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Semiclassical path-integral methods are applied to the quantum-mechanical double-well potential at finite
temperature. %hen all parameters are fixed and A'~0 the quantum tunneling transitions which maintain the
symmetry at zero temperature are absent, Classical thermal fluctuations, however, give transitions which
partially disorder the system.

I. INTRODUCTION
I

We apply semiclassical path-integral methods to
the finite-temperature quantum-mechanical double-
well potential. At zero temperature quantum-mech-
anical tunneling transitions maintain the symme-
try. At finite temperature classical thermal fluc-
tuations as well as quantum fluctuations disorder
the system. This motivates us to study the limit
in which all parameters of the problem (the in-
verse temperature P =1/kT, the coupling constants,
and the real or imaginary time of the correlation
functions) are fixed and 5 is taken to zero. The
goal is to give a perturbation-theory loop expan-
sion in which the first term contains the full clas-
sical result. (A high-temperature expansion would
lead off with a term which is the high-temperature
limit of the classical result. )

Previous finite-temperature investigations have
been carried out for weak coupling and for large
N, particularly in connection with the restoration
of spontaneously broken symmetries. ' Some low-
temperature semiclassical estimates of the parti-
tion function have been performed in one- and two-
dimensional models. " In this paper we are ex-
amining a system whose symmetry is already
manifest at zero temperature. Since this system
admits no instantons above acertain temperature, '4
we were led to investigate the symmetry proper-
ties for temperatures above this value. As is dis-
cussed below, we do this by studying the real-time
finite-temperature correlation function. We find
that at a fixed time in a small-8 approximation the
correlation function is a decreasing function of in-

. creasing temperature. From this we conclude that
the disorder associated (in analogy with a spin
system) with the symmetry at zero temperature
increases as the temperature is raised.

In Sec. II we compute a semiclassical expansion
for the partition function Z = Tre ~H. Z is repre-
sented as a Euclidean functional integral over

paths x(v) for which x(0) =x(Ph). An expansion
about a stationary path of the Euclidean action, a
path whose end point is constrained, followed by
an integration over the end point gives a loop ex-
pansion in which the first term contains the full
classical expression Z„. Had we perturbed about
a constant stationary point, we would have found
an expansion in the anharmonic terms of the poten-
tial, an expansion whose leading term is a harmon-
ic approximation, not the full classical result.

In Sec. III we compute a semiclassical expansion
of the finite-temperature Euclidean correlation
function'

e — =—Tre x(~)x(0)-8H

5 Z

where

x(T )
—e //w / lix(0) ~ H~ /h-

0&v. &PS.

The constrained-end-point method of Sec. II is
used. We find the expansion to be systematic if
we introduce a new variable o=v/h and express
the correlation function (1.1) in terms of o. The
leading term, however, cannot be used to obtain
a small-8 approximation to the real-time corre-
lation function C(t) since that would involve the
continuation'

(1.2)

In order to regain a simple systematic expansion
using semiclassical methods, we calculate in Sec.
Vf the rqal-time correlation function directly
from a functional integral representation. This
involves a product of three path integrals whose
semiclassical approximation is shown to include
the complete classical answer C,,(t) in the limit
t fixed, h-0.
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In Sec. V the classical correlation function
C„(t) is computed for the double well in the limit

The Hamiltonian is
2 2=- "(.). .(.)=-(*-~ (1.3)

lim(:„(t) =—f;( ) .
t a)

(1.4)

We now discuss the role of the symmetry x - -x
in this problem and the relevance of the classical
calculation for the quantum problem. At zero
temperature it is useful to consider

lim lim e(r/S)
~ ~„.

Q»0 'T» oo

Polyakov' shows that the contribution of the kink
solutions to the Euclidean path integral restores
the symmetry and (1.5) is zero. The order of the
limits is crucial. If the order were reversed,

(1.5)

limlim Qe- "'"((n ~x(o&)',
T» +0 A»0 fl

the result would be nonzero. At fixed finite tem-
perature, 0 +v & p h and the v -~ limit is not avail-
able. We thus investigate the real-time finite-
temperature correlation function. It is an almost
periodic function. C(t) does not have the simple
structure at large t that 6(r/R), has a zero tem-
perature and large y.

