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Yang-Mills theory with a static, c-number external charge density is studied. Time-independent, non-
Coulombic solutions are found for a wide variety of sources with arbitrary strength. Their energy as a
function of source strength is, lower than the Coulomb energy; moreover, the multiplicity'of solutions
increases when the source strength exceeds a critical magnitude. Intrinsically nonperturbative configurations
that satisfy the field equations are presented. The quantal significance of these results is briefly discussed.

I. INTRODUCTION

In the last few years we have seen successful
analyses of various quantum field-theoretic mod-
els through the semiclassical method. This ap-
proach begins by taking the field equations to be
classical (c-number) partial differential equations,
with solutions which carry nonperturbative infor-
mation about the corresponding quantum theory.
Results for Yang-Mills theories are of course the
most interesting, owing to their occurrence in
models of strong and electro-weak interactions.
Correspondingly, the monopoles and pseudoparti-
cles (instantons) are well-known examples of un-
expected solutions.

Very recently attention has been paid to solu-
tions of Yang-Mills equations with static, c-num-
ber sources. ' While the physical, quantal rele-
vance of these remains obscure (some observa-
tions on this topic comprise Sec. V of our paper),
they are sufficiently novel and different from their
Abelian counterpart to warrant study. The present
investigation is a further contribution to this, main-
ly mathematical, subject. We show that a wide
variety of static sources, for example arbitrary
spherically symmetric cha.rge distributions, sup-
port static solutions with energy lower than that of
the corresponding Coulomb solution. While this
is true even for infinitesimally small sources,
whenever the source is sufficiently strong the num-
ber of such solutions increases.

' This paper is organized as follows: After addi-
tional introductory rema, rks, we begin in Sec. II
with a discussion of the energy relationships in
Yang-Mills theory and recall the Coulomb solu-
tion. In Sec. III our new solution is presented for
weak sources, while strong sources are studied in
Sec. IV and further solutions are found. The weak
case can be completely solved analytically; nu-
merical computation is used for strong sources.

I

n„I'""=g~"'p,

E" = &"A"—&"A" +g[A" A."]

&~ ='u+~[A~

(1.2)

(1.3)

[We study the SU(2) theory with coupling strength
g and use interchangeably component notation:
p„a = 1,2, 3, and matrix notation p =p,g'/2i, o'
= Pauli matrices. ]

' Consistency of the four equations in {1.1) re-
quires the right-hand side to be covariantly con-
served, which in thepresent circumstance simply
means that A' commutes with p:

[A', p]=O. (1.4a)

The commutation is not quantum mechanical; all
our quantities are c numbers. Rather, the com-
mutator is in the Pauli matrix space of the SU(2)
theory, and (1.4a) is equivalent to the component
expression

e,~,A~p, =0. (1.4b)

We shall be discussing solutions of (1.1) and of
its consequence (1.4). These equations are not
gauge invariant owing to the presence of the ex-

In the Conclusion, Sec. V, we mention some ques-
tions which remain open and we address the topic
of how the quantum theory is illuminated by these
results. We argue that the specification of the
source should be supplemented by a gauge condi-
tion. Then the number of distinct solutions de-
creases; yet for sufficiently strong sources a
multiplicity of solutions persists. Various'techni-
cal computations ar'e relegated to the Appendices.

The source p, with which we concern ourselves
is the time component of an external current 4-vec-
tor J,", whose spatial components are zero. The
source is always chosen to be static, . B,p, =0.
Hence the Yang-Mills equation reads

20
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ternal c harge density. They are, however, gauge
covariant in the sense that if A" is a solution with
source p, then another source p' which is gauge
equivalent to p,

p'= U 'pU,

is solved by A'", the gauge transform of A":

A'" = U A U+ —U 8" U.
1

(1.5a)

(1.5b)

[Here Vis a 2x2SU(2) matrix; we take it to be
time independent so as to preserve the static na-
ture of the source. ] Use of this gauge covariance
allows the alignment of the charge density: into a
preferred direction in isospace, albeit the gauge
transformation may in general be singular, as is
further discussed in connection with Eqs. (3.11)be-
low. We shall frequently take the source to be of
the form

V' E —gE b~Xb'Eq =gp (2.2)

This quantity remains conserved in the presence
of external static sources; note that they do not
occur explicitly in (2.1). We shall be concerned
exclusively with gauge-field configurations of finite
total energy —a requirement which imposes regu-
larity constraints on the charge density that will
not be spelled out explicitly.

