
2 2 (4.19)

G (X(a)) 1

G„(X(isa)) p,
' ' (4.21)

The "physically observable" mass mN is ex-
pressed in terms of the parameters of the bare
theory by

ol

G&(~(V))=G~h(1))V'.

(4.20)
Making use of our explicit formula for Q„ in
terms of t)(N) and/„, we find [with G„]X(1))=—Gs]

~pys
—(vr it GsPN) + [(4 P GsPz) +4t)~(1+s P Gs)l

2(1+s V'Gs) (4.22)

2

m = — m„+ ~ ~ ~ +O(it) .2 En ~n ~N 2

fir '4 (4.23)

So all the other levels are pushed off to become
tachyons if n &N, or of ~ mass if n &¹Our
naive procedure is seen to be much too naive.

C. Pr'oblems tvith covsrisnce

The difficulty encountered in the preceding
subsection arose from the observation that each
level of excitation carries its own "speed of
light. " The spectrum is not at all relativistic,
and a simpl'e renormalization cannot cure this
outcome of our approximation to the full theory.
What is worse, it is not clear that the unrela-

l.e.)

llm X=/
ga~ 0

N

That is, if X approaches a fixed number as the
chosen lattice spacing becomes infinitesimally
small, the limit a-0 exists in Etl. (4.20). In
this sense, we have achieved dimensional trans-
mutation, and a relativistic dispersion law at
level N. It is easy to verify that the terms super-
ficially of order at'" "P'" not exhibited in (4.19)
have finite coefficients as a-0 because X-const,
so these higher-order terms in P' vanish as the
cutoff is removed.

However, our discussion has been carried out
at a given level N. What happens to the other
levels'P Evidently

tivistic form of the spectrum is a result of the
approximation scheme. Nonetheless, we can
try to find physical reasons for our failure to
achieve covariance.

Qne possible flaw in the zero-width approxima-
tion is that such an approximation may not be
covariant even if the underlying dynamics is
manifestly covariant. For example, in electro-
dynamics a boost may introduce an admixture of
pairs into a state which is single particle at rest
in the usual perturbative description. So it may
be necessary to take into account processes in
which long loops emit short loops and reabsorb
them.

However, a much more naive shortcoming of
our present formalism suggests itself immediately
from the interpretation of g„as having to do with
c 0 1. It is that if an object extended in the X
direction has length I. at rest, in the observer's
rest frame the object has length L/y if it has
momentum P~. We have not taken the Lorentz
contraction into account in interpreting the para-
meter "o"of our wave equation.

A completely consistent accounting for this ef-
fect is extremely complicated to implement ex-
actly. In this paper, we shall settle for a heu-
ristic approach to the problem. Let us consider
the lattice as an arbitarily chosen reference grid
for the motions of our hadrons in a continuum.
Then the Lorentz-contracted length could be en-
visioned as a counting of the same n steps of the
rest-frame lattice on a new lattice whose lattice
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E„+a Pf„+
5

gn

where we assume

g„=g +Pb +2=2 2 2

Thus,

c„~=++P'(f — "" )+.. .

We now attempt to set
2

(i) f„- "4" ——1, Vn,

(ii) [cf. (4.19)] m„=~ f„—E — Eb„
g " g

that is,

(I) &„'= a'(f„- 1)/E,
(ii) b„' = —a'/m„', a -0,

so that

2
I

(.) 1~ (f. )P ~
F„
2

(ii) a = a 1 —
2 + ~

~ .
Vl g

(4.24)

(4.25)

(4.26)

(4.27)

The correct Lorentz contraction would give

2
2 2 -2 2g =g p =g ~ — 2+o ~ ~

PE

So if m„2=E„/a, we must have for case (i)

f„=0, yn . (4.28)

But from (4.18c), we see that this implies that
X must be a function of n, X=X(n). This behavior
characterizes a nonrenormalizable theory. An

infinite number of counterterms must be added
onto our effective Hamiltonian. This can re-
flect either the necessity of an infinite number
of terms in the latticized original Hamiltonian to
obtain relativistic covariance in the hadronic
sector —or the necessity of including an infinite
number of new (possible nonzero width or non-
planar) states in the resolution of the identity.