Nevertheless, we shall make some qualitative
observations. Equation (1.4) reflects the classical
fact that at any finite temperature some fraction
of the particles in an ensemble cannot have enough
energy to go over the barrier and thus they give
a positive contribution to the correlation function.
Quantum tunneling does not affect this result until
t is of the order of the typical tunneling time t~
f or the ensemble. This tunneling time includes a
factor e "where 8 is some positive constant.
However, since C(t} is an almost periodic function
it is difficult to estimate in this large time region.

In Sec. VI we suggest some paths that may be
important in this large t region. In our study of
the symmetry behavior of the finite-temperature
quantum theory, however, we restrict ourselves
t o the limit fixed t and 5-0. In this region of
time tunneling effects are absent, and the quantum
correlation function is within O(S) of C„(t).

The function c(P&u'/g') is roughly the ratio of the
volume of phase space with energy less than the
barrier height ~'/4g to that with energy less than
1/p,

c -0 as P-O.p(d

In the four-dimensional zero-temperature Yang-
Mills system, it has been suggested that instant-
ons are responsible for the restoration of a sym-
metry which results in quark confinement. ' Thus
one would be led naturally to study the symmetry
properties at finite temperature to investigate
quark liberation. '

Although no attempt is made to study such an
ambitious system in this paper, we remark that
our one-dimensional investigation was in part
motivated by such considerations and may serve
as a first arena in which to understand these ideas.

II. THE PARTITION FUNCTION

The partition function Z can be expressed as a
path integral over periodic paths:

1 g
Z =N a» paths Dx exp —— d7 —+ V x

x(0) =.Qh ) 0

(2 1)

The normalization factor N is independent of the
potential and depends on the normalization of the
measure Dx; to estimate (2.1) by a saddle-point
method we look for the minima of 1[x]—= J, d7
x [x'/2+ V(x)] subject to the conditions x(0) =x(pl).
That is to say, we must find solutions to the clas-
sical equation x„=V'(x„) with x(0) =x(PA).'

An expansion about constant solutions leads to
a perturbation series in the anharmonic terms of
the potential. Not enough of the potential is probed
to produce a leading term which contains the full
classical result. Nonconstant solutions x„(r}are
the analogs of instantons at finite temperature.
For the double well (1.3), there are no such solu-
tions for cuPh &2v.

In order to proceed with a semiclassical approxi-
mation we write (2.1) as

(+ 00

Z=Ã I dx a»~,» Dxexp -@ d7 —+V
&(0)=xg h )='x ! 0

(2.2)

Again N depends on the normalization of the mea-
sure. In (2.2) a new constraint has been introduced
and integrated over. This constrained form of the
partition function is what would have appeared nat-
urally had a continuous basis been chosen to eval-
uate Z:

Z= dxx e~~x .
«40

To evaluate (2.2) semiclassically, we shift by
solutions to x = V' whose end points are held fixed:
x(0) =x(Ph} =x. Such solutions do exist at all temp-
eratures.

We will show that the leading term in the loop
expansion about such solutions gives the full Z„
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1
x„(~)=+

~y ph cn &u(2T/p h —1) ' (2.4)

where v is a function of x found by inverting (2.5):

when fz -0.
First we discuss the pure quartic potential

H =p'/2+kx'. The solutions to the classical equa-
tion /Px/dv' =4kx' are

x
~.

inc reasin

~ ~

2 d
&P

g 1~k k aj

g )~k k

x„(0)=x„(Ph) =x =~ 1

y Pffcn
1 (d~ 4 (d' sn()dn(d
h " h'3k p' h'3X p' cn'u&

TV—:lV Det ' — + 12'a'
BT cl

sn(s) dna
(en&+ /d snafu dn/d)

6 2mP)'/2 cn4&

(2.5)

(2.6)

(2.7)

The functions cn&, sn&, and dn& a,re Jacobi ellip-
tic functions all with modulus k =1/v 2. The func-
tions cn~ and sn/d have quarter period K(k), the
complete elliptic integral of the first kind. ' In
the semiclassical approximation,

I

~
~

' ~, , 4gpfl- P

FIG. 1. Inversion of boundary conditions.

dx e C'~

2
h2P' "(2vk)' "