In simple dynamical systems, it follows from
Hamilton's equations of motion that stationary
values of the energy are given by static (time-
independent) solutions. Moreover, explicit prop-
erties of the Hamiltonian frequently ensure that
the minimum-energy configuration is one of these
static solutions. In a gauge theory, where there
are constraints, the situation is more complicated.
Let us first record the static Yang-Mills equa-
ti.ons:

pg = &g30' ~

0'

p =—.q.
(1 6)

E, = -VA,'+go„,XQ', ,

V x Ba g&ab&A& x Bz =g&,„,A„E, )

B = V xX —age )~X~ xA~.

(2.3)

(2.4)

(2.5)

A physical realization of the model that we are
thus led to study is a system of photons (A,") and
massless, charged vector mesons (A,",); a,iso an
external, static „electromagnetic charge density
(q) is present, The photons interact with the vec-
tor mesons through the usual minimal coupling and
through a nonminimal magnetic interaction; addi-
tionally the charged vector mesons interact among
themselves with a quartic self-interaction. The
various couplings are related by the underlying
non-Abelian gauge principle.

Although a transparent physical analog exists
when the problem is formulated in the above stan-
dard gauge frame (1.6), it may be that the mathe-
matical equations are more tractable in some
other frame. In other words, when solving (1.1),
(1.4), and (1.6), it may be useful first to gauge-
rotate into a frame where the source is p'. The
(simpler) equations are solved in this frame, and
the potentials A'" are determined; the potentials
for the problem of interest A" are then gotten by
gauge transforming A'". Of course, gauge-invar-
iant properties of the solutions, for example the
energy, can be calculated in any gauge frame.

EI. ENERGY RELATIONS FOR YANG-MILLS FIELDS

The energy for Yang-Mills fields can be taken
to be the gauge-invariant Hamiltonian:

A consistency condition on p, follows from these:

e„,A~p, =O.
I

The form for the charge density is

p. =&,3q

(2.6)

(2.'I)

The above equations emerge not by demanding
stationariness of the positive-definite energy (2.1),
but rather of the related object

g=g- drA,'(V ~ E, -ge„,X, E, -gp, ), (2.8)

(2.9)

where B, is viewed as a function of A„, while E,
A„and A,' are varied independently. $ coincides
with the energy only when Gauss's law (2.2) is sat-
isfied; in other words, static equations follow by

varying 8, as a functional of E, and A„subject to
the constraint of Gauss's law. Since 7 does not
separate into positive-definite kinetic and static
parts, it is not easy to see which configurations
minimize the energy and satisfy (2.6).

Further insight is had by solving the constraint,
expressing the energy (Hamiltonian) in terms of
independent variables, and studying the properties
of the resulting formula. In an Abelian theory one
finds, as is well known,

g=2 dr E,'+B,'

gt 0 gf ~ ggkgyA
g 0 0 g a

(2.1)
The first term is the Coulomb energy; the second,
involving the transverse electric field E~ and mag-
netic field B, is positive-definite and depends only
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on independent variables. One sees that the en-
ergy is minimized (for fixed sources) by letting
E~ and B vanish. In this way, one arrives at the
static Coulomb solution as the minimum-energy
configuration for an Abelian theory.

The Coulomb solution of the non-Abelian theory
[with source in the third direction as in (2.7)] is
easily obtained. Clearly the relevant equations
are solved by

(2.10)

and the Coulomb energy is as in the Abelian case:

(2.11)

g=g drp, r E, . (2.13)

This expression, derived in Appendix A, is espec-
ially convenient when the source is composed of
6 functions since then the energy is given by a lo-
cal expression. We shall use (2.13) in Sec. IV.

source is increased.
We conclude this section by recording another

formula for the energy of a static Yang-Mills
solution, which follows from (2.1)-(2.6), whenever
the electric and magnetic fields fall off faster
than J ' ' at large distance:

&g=-2 gp"' —V —gp +~ dr(Er, +B, ).

