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We examine initial-time Yang-Mills field configurations which satisfy Gauss s law in the presence of static
'

external sources. We show that if such a configuration is an extremum of the energy, then it is a static
solution of the Yang-Mills equations. Next we consider Yang-Mills field. configurations which satisfy Gauss's
law for one external point source. We show that there exists a large class of such configurations which have
lower energy than the Coulomb solution.

I. INTRODUCTION

In a previous paper, ' we gave a detailed analysis
of the Yang-Mills field equations in the presence
of static external sources. 'The main features
and results of our discussion were the following
(for further details, see Ref. 1):

(1) A static external source was defined as one
which has vanishing space components jv(x)
= 6v,q'(x), a = 1, . . . , n where n is the order of the
gauge group. It was shown that in this case all the
group invariantsbuilt out of q'(x) [such as C(x)
=Z„,q'(x)q'(x), for example] are time-independent.

(2) We agreed to specify the external sources
by giving at each space point x the values of the
r-independent group invariants C, (x), . . . , C,(x)
that can be built out of q'(x); r is the rank of the

gauge group. It is our purpose to try to solve the
Yang-Mills equations

(D EI4v)a 6voqo(x)

for a given external source C, (x), . . . , C„(x). In
the Abelian case, for a given static external
source, the most general solution is the Coulomb
field plus an arbitrary number of plane waves,
and there is only one static solution —the Coulomb
field itself. It turns out that in the non-Abelian
case, the class of distinct, i.e. , non-gauge-
equivalent, solutions for a given external source
C, (x), . . . , C,(x) is definitely richer than it is in
the non-Abelian case. We agreed to characterize
these various solutions by gauge-invariant quan-
tities such as their total energy, and their total
isospin, ' and such quantities as Fv„(x)E„',(x).

(3) We found that a set of static external point
charges always admits a static Coulomb solution;
but, whereas the Coulomb solution is unique in the
Abelian case, in the non-Abelian case there are
in general several distinct static Coulomb solu-
tions (for the same spatial distribution of the ex-

ternal point sources) corresponding to the various
ways one can "diagonalize" the external point
sources in isospin space. One can characterize
these distinct solutions by their distinct values of
the energy and the total isospin.

(4) We found" ' that a continuous extended but
localized external charge distribution always ad-
mits solutions of energy as low as one wishes.
We called these "total screening" solutions be-
cause the field strength tensor E'„„(x)vanishes
outside the region where the external source is
localized. These solutions are Coulombic in
that their magnetic field vanishes everywhere;
their existence is due to the fact that a continuous
external charge distribution, which acts like an
infinity of point charges localized in a small re-
gion of space, will tend, in the non-Abelian case,
to go into the energetically favored state where
the local isospins at nearby points cancel one
another by being oriented in opposite. directions.
This is not possible in the Abelian case where the
external charge distribution is gauge invariant and
where the Coulomb solution is unique.

(5) We found" ' that continuous extended but
localized cha, rge distributions also admit static
solutions of a new type, unrelated to the various
Coulomb solutions mentioned so far. We called
these magnetic dipole" solutions because they
have long-range spherically asymmetric mag-
netic fields whereas their electric fields are of
short range. 'They have lower energy than the
Coulomb solution when gq/4m, where g is the gauge
coupling constant and q the total external charge,
exceeds a certain critical value which depends on
the shape of the external source. These solutions
thus appear to be related to the instability NIandula4
found in his analysis of the small oscillations
around a Coulomb field.

(6) Finally, we formulated the initial-value
problem of Yang-Mills fields in'the presence of
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external sources in the A, =O gauge. To any initial
configuration A.;(x, f,), E;(x, f, ) =Foe&(x, t, ) which
satisfies Gauss's law, i.e. , Eq. (1.1) for v=0,
there corresponds a solution to the Yang-Mills
equations, which in general will be time dependent.
The time dependence is provided by the definition
of E', in the A, = 0 gauge: dAab/dt = E'„and the
Yang-Mills Eq. (1.1) for v=1, 2, 3.

To the above, we would now like to add two new
results. In Sec. II we show that an initial-time
configuration A;(x, f,), E&(x, t, ) which minimizes
the energy under the constraint of Gauss's law is
in fact a static solution. By definition, a static
solution is one in which all gauge-invariant quan-
tities are time independent. In Sec. III, we show
that a, point source always admits configurations
of lower energy than the Coulomb solution, In
these initial-time configurations, the electric
field is screened at the expense of the appearance
of a magnetic field.

where

B;(x, t) =-', e,b,Fb, (x, f) . (2. 5)