Case (ii) appears consistent with the i,orentz
contraction formula to this order, but one might
remain uneasy with introducing both a Lorentz
contraction factor gnd "renormalizing" g„as in
(4.19). In any event, the discussion has been in-
tended as a heuristic case for the possibilities
which may be open, and the result is certainly
not conclusive.

spacing was contracted by the factor y. Since
y =E/m, we have a different y at each mass level,
so we can write [with E„=a 'E„(X)],

V. SUMMARY AND CONCLUSIONS

The principal aim of this investigation has been
to use the lattice formulation of gauge theory to
extract hadronic wave equations from which the
spectrum of hadronic states may be computed.
Two methods of formulating wave equations were
discussed in Sec. II. These methods are quite
general, " and may be used to construct wave
equations for the lattice Hamiltonian theory inde-
pendently of the zero-width and planar approxi-
mations, albeit with corresponding complications.

One of the methods discussed in Sec. II was il-
lustrated by considering a simple but nontrivial
model in Sec. III. On the lattice, the Schrodinger
equation for the stationary states is a difference
equation for a single-component wave function in
the approximation scheme we have employed.
(Coupling to other types of states, excluded within
our approximation, would give rise to matrix
equations with indices corresponding, e.g., to
single-particle, double-particle, etc., states. )
We attempted to construct solutions appropriate
for the "long" gluon-bound-state sector by ex-
amining the continuum limit of the difference
equation in the most straightforward manner
possible.

This method is very different from the pertur-
bative solution of the Schrodinger equation in
powers of the inverse gauge field coupling con-
stant. ' At zero center-of-mass momentum, one
obtains a well-defined eigenvalue equation for the
mass spectrum, in which the internal fluctuation
momenta and the potential appear in a physically
plausible manner.

In principle, one can solve this equation for the
largest part of the potential in closed form, and
thereby avoid potentially misleading expansions,
e.g., of square-integrable functions in terms of
a small number of plane waves. At P=O, the
equation we obtained implies the existence of an
infinite spectrum of internal excitation, in ac-
cordance with our expectation from strong-coup-
ling perturbation theory.

Unfortunately, once we consider any finite P,
we find that the dispersion law is not of relativis-
tic form. It cannot be stressed too often that no
symmetry of the operator form of the theory en-
sures relativistic covariance of the spectrum. We
cannot be sure that even the exact solution of the
theory would exhibit covariance in the hadronic
sector.

To force covariance on the theory, it appears
necessary to go beyond the operator Hamiltonian
formalism, as in the attempt to introduce a
Lorentz contraction factor by hand in Sec. 97.
Of course, the possibility remains that the trun-
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cation scheme we employed in approximating the
Hamiltonian operator is directly responsible for
our breakdown of covariance. (In two-dimen-
sional quantum chromodynamics, the 1/N ex-
pansion rules out two-meson intermediate states
in leading order, yet the one-meson spectrum is
relativistic. However, it is possible that the
boost structure allows this in the light-cone
quantization but not in the equal-time quantiza-
tion. ) If opening decay channels is required for
covariance, the approach advocated in this paper
is of very limited practical utility for the pure
gluon sector. But, again, we cannot be certain
that inclusion of more complicated states in the
completeness sum would solve our problem. "

The most promising way to proceed to add struc-
ture to the formalism is probably to demand a
precise operator method under which covariance
of the theory in the p-0 limit could be checked
at all stages of the calculation. This would allow
one to test whether perturbation theory, or a
certain scheme of truncation, or any other
method of approximation could be expected to
preserve covariance.

It is important to keep in mind that Wilson's
four- dimensional latticization of gauge field
theories is not necessarily immune to the prob-
lems of covariance encountered in the investiga-
tion reported here. The Euclidean lattice
theories do not treat time asymmetrically. None-
theless, an inverse propagator in that version

of the theory might in general be expected to con-
tain expressions of the form

As in the present work, we have no assurance
that the analytic continuation of 6 ' has poles
at a sequence of (masses), with 6 '=p2- m„2
near each mass shell.

In spite of these difficulties we have encoun-
tered with Lorentz invariance, the possibility
remains that a wave equation abstracted from the
lattice formulation of the theory might be ac-
curate in the case where the quark mass sets a
natural scale for the problem in a nonrelativistic
setting, as in charmonium. The methods des-
cribed in Sec. II can be extended to deal with this
system quantitatively, without removing the dy-
namical nature of the string degrees of freedom.
We hope to report on an investigation of the mo-
tions of this system in the near future.
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