Here p"' is the total charge density
tot

pa abc b Tc pa r

while d is the differential operator

(2.12a)

(2.12b)

(2.12c)

In the Coulomb solution (2.10), X is set equal to
zero, as is the transverse electric field and the
magnetic field. Consequently, p

' =p and d= V'.
But this need not correspond to the minimum value
of h. We see that choosing nonvanishing X and Er
certainly increases the second contribution to
(2.12a) over its vanishing Coulombic form; but in
the first contribution both p"' and d are altered
in a complicated way and a net decrease of g could
result. That this indeed does happen has been es-
tablished for spherically symmetric charge den-
sities q(r) =q(x), where explicit time-dependent
solutions have been presented with energy below
the Coulomb energy; in fact the energy can be
made as small as desired. '

We are here interested in static solutions, for
which even less has been proved. It is known that
sufficiently strong external sources render the
Coulomb solution unstable. ' Furthermore, a meth-
od has been given for constructing sources of ap-
propriate strength to support static solutions with

energy lower than the Coulomb energy. ' We have
found that a wide class of arbitrarily weak sources
also gives rise to static solutions with energy be-
low the Coulomb energy. Moreover, further non-
Coulombic solutions appear as the strength of the

But unlike in the Abelian case, we cannot argue
now that this minimizes the energy. The construc-
tion analogous to (2.9) gives rise, in the Coulomb
gauge, to a complicated formula:

III. STATIC YANG-MILLS FIELDS WITH WEAK SOURCES

We solve Eels. (2.2)—(2.7) perturbatively in the
source. To keep track of orders of the perturba-
tion, we take the charge density q to be of order
q, which is some convenient scale of q. (For ex-
ample, q can be an overall factor in q. ) Observe
that the Coulomb solution (2.10) and (2.11) pro-
duces scalar potentials which are O(q), and an
energy which is O(q ). To explore the possibility
of other, non-Coulombic solutions, let us recall
first that in the absence of sources the only finite-
energy solution has zero energy, hence, vanishing
electric and magnetic fields. '

Such a trivial configuration may be achieved by
setting the Yang-Mills potentials equal to zero.
Correspondingly, in the presence of sources, we
take A.

' to be O(q) and A to vanish with q. This
leads to the Coulomb solution (2.10) and (2.11).

However, the trivial configuration in the absence
of sources may also be realized by a pure gauge
form for X. Hence, an alternate Ansatz for a sta-
tic solution can be given,

A'= o(q), (3.1a)

A = ——U 'vU+ o(q') (3.1b)

A' = UADU '=O(q), (3.2a)

UAU ' —V7U ' =O(q') (3.2b)

Correspondingly, the source becomes

0'p'= UpU = U —U 'q,
2i (3.3)

with Ubeing a static SII(2) matrix. In order to
study this sensate further, it is convenient to trans-
form away the pure gauge portion of A. Thus we
pass to a new gauge frame, where the potentials
are
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and

E,' = —VA'0 = O(Q) (3.4a)

B,'=vxA,'=O(Q') .

Gauss's law (2.2) becomes

V+ a gpss)

(3.4b}

(3.5)

where p, is a unit isovector; it is the gauge rota-
tion of 5„. In the new frame, the relevant equa-
tions are again (2.2)-(2.6), except all quantities
are primed. We solve these perturbatively in Q.
To lowest order in Q

when q is everywhere positive or negative. In
this circumstance our new solution (3.6) and (3.9)
has lower energy than the Coulombic one, for suf-
ficiently weak sources where terms of lowest order
in Q are dominant. It may happen that even for
q's which change sign, gI@' is less than g~. In-
deed, this occurs for the explicit example dis-
cussed below.

It remains to determine under what circum-
stances the consistency condition (3.8) can be
satisfied. We have not analyzed this question in
general, but specific examples are easily given.
Take a spherically symmetric source

and a consistent O(Q) solution is obtained:
p, = .6,q(~) (3.11a)

0 1

IE'= V—2gp'.