Intuitively one might expect that a configuration
which minimizes the energy under the constraint
of Gauss's law must be static. We shall show that
this is indeed so. Let us thus, at some given time
t„minimize If with respect to A.;(x, t, ) and E;(x, t, )
under the constraint of Gauss's law (2.3). For
each constraint, we need to introduce a Lagrange
multiplier P'(x). H will be an extremum when

QH 5H

6((x) i 5(sag(x))

«D~ E'b(y) -e'(y))
5((x)

S ~(D)E)(y) -e'(y)) 0 (2 6)
5(s,y(x))

for both )=A'&(x, tb) and g=Z,'(x, f,). We obtain

II. EXTREMA OF THE ENERGY ARE STATIC SOLUTIONS

Ea gpboybAc S ya

(D F )a &bao~bEc

(2.7a)

(2.7b)

In Ref. 1 it was shown that the initial-value pro-
blem for classical Yang-Mills fields in the pre-
sence of static external sources has the following
straightforward formulation in the Ao = 0 gauge.
An initial configuration A;(x, t, ), E',(x, t, ) pro-
pagates in time according to

d&' dA'
(D F )a b Ea

dt ' " ' dt
(2 1)

with

p g ga 8 g +g~ascASgc

(D~F~i)' = 'sF ~~+«'"A~Fib ~

If the initial configuration A'&(x, t, ), E&(x, t, ) satis-
fies the constraint of Gauss's law,

(2.2a)

(2.2b)

d'x S,E;(x, f,), (2.4a)

H = —,
' d'x E', x, t, &; x, t, +8', x, t, ~ x, t,

(2.4b)

(D, E )' = s E'+gc' 'A E' = q'(x), (2.3)

and if the time development of A;(x, t) and E;(x, t)
is the one specified by Eq. (2.1), then this con-
straint will also be satisfied at all later times.

Consequently, to each initial configuration
A;(x, t, ), E;(x, t, ) that satisfies Gauss's law, there
corresponds a time-dependent solution of the
Yang-Mills field equations. These solutions can
be characterized by their energy and total isospin
which are both gauge invariant and conserved, and
which can thus be calculated from the initial
values:

To determine an extremum of the energy under
the constraint of Gauss's law, we must solve Eq.
(2.7) along with Eq. (2.3). We can combine Eq.
(2.7) with Eq. (2.1) to determine the time develop-
ment of such an extremum:

dA'
'=E;=+g(p XAb)a —8)pa, (2.8a)

dE]
dt

&=(D,F„)=+g(lxE&), (2.ab)

where (o.'x p)'= c'"o"p'. Note that the time devel-
opment of &; and && is simply an infinitesimal
gauge transformation. It is easy to show that if

A'& and E', satisfy Eq. (2.7) at a time t, then they
also satisfy Eq. (2.7) at time f+dt. Thus, the
time development of any extremum of the energy
subject to the constraint of Gauss's law is simply
a gauge transformation

A, (x, t) = 'lt A, (x, f, )'Lit ——(s p, )ttt, (2.9a)

E,(x, f) =~E,(x, f, )'tt'

with

(2.9b)

'lt (x, t —f, ) = exp [gP(x)(t —f,)], (2.10)

and where we have used the matrix notation P(x)
= (-i)T'P'(x) and similarly for E, and A„the T'

being the representation matrices for the genera-
tors of the group. By applying the inverse gauge
transformation, we obtain E', and A& fields which
are time independent. In this new gauge

A, (x, t) =gP(x), (2.11)
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III. THE FIELD OF A POINT SOURCE

Consider the Yang-Mills equations in the pre-
sence of a single external point source

(D EPv)o 6036voq63(x) (3.1)

In Ref. 1, we discussed the Coulomb solution for
this point source which in the A, =0 gauge is

which is also time. independent. Also, notice that
in this gauge Eq. (2.7a) is simply the definition of

E;, while Eqs. (2.7b) and (2.3) are the Yang-Mills
field equations.

In conclusion, we have shown that for every
extremum of the energy under the constraint of
Gauss's law, there exists a gauge in which all &'„
are time- independent. These A'„are a time-in-
dependent solution of the Yang-Mills field equa-
tions. This of course implies that gauge-invariant
quantities built out of the A'„will be time indepen-
dent in any gauge. Such solutions are called static.
Conversely, any static solution to the Yang-Mills
equations is an extremum of the energy under the
constraint of Gauss's law.

2

H= 2 d3g ——4(E2+G )+(V x (pA))~
1

(3.6)

'There are many choices of +, t", and A for
which H is lower than the energy of the Coulomb
solution (3.2). One such choice is

E(r, 8) = 1 —P sin'8,
1+ pt' (3.7a.)