(2.8)

o. /~) ~ cn~ j/2
d(d e — —+ (dsn dna

(2.9)

x„(0)=x„(Pri) =x

2u' '/' ~)Pn
1 + k2 k 2(1 + k2)1/2 i

where 0 & k' & 1; for Ix I & z/g,

(2.12)

where the change of variables (2.5) has been used
to give (2.9). An asymptotic expansion for h-0
can now be evaluated for (2.9) and we have

lim Z =lzm „,„, ,„I'(4)[1+0(5 XP') j
1 1

(d 2 (d(T —~ ph)
cl g 1 ~ p& g (1+ i/&)& /»

(d 2 / Mpk
1 + ~2 k, 2(1 + ~2)l/2 t

(2.13)

(2.14)

Zg$ ~ (2.10)

(u 2k' ' " (u(~ ——,'Ph)
c&( ) 1 k2 k (1+k2)~/» (2.11)

We note that in this "massless" potential there is
only one dimensionless parameter A =-6'XP'. The
correct classical limit comes entirely from the
semiclassical approximation (2.8) in spite of the
fact that the integrand in (2.2) now has h appear-
ing nontrivially in the action.

The calculations for the double-well potential
are similar to those of the massless theory but
more tedious. They will be summarized here
briefly. The classical equation is d'x/dv' = —v'x
+g'x'. The solutions are as follows: for ~xl
& /d/g&

where -1& JU,
'& 1.

For &uPh& v Eqs. (2.12) and (2.14) have a unique
inversion (k' or p,

' is a single-valued function of
x); see Fig. 1, for example. For /dPA& 7/ there
exists more than one solution to 2 = V'(x) with the

Soluti ons (2.11), (2.13)

Solutions (2.15)

FIG. 2. Euclidean solutions.
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boundary conditions x(0) =x(p)2)=x. Furthermore, for &PS) 2mn, when x is such that n4k(1+k')'/'= &P@,

where n is an integer greater than zero, there exists an additional set of solutions of the form

gx i+&'
2k

1-k'x'sn '
k (I + k2)1/2

(2.15)

see Fig. 2. In the zero-temperature limit P-~, k'-1, Eq. (2.15) becomes

gx xg
~-2'(sinhv 2~i) 1 —,+-

(8 (d (d
x T

g 2(d& X g . 2(d&cosh' ~- 2 sinh2~

Note that x„(0)=x but

11mx„(r) =+ (u/g.
T~ cp

These are the solutions which resemble the kink. When there are many solutions, the procedure is to add
together their contributions. Since we already have a low-temperature expression from WKB methods, in
this paper we calculate for finite temperatures in the range ~J36'(m. From Eq. (2.11),

p&u' 1 —k' ' +' 4 k' —1 k'snk~cnkw k'+1 -k'snk&cn, ~

(2.15)
2

N= „/2 v'/ " [(k2 —1)e+(k + l)Ek(u)+cnk+dsk&] '/2,

where

~ -=~Ph/2(1+k2)' ',
and from (2.13),

(2.17)

+& &
2 1 „, — ', ' —p, '&u+ — — [-sn ~dc e+E (~) —(1 —p2)~], (2.18)]

2(1+ l12)1/2 sn p (p2 1)~ p2+1N= 27rk ~— cn &ds wy y E (~)cn„+ p.

(o = (@PE/2(1+ p2)'/2 .
(2.19)

To compute the partition function, let

Z —Z~+ Z~
td/g

Z„= dx&xie- "ix), (2.20)

-cu/g

dx&xie '"ix&+ dx&x le '" ix).
~ ce ~/r

(2.21)

In the semiclassical approximation,

2' co
A k-(&P)1/2

2'/'[(k2- 1)V + (k'+ 1)Ek(&u) + cnk&udnkV/snk~] '/'

2k(1+ k2) 2/2 (2.22)
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with the change of variables (2.12), we have

&O
' dt22 (d)4 1 —)'22 ')] '

gh(vp)"' (1+/2')'" 4g 1 —0') )

1
m(2~p)'/2

1
2 ''A

vd/(d pg ~2 21
dz exp — s'-—

/g

cv/ g
dz e

/g

(2.23)

The change of variables z =((d/g) I2k2/(1+/22)]' '
has been used to derive (2.23). Similarly Eq.
(2.21) in the semiclassical approximation is

1 t- 1 ~3 /2
d' '

J ~ '
(2vmy/22 (1+ 2) /4

(u' —1)~ (t1'+ I)&.(~)
p, jLL

P~4 I
@(vp)1/2 ~ p 4 2 1 2

1
(I 4 p2)2/2

1 -~/g
-g V(g)+

e(2~P)'/' d& e Bv(
ui/g

(2.24)

The change of variables is 2 =(~/g) [2/(1+ p2)]' '
to derive (2.24).