(3.6a)

(3.6b)

and choose for p,' a form which is radially
oriented in SU(2} space and gauge equivalent to
(3.11a):

Ampere's law (2.4) reduces to
p,' =i'q(~),

p. (r) =r'. (3.1lb)

(3.7)

which is consistently O(Q'). When the energy is
sought only to O(Q'), B' and X' need not be deter-
mined since they contribute O(Q') terms. How-.

ever, one should check that the right-hand side of
(3.7) is divergenceless. That it indeed is foillows
from (3.4a) and (3.5), provided (2.6) is satisfied.
Thus we further require the validity of the con-
sistency condition

(3.8)

[It is straightforward to solve for X' from (3.4b)
and (3.7). Choosing a divergenceless form for X',
we find

(3.9)

-, -, ,p!( )p.'( '),
(
.)

8m Jr —r'
l

(3.10a,)

The O(Q') part of this, Sz@', can also be given in a
form which facilitates comparison with the Cou-
lomb energy Sc of Eq. (2.11):

2

Since p, (r)p, (r') ~ 1, 8,"' is obviously less than Sc

This is indeed 0(Q').]
To summarize: Whenever we can find a gauge

transformation U, such that the charge density p,
3 Q give s rise upon rotation by U to a new charge

density p,' =p, q which satisfies (3.8), we can con-
struct perturbatively a static non-Coulombic Yang-
Mills solution with energy

A", (r) =7l'(f)(X(r), (3.12)

where g' is a spherical harmonic of total angular
momentum l, depending only on angles, and 8(r}
is spherically symmetric and independent of ang-
les. When the Lapiacian is applied to (3.12) the
result remains proportional to g'(f):

V'A". (r) =q'(r) v'e(r) —,e(~) .l l+1
r I

(3.13)

Therefore, if we call the right-hand side of (3.13)
-gp,', this charge density satisfies (3.8) and, when

p,' is rotated into the a=3 direction,

-gp. = 6.,[q'(r)g'(r)]'~'

x V 8(r)—,8(r)l(l+1)
lac

r' (3.14)

the above spherically nonsymmetric charge
density provides another instance of the phenom-
enon that we have discovered.

The final result then is that all radially symme-
tric charge distributions, and others as well, sup-
port non-Coulombic static solutions with energy
lower than the Coulomb energy for sufficiently

[To avoid singularities, q(0) should vanish. ] Since
(1(V )p,' also points in the f" direction, the condi-
tion (3.8) is met. This configuration has the fur-
ther interesting property, proved in Appendix B,
that 8,@' is less than Sc for all q(r), even those
which change sign. Observe also that the gauge
transformation which takes (3.11a) to (3.11b) is
singular, as it must be since p, has a vanishing
Kronecker index, while for p,' that index is one.

Other examples are also available. Consider the
potential
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weak sources.
In conclusion, . let us note an observation due to

Goldstone': The lowest order in Q theory can be
elegantly summarized by the single variational
statement that the quantity

d-, d-, ,p.'(r)p.'(r')
(3.15)

must be invariant against gauge transformations
of p, . Upon performing an infinitesimal gauge
transformation, we see that this requirement de-
mands

I rl" 4~ lr —r'
I

(3.16)

which is equivalent to (3.5) and (3.8). Evaluated
at its stationary value, the quantity 6 is just the
0(Q') energy.

IV. STATIC Y.ANG —MILLS FIELDS VfITH ARBITRARY

RADIAL SOURCES

To progress beyond the perturbative approxima-
tion, we need to simplify the highly nonlinear
equations (2.2)—(2.6). We choose to work with the
radial example of Eqs. (3.11) which, even in the
perturbative regime, exhibits sufficiently interest-
ing behavior to merit further discussion. To be-
gin, it is easy to convince oneself that, for a source
of the radia. l form (3.11b), iteration of the equa-
tions to all orders in Q produces a scalar potential
A,

' proportional to f" [see (3.6a)] and a vector po-
tential A.,' proportional to e"'f" (see (3.9)].
(Primes are suppressed; in this section we always
remain in the radial frame. ) We may therefore
make the following A.nsatz for the exact potentials:

the most general radially (gauge) invariant solu-
tion is equivalent to (4.2).