G (r, 8) = P — &„sin8,p (p,r)'~'
a 1+ p~~" (3.7b)

a (} r)"' .A(r, 8) =- sine,
g

(3.7c)

where we have introduced the dimensionless para-
meters P, P & 0, and a, and the parameter p, & 0
with dimension of mass. This configuration is
such that the chromoelectric" field E' is a
Coulombic very close to the origin, but be-
comes modified at distances large relative to p, '.
The total charge, i.e. , the charge viewed at dis-
tances large relative to p, ', is

4n Ix'' (3.2a)
I'= d'x(0 E)'= d2g (n . Ea)

A;(x) = tE&(x) . (3.2b)

We shall now exhibit a field configuration A'&(x, t, ),
E;(x, t, ) at an initial time t, which satisfies Gauss's
law, i.e. , Eq. (3.1) for v = 0, and which has lower
energy than the Coulomb solution.

I et us consider a configuration of the general
form

= ~"q(1 —sP) . (3.8)

For P &0, the external charge is screened whereas
it is increased for P & 0. This is done at the ex-
pense of the appearance of a chromomagnetic"
field:

B'= 6"(0x (yA))

, [5"rE(r, 8)+—6"yG(r,8)], (3.3a) (2 cos8r —ap sin88) ..&
a (ur)"'
g

(3.9)

A' = 5"QA(r, 8), (3.3b)

where r, 8, P are the usual spherical coordinates
and r, 8, P their associated unit vectors. We will
require G (r, 0) = G (r, n) =A (r, 0) = A(r, m) = 0 so that
E and A will not be singular at 8=0 and 8= m. 'The

configuration (3.3) solves Gauss's law provided
sine de

(ql'1r'«
l

—
l

—,(E'+G')+ (&)'
II,4m) r4

o calculate the energy, we introduce a short-
distance cutoff 5. We find for 5 0 and for P&1
(otherwise our configuration has an infrared diver-
gence in its magnetic energy)

6'(x)4'(0, 8)+—, (r, 8)+—, G(r, 8)A(r, 8)—
= q6'(x) . (3.4)

q' 1 q' 1 (p, 5)' P'P' 4m'a'
6

8m 5 12m 1-p 5 a' (gq)'

We thus require

E(0, 8) = 1 (S.6a)

,o((~5)") (3.10)

The minimum of H with respect to a occurs when
and

—(r, 8) = -gG (r, 8)A(r, 8) . (3.5b)

pit lgq
2p(6 yp2)1/2 mia (s.11)

The energy of the configuration (3.4) is given by

'Thus the minimum energy for a givenP, p, , and
P is
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q' 1 q' 1 (p5)
8m' 12m 1 -P 5

(3.12)

For P &0, i.e. , when the total charge is larger
than the external charge q, the energy is always
greater than the Coulomb energy [the first term
in (3.12)]. For P&0, i.e., when the external
charge gets screened, H can always be made
smaller than the Coulomb energy, since we can
always choose p to satisfy

—&-'P(S+P')" 0&0 &1
4m

(3.13)

for any values of the external charge q and the
gauge coupling constant g.

We have exhibited initial-time configurations
A;(x, f,) and E', (x, t, ) which satisfy Gauss's law
for a point source and which have lower energy
than the Coulomb solution. We have done so for
any value of gq/4m. Since the energy is positive-
definite, this implies that there exists a, minimum
of the energy under the constraint of Gauss's law,
which lies below the Coulomb solution. From the
previous section we know that this minimum is a
static solution of the Yang-Mills equations in the
presence of the external point source, albeit pro-
b ably a very singular solution. One might pre-
sume, although this has by no means been proved,
that the time development of our initial configura-
tion (3.7) is such that, by emission of radiation at
spatial infinity, it finally reaches this s tate of .

lowest energy.
We wish to make the following further comments:

(1) The Yang-Mills equations in the presence of
one point source are scale invariant. Therefore,
a configuration that solves Gauss's law and that
depends on a scale p. will solve Gauss's law for
any value of the scale p, . Such is precisely the
case for (3.7). Similarly, a solution to the Yang-
Mills equations that depends on a scale p, will be
a solution for any value of p, .

(2) The energy (3.12) is infinitely lower than
the Coulomb energy in the limit 5 0, provided
Eq. (3.13) is satisfied, which is always possible
for an appropriate choice of P.

(3) There obviously is a very wide choice of
configurations that solve Gauss's law for a point
source and that have lower energy than the Coulomb
solution. In particular, their behavior at large
distances is quite arbitrary.

(4) With the exception of energy and isospin, it
is unclear which properties if any of our initial
configuration (3.7) persist till later times.

(5) It is interesting to note that when P approach-
es one from below, the critical value of gq/4m
given by Eq. (3.13) approaches —„which is pre-
cisely the critical value of gq/4m found by Man-
dula' in his stability analysis of the Coulomb po-

tentiall

in Yang- Mills theory.
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