III. EUCLIDEAN CORRELATION FUNCTION

We now calculate the imaginary-time correlation function using the method of Sec. II which gave an ex-
pansion for Z containing Z„ in the first term. The Euclidean path-integral representation'for the correla-
tion function is

N gh
8 — =— dx Dxx(v)x(D)exp —— dV(d'/2+P(x)]I.k Z 6' (3.1)

We find that in terms of the variable o=-T/h the loops in this expansion of (.'(o) are higher order in h. With
the restriction 0 &2 & pIt, it is hard to see how to extract the information from e(o) which was available
from the cr-~ limit at zero temperature. When the analytic continuation' of this expansion is made,

e it/n, -C(t) = e(tt/e),

the loops are no longer higher order in h. This is described below for the pure quartic potential V=Xx4 in
order to illustrate how the approximation breaks down. It is an unexpected feature in the analysis of the
semiclassical estimates of imaginary-time correlation functions.

The Euclidean correlation function is

6 — =—N dx Dx x( )x(0) exp ——f dv (-,'x" + Xx')
1 paths 0

(3.2)
x (0)=x Qh)=x

After shifting by x„(T) [see (2.4) and (2.5)], we obtain

e
p =2 . dxxe " Dv«p -- dv p pd .+()xx'., vv)2x„, vv)

I
(x„(v)vv(v)].

N

ee (2 0
(3.3)

We now perturb in

gx„,y) = 4Xx„y2+ ]1y4 . (3.4)

limit of C(t). If we continue T -it in (3.5) and let
A-O,

What we call the semiclassical approximation
6,(7./0) to (.'(r/0) is

4
llm C()(t) — (, )( p /p

1/4
dye-&4y'cn 2 — yI,

P

(3.7)
dx x x„(7)/)/e

where N and S„are given by (2.6) and (2.7). In
terms of v, (3.5) becomes

-1 -~cie, (o) =— dxxx„(Ko)Xe
«d)O

(3.6)

The tt-0 limit of (3.6) is independent of o and can-
not be analytically continued to give the small-5

The classical correlation function is defined by

1 1 00

(t) — dP dx e 8 LP /2+]x(x&]x(t)x(-0')
Z

g 27TS

(3 6)

where x(t) is a solution to the real-time equation
x =-V (x) with boundary conditions x(0) =x and
x(0) P. For V =Xx4,
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r(-')() p)'"

dy e )' y4IEcnyy+2dsyy[yyE —KE(yy)]j,

(3.9)

where y = 2()(/P)'/'t, a dimensionless time variable,
and the elliptic integra. ls and functions in (3.7),
(3.9), and (3.11) have modulus 0 =I/v 2. Clearly
(3.7) is not equal to (3.9). We now evaluate the
one-loop'0 tadpole contribution 8, (T/h) to (3.2) as
follows:

1dxxe " — dv'x, ,(r') Dy y(v)y'(r') expZ 25
-d

d~"y «, +12~x,' yd7 (3.10)

Continuing (3.10) to real time and letting h -0, we
find a nonzero answer:

and

r(-;)(~p)'" '
OQ

dye ' Fh(x, p, t)—= dy dx, e'h'& "' "(x, Ie'" ".
I y)

m OQ m OQ

x (y Ie '" . "x(t)x(0)Ix), (4.4)x, +-—cnyy . 3 11c~Qsn yg 1 8

7 87

Equation (8.11) combined with (3.7), however, still
does not reproduce the classical Boltzmann ex-
pression (3.9). We have studied the contributions
of the two-loop corrections as well.

The results can be summarized:

where the dummy time T with 0 &t &T has. been
introduced. The two matrix elements in (4.4) can
be represented as real-time path integrals in the
standard way and their semiclassical approxima-
ti.ons are well known. "

As long as t, T are held fixed it is straightfor-
ward to evaluate the two integrals in (4.4) by the
stationary-phase method. The result is

lim {:,.(o) I«„4,-(ho)4' for i =0, 1,2.
0

(3.12) Iim F,(t; x,P) =x(t; x,P)x.