With (4.1) and (4.2a) the consistency condition
(2.6) is satisfied. The field strengths become

A g A Q f ]
gr' x gr' (4.3a.)

r'r"' a' —1 1 f

grp x gro
(4.3b)

All functions depend on x =r/r, and the prime in-
dicates differentiation with respect to that vari-
able. The differential equations for f and a
emerging from (2.2)-(2.5) are'

2a-f"+, f=xq,x
2a-a +ll

2x
a=0 t

(4.4a.)

(4.4b)

while the energy(2. 1) is
OO

dx (a')'+, (a' —1)'
g ro o 2x

+ 2(f')'+ —.f'a'x' (4.5)

Equations (4.4) follow from varying the non-posi-
tive-definite quantity

dx (a')'+, (a' —1)'
g'ro o, 2x'

——,'(f')' -—,f 'a'+ xfq, (4.6)x'

which coincides with 8 when Gauss's law (4.4a) is
satisfied. The alternate formula for $, Eq. (2.13),
becomes

g = —, dxx'q (4.7)

p (r) =, , r'q(r/x, ),g
(4.1)

A,'(r) = —r'f (r/r, ), ' (4.2a.)

A,'(r) =—e"'r '[a(r/r, ) —1], (4.2b)

where r, is an arbitrary length scale.
Recall that radial symmetry in non-Abelian gauge

theory can be realized in two ways: the Abelian
fashion, where everything points in a fixed direc-
tion in isospace and is radially invariant; the non-
Abelian fashion, where explicit radial symmetry
is absent, but any rotational noninvariance can be
compensated by a gauge transformation. ' The
above A.nsatz belongs to the second category, but
it is not the most general radial formula which,
as is well known, involves four functions of r rath-
er than two. ' Nevertheless, we show in Appendix
C that the greater generality adds nothing new;

a(x) =1+a'„x ',
f(x) ~f', x ', (4.6)

Finiteness of the energy (4.5) requires that a'
go to 1 and that f vanish at the origin. When xq
vanishes at the origin, f vanishes as x' and a' ap-
proaches 1 to 0(x'). For sources vanishing faster
than x ' at large distances, f vanishes as x-' and
a' approa, ches 1 to 0(x '). The Ansatze (4.1) and
(4.2) are respected by gauge transformations in-
volving rotations by +~ about the P axis, thus
changing the sign of a, an evidentsymmetry of (4.4).
This remaining gauge freedom may be eliminated
by requiring a(0) = 1.

With a source satisfying the above conditions at
the origin and at infinity, we are led to tzoo types
of solutions of (4.4), which differ in their asymp-
totic behavior at large distances: type I with large
x asymptotes
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and type 0 with

a(x) = —I+a",x ',
f(x) =f«,x-'.

(4.9)

The small x asymptote is the same for both types

a(x) = I+a,x',
f(x) =f,x'.

(4.10)

Further analysis has been accomplished by nu-
merical rather than analytic methods. The con-
clusion is that the type-I solution persists and be-
haves much in the same way as in the small source
regime. For the type-II solution we find that not

only does it exist, but surprisingly there are two
branches which begin with a bifurcation point. We

The constants a„f„a „and f, cannot be deter-
mined by local considerations alone. The first
type (4.8) is the solution which we discussed per-
turbatively in Sec. III; a =1 and f = 0 throughout all
space corresponds to vanishing source, and A. "=0.
The second type (4.9) requires a lower bound on
the magnitude of the source, otherwise there
would be a nontrivial, sourceless static solution of
finite energy which is known not to exist. ' Note
that the type-II solution interpolates, as z passes
from zero to infinity, between a vanishing vector
potential and a nontrivial pure gauge:

r-0, A,'=0,
(4.11)

q(x) =qr(x- I), (4.12)

the equations reduce to the free equations (i.e. ,
with q = 0) in the intervals 0 & x & 1 and 1 & x & ~,
together with the requirement that a, a', and jbe
continuous at x = 1, whereas f' must have a dis-
continuity of magnitude -Q there. Another ad-

conclude this section by presenting the detailed
results obtained when (4.4) is solved numerically
with a wide range of magnitudes for the source q.

The general strategy in the numerical solutions
is to integrate the equations from x=0, with a def-
inite source, assuming trial values of the con-
stants a, and f,. Each choice of a, and f, deter-
mines a solution of the equations which is by con-
struction well behaved at the origin, . but in general
will not satisfy the boundary conditions at x = ~.
(As a matter of fact, because of the nonlinearity of
the equations, the solution may become singular
also at finite x.) The a, and f, are varied until the
required behavior at x= ~ is obtained, within a
pre-established degree of accuracy.

With a sli.ght modification of this method, we
have actually chosen to integrate the equations
from x = 0 up to x = 1 with given a, and f„and from
x=~ down to x=1 with given a, and f, ; the con-
stants of integrations a„f„a „and f, are then
varied until a match is obtained between the values
found for a, f, a', and f' on the two sides of x= 1.
This procedure is particularly advantageous if one
deals with sources concentrated at x= l. Indeed,
setting

300.0

250.0—

200.0-

4'(Q) 150.0-

100.0-

50.0-

0.0
0.0

I

5.0 10.0 15.0 20.0 25. 0 30.0

FIG. 1. Energy in units of 2v/g ro from (4.13) versus Q. Curve C is the Coulomb parabola. Curve I is the perturba-
tively attainable type-I solution. Curves IIa and IIb describe the two branches of the nonperturbative type-II solution.



JAgoBS, AND 8 EBBI

a t f (4 12) ' that the energy (4.7) is readily
evaluated:

elf(&) —lf'(&') —lf'(& )] .
g &0

n 4.13b~&provides a direct local evaluationEquation (4.13b) provi es ion
of the energy from the solutions o e
equation.

(4.13h)

Since f' is scon idi nt'nuous at x= 1, the above becomes

The results which we present here have all been
derived for a 5-function source. WeWe have consid-

t the effectsered this type of source to abstract e
tre th of the sourcewhich are associated with the s reng

f th 'd l dependence on its actual shape.
Thus the whole class of solutions depends on a

1 arameter, the magmtud Qe of the sourcesing e p
m utationsitse . ilf W th additional numerical comp

s seenh eked that the qualitative features
with a strictly localized source do indeed e en
to sources spread over a rang e of values of x.

We have explored a wide range ofof lnltlal data~
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behavior is displayed, which is rather typical of
phenomena with critical points. Finally, in Figs.
2-4 we exhibit the profiles of the functions a and

f for a variety of solutions. The discontinuity in
f', related to the 5-function source, is particular-
ly evident.

A,'- —e"'f'(a cos8 —1) + —(5" —t'f")(a sing)
gr gr

1
+ pari gt (5.1)

If 0 is allowed to vary between 0 and n. as r passes
from 0 to ~, it is hard to recognize in (5.1) the
nontrivial properties of the type-II solution. Nev-
ertheless, a distinction remains in comparison
with the type-I solution, since the identical gauge
transformation of that configuration exhibits a
nontrivial large r asymptote. Moreover, if a gauge
condition is imposed (see below) so that the vector
potential is frozen into the form (4.2b), the topo-

V. CONCLUSION

We have demonstrated that static sources with
arbitrary strength support multiple, finite-energy,
static solutions to Yang-Mil. ls equations, with the
Coulomb solution typically carrying more energy
than the new ones. Our results suggest, in a nat-
ural way, further mathematical questions. One
wonders whether there is an a pnon' classification
of the variety of solutions, which we see is at least
twofold. Firstly, there is the variety found per-
turbatively for weak sources and confirmed ana-
lytically for a strong source, involving a change of
gauge frame. Secondly, in the radial frame, we
found for a sufficiently strong source two types of
solutions, differing in their asymptotic behavior.
Numerical computation exposed a further doubling:
The type-II solution with nontrivial asymptotes has
two branches.

There are tantalizing hints that a topological
classification may be appropriate, but we have not
found the relevant formulation. To be sure, the
source in the two gauge frames (3.11a) and (3.11b)
has a different Kronecker index, but the other,
nonspherical examples that we have constructed in
Eqs. (3.12)-(3.14) involve arbitrary spherical har-
monics, to which a Kronecker index is not as-
signed.

The distinction between type-I and type-II solu-
tions lies in their asymptotic forms, with the sec-
ond tending to a nontrivial, pure gauge, rather than
simply vanishing rapidly as does the first. But
when we make a gauge transformation with a ra-
dial gauge function U= exp[i(o x/2)8(r)], which
leaves the source (4.1) unchanged, the form of the
vector potentials becomes

logically interesting behavior will remain. How to
distinguish between the two branches of the type-II
solution remains unclear.