Thus we see why a semiclassical expansion of
6(o) cannot be used to obtain a semiclassical
expansion of C(t).

To circumvent this problem and still make use
of semiclassical methods, we introduce a path-
integral representation for the real-time correla-
tion function directly.

The function x(t;x, P) solves x =-V (x) with
x(0 x,p) =x and x(0;x,p) =p.

We will now show by direct calculation for the
double well (1.3) that

limF, (x,P) =e-h(~ /'v)
h 0

IV. REAL-TIME PATH-INTEGRAL REPRESENTATION

In the semiclassical approximation,

(x I e h" IX,& =N&(x» x)e (4.5)

The real-time correlation function is defined to
be

C(t) =—Tre x(t)x(0)
Z

In the double well, for Ix I
~ u&/g and Ix, I

& &u/g,

P(O4 1 —hh h 1 1S„(x„x)=PV(x)+ ~ 1+0 dn~ (o, dn~ ~,

OQ

dx(x Ie BHeiHt/hx(0)e iHt/hx-(0) I-x)

(4.1)

As it stands, (4.1) has an awkward path-integral
representation. An attempt to find a simpler ex-
pression by the continuation t- —iho or P-iB/It
leads to the difficulties of Sec. III. Making use of
completeness, we write (4.1) as

+— dg
1

1 1
dn~ g dn~ g

-(1+h')'/'
Nh(x, , x) = 2)th u~(K —(d) )

(d

x u, (K —(u, —(u)[u, (K —~, —(g)

(4.6)

(4.7)
1 OQ OQ

C(t) = dx dpF, (x,p)F, (x,p, t),
m OQ wOQ

where

(4.2)

where

-X /2
—u, (IC- (u, )]

e (e p)=- f de (e(e-e")e )e e'*-*'""'
~ OQ

(4.3) (u 2u'
xt = 6—

h Cdh((d+ (()~) )g 1+0'
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2&2
x =+— .~ cd~(d~ p

g 1+A,

(0pk

(] + k2)1/2

u, (r) = cn,rdn, r,

(4.8}

(4.9}

(4.13c)

(4.14)

1'+ jP cn 2~

Then with the final change of va, riables (dy I + zP,
Eq. (4.13a) becomes

limF„(x, P) =e-"~"' '"".
Fj 0

r d&r
u, (r) =

u, 2(y') '

For ixi&~/g, i, i&~/g,

~4p 1 k2 2

S„=pV(x)+

1 1 2 "~+" 1
i cn„2~, cn~'(d, & „, cn, y cn„y

(4.10}

We have outlined an expansion for C(t) which
gives

lim C(t) =C„(t), (4.15)
0

lim lim F2 t lim lim F2 .
h»0 f» co t» 4o 1l»0

(4.16)

which is correct at fixed t. The stationary-phase
evaluation of (4.4) is, however, inadequate when
T and t are becoming arbitrarily large as 5- 0:

where

dc „((u, + u)),

Thus (4.15} is not valid in this asymptotic region
of t. In fact, C(t) is an almost periodic function"
and its t- ~ limit does not exist. This matter is
discussed in the Appendix.

dcp(d~ p

(4.11)

and N2(x„x) is given by (4.7) with (4.11) replacing
(4.8) and (4.12) replacing (4.9):

V. CLASSICAL CORRELATION FUNCTION

In Sec. IV, it is shown that at fixed time t

C(t) = C,,(t)+(terms of higher order in k) .
(5.1)

n crd2m
sn2~

(4.12)
Thus we study C„(t) as a first approximation to
C(t).

The classical correlation function C,,(t) for

Therefore, using (4.5) as an approximation in
(4.3), we find

limF, (x,p)
h»0

=e+ ~/'+ ("'& dw, e "/ '~+'~)'
OO '/' dz

2 7T d(d~

(4.13a)

is again given by (3.8) and

CO V 2 (d(f f2)
(2 k2)1/2 2 (2 k2)1/2 I

&d&2 (dfo

(2 k2)1/2 2(2 k2)1/2 '

(5.2)

(5.3)

where for jx( - /d/g,

2 k'2 1 n(2k2)1/2 ~2 1
+ 1 dn (d

and for ~x~&(u/g,

(4.13b)
with the change of variables

~$ /(2 k2)1/2 = y and ~/(2 k2)1/2 =w ~ (5.5)

k'uP v 2 mto /dt2
( } P

g 2 k2 (2 k2)1/2 2 (2 k2)1 /2

(5 4)

C„(t)= —

2 k
dw t dg (2w'- uP) exp — (2w' —uP}2 dn, &f&dn2(wt —g) .