A related question is whether or not there are
other static solutions, and what is their energy in
comparison to the ones we have found. For weak
coupling, the variational formulation, Eqs. (3.15)
and (3.16), shows that the Coulomb solution has the
highest energy. We have exhibited other solutions
with lower energy, but whether these exhaust the
finite-energy static solutions is not known.

The stability of our solutions should be exa-
mined. As indicated above, we do not see any
topological reason for stability, but nontopological
stability remains a possibility. " In this connec-
tion we call attention to the fact that within our
radial Ansatz, the energy (4.5) of the type-II solu-
tion is separated by an infinite barrier from that
of type I.

Finally we turn- to the question of physical rele-
vance; what is the significance, for quantized
Yang-Mills theory, of the multiplicity of static
finite-energy solutions with c-number static sour-
ces? A c-number source can play one of two
roles in a quantum theory. It may be a purely
formal device inserted for purposes of computing
a generating functional for Green's functions,
which are obtained in the limit of vanishing sour.-
ces after differentiation with respect to the source.
Alternatively, the source may provide an ap-

I

proximate description of a system to which
the Yang-Mills fields are coupled, and whose dy-
namics may be ignored. In the first case, one is
interested in weak sources. In the second, strong
sources are relevant, for it is only in that limit
that the quantal noncommutativity of physical
sources can be ignored.

However, once we contemplate the quantum the-
ory another consideration comes into play which
we have thus far not mentioned, and that is the
necessity of choosing a gauge as a prerequisite to
quantization. If a gauge condition is specified,
some of the multiplicity of. solutions disappears.

Let us consider the weak-source case, with the
source aligned in the third direction, as in (2.7).
If the gauge is fixed completely, . let us say by de-
manding transversality of A, (supplemented by ap-
propriate boundary conditions""), then (3.1) is
no longer an acceptable solution, since that vector
potential is not transverse. The only solution is
the Coulombic one of (2.10). It must be stressed
that we are not saying that (3.1) is a gauge trans-
form of (2.10); it is not. Rather, our point of view
is that (3.1) is not an admissible solution once the
gauge is fixed to be transverse. It is true that the
gauge transform of (3.1) given by (3.2), (3.3),
(3.6a), and (3.9) is in the correct transverse gauge,
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but this configuration is a solution with the source
(3.3) which differs from (2.7). In short, if both the
gauge and the source are specified, then the mul-
tiplicity here exhibited for weak sources i.s absent
and quantization proceeds in a conventional man-
ner. " (The same is true for the other, time-de-
pendent solutions that have been discussed in the
literature. ')

When strong sources are considered, then a
multiplicity remains. Consider the radial con-
figuration (3.11b) or (4.1) and a transversality
condition on X. The ordinary Coulomb solution
(2.10), after a, gauge transformation which takes
(2.7) into a radial form, is not acceptable since
the vector potential is not transverse. However,
there still remain three transverse solutions:
the type-I solution with lowest energy and the two
type-II solutions. ' The type I is a Coulomb type
and represents conventional physics for a radial
source. The two type-II solutions are unexpected.
For the quantum theory, where the sources ap-
proximate an assembly of many heavy quarks, the
type-II solutions hint at the existence of higher
excited states. Since we are ignorant about the
classical stability question, we cannot say whether
these states are stable, quasistable, or unstable.
Also we do not have a description of the dynamics
that would give rise to the requisite sources. Nev-
ertheless, we believe that owing to the fact that
the multiple classical solution exists for essen-
tially arbitrary sources of sufficient strength, the
states that we have found are, 'in general, interest-
ing and new phenomena in Yang-Mills theory.

~~a+a (A2)

We now begin with Eq. (2.1) for the energy and
by a series of transformations arrive at (2.13)

dr E,'+B,' = dr 000

dr0"= d r(s,x )8 '= "f d r—x 98"',

dr@ Bp0 = —g d r +'pa&a

=g drp, r E, .

APPENDIX B

We prove that

..q(r)q(r')II=8, r rr'r
I

is always less than the Coulomb energy:

- -,q(r)q(r')
Jr -r'l

(al)

(a2)

We begin by evaluating the angular integrations
in (Bl):

The third equality follows from the second since
0"' is traceless. The integration by parts needed
to pass from the fourth equality to the fifth pro-
duces no surface terms, provided 0"' decreases
more rapidly than x ' at large distances; this is
ensured when the fields fall away faster than s ' '.
In the sixth egualtiy we use the time independence
of the fields and (A2) gives the next step, with
which we arrive at the desired result.
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APPENDIX A

We show that the energy formula (2.13) follows
from (2.1) for static solutions with decrease at
infinity. Consider the energy-momentum tensor

0@lJ ~Pcx~P + 1 P Pg~a~
c ao'. a an8 (A1)

This quantity is traceless, but not conserved owing
to the presence of external charges; rather from
(1.1) and (1.2) we have

( ((:)= f dTe" 'q(~), (B4a)

co

q(r) =, dk kE(k) sinkr.
77 V p

(B4b)

Spherical symmetry of q is used to arrive at
(B4b). In terms of E, Sc is given by

2 . Oo

Sc=, dkE'(k).
0

(B5)

Substitute (B4b) in (83) and evaluate the r and r'
integrals to get

S,f ' = —
g dk' k'E(k') dk kE(k)II 6&~

0

t)'(k —k') 5 (k —k') 2
k' k' k'

Next the charge densities are expressed in terms
of their Fourier transforms:
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The first term in the brackets evaluates to

dkk' ( )
(k)'

(B7)

The argument is completed by demonstrating
that b, is always positive. Comparison with (B1)
and (B3) shows that

dkkF kE' k =—, dkkg' k

2 ' dkI"'k .
7T p

The second gives (g '/sn') J 0 dk p'(k). Hence these
two combine into (g '/4ii') J 0 dkIl'(k) = gc. Thus we
find

does not lead to a more general theory. As is
well known, the above choice of invariant func-
tions produces a U(1) Higgs-gauge model in two-
dimensional space-time with constant curvature.
The equations are

&„(r'F"")+2 p, e,p),",p. , = .r 'qadi"', (C2a)

1 2
&i&&iw 9'i + 2 Pi(P —1) = 0 ~ (C2b)

Here the two coordinates x" are time (p, =o) and
radius (Ii=1); indices are raised and lowered with
the metric tensor

g' - -, k k' F(k) Il(k')
32m Ik —k'

I (k)' (k')'

Next we introduce the Fourier transform

dK,.t;. ;-„Z(k)

(BSa)

u~
0

0 -1

u~v ~v~u (C3a)

The gauge-covariant quantities are defined by

i~(~) f„- ix. -, -~ (Bsb)
u, , =~ 5,.&-A e,.~. (C3b)

It follows that

2

4 dkdk' drdr'e'&If r+k'1'' 32.' lk-k' l

x g(r) g(r-'), 9192 92@1 P (C4a)

Abelian gauge invariance of this theory allows
setting A' to zero. Then, for static fields, Eqs.
(C2) become

dI' ~—.g(r) g(-r),

—,g(r) g*(r)&0. (BSc)

-(rA, )"+, (rA, ) = rq,

q,. + —,(q 1 r A, )q,. =O./
1 2 2 2

(C4b)

(C4c)

This establishes the desired result.

APPENDIX C

Here it is demonstrated that taking the most gen-
eral, radially (gauge) symmetric Ansatz' for the
Yang-Mills potential

One solution of (C4a) is P, = 0, and then (C4) reduce
to (4.4) with the identification ~t, = -a, A' = f/r.

The other solution to (C4a) is Q, = cP, with c an
arbitrary constant. To see that this too reduces to
our Ansatz, define a new field —a=/, (1+c')' '.
Then the vector potential becomes

. . H cA'= —e"'—1 — », a
~g r (1 + c')'~'

1
g g )

(Cl)

ia i a$ (C5)

A,' = —e"'—(1+y, ) + —(5"—r"'r') y, + —x'x'A'
g 2 1

which can be brought to the form (4.2b) by the
gauge transformation U= exp[i(v'r/2)8], cot& =c.
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