Cl td/W ~ 2k
(5.6)

Equation (5.6) is a complicated function of wt and Pco4/g and we estimate it for large wt:

/ 1 dk2 k (217)2/2 -Pm4 k2

(u4 & K(k2) (2- k')"' 4g' 2- k'
11mc., t = p )

fo dy exp
4 (y —1)

(5.7)
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rw

"o(4)
~t

C(4)
/

itions and associated instantons which are the
only contributors to disorder at zero temperature
are absent in the fixed-t, I -0 approximation.

ACKNOW( LEDGMENTS.

tet

FIG. 3. The classical correlation function C &(t) and
the quantum correlation function C(t).

lim lim C„(t)=0.
8 0 t

(s.6)

The two integrals in (5.7) are each functions of the
dimensionless constant P&u'/g'. For high tempera-
tures, the denominator behaves like (Pv~/g ) ' 4

and the numerator goes to a constant. Equation
(5.7) is thus a decreasing function of increasing
temperature. Furthermore,

J.K. acknowledges a helpful conversation with
P. Federbush, the support of the United States
Department of Energy, and the hospitality of the
Aspen Center for Physics. L. D. was supported in
part by the Harvard University Society of Fellows
and the National Science Foundation under Grant
No. PH777-22864.

APPENDIX

A function f(t) is almost periodic if for each
& & 0 there exists T(e) & 0 with the property that
any interval of length T(e) contains at least one
point 7 such that

VI. DISCUSSION )y(t+ ~) -f(t)
~

&e (Al)

The function C(t) measures the correlation of
position measurements at time zero and at time t.
And in this way it gives an indication of the order
in the system. The considerations of Sec. IV show
that for moderately large times the system be-
comes disordered and the disorder increases with
temperature as we expect.

The almost periodicity of C(t) says that for very
much larger times (these are times which go to
infinity as 0 goes to zero) the position measure-
ments are correlated. It is our speculation that
the time at which this correlation reappears is
very different for the single minimum potential
and the double well when 5 is small.

Paths which contribute to this difference may be
those real-time solutions which have an energy
near that of the barrier height and therefore spend
a large time near x =0. We do not study this very
large t region in detail.

The limit of C(t) with t fixed as h -0 has been
given in Sec. IV. From that analysis we conclude
that

lim C(t) =C,,(t)+(terms of higher order in K) .
h»0

(6.1)

That is to say, for moderately large times C(t) is
well approximated by C„(t) to the extent that h is
considered small. From Sec. V we know that
C,,(t) is given by (5.7) at large t It& (P/X)'t4j. Thus
at moderately large times, (P/X)'t4&t&tr, the
quantum system is partially disordered by classic-
al thermal fluctuations. This disordering is com-
plete as P -0. The purely quantum tunneling trans-

for all t.
A periodic function is almost periodic, and it

is a theorem that a uniformly convergent series
of almost periodic functions is almost periodic.

We will show that for a potential which rises at
least as x' for ~x ~

-~, C(t) is almost periodic.
In a basis diagonalizing H,

C(t) =—Pe""(m (x(t)x(0) ~m) .1
=Z..

Now

(A2)

(m )x(t)x(0) )m) = g [ (m (x Im) (
e'~~ s~"t"

(Aa)

and is almost periodic if the sum converges uni-
formly. Since each term is bounded by its value
at t =0 and since the sum

mxn =mx yn&~ (A4)

e™mx'm. (As)

For the potentials under consideration, although
(m ~x' ~m) may grow as a power of m, E will
also," and (A5) will converge From anoth. er ap-
plication of the M test we conclude that (A2) con-
verges uniformly and that C(t) is almost periodic.

converges, we can conclude from the "M test"
that (A3) converges uniformly.

Thus, (A2) is a sum of almost periodic functions.
Again each term is bounded by its value at t =0
and we must consider
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6I= 2

Bh

dt4x 2 + V" (x) &x

Since we vary on a space of periodic paths, &x(0)
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gh gh
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