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Gauge theories, including the Yang-Mills theory as well as Einstein s general relativity, are reformulated
in first-order differential forms. In this generalized Duffin-Kemmer formalism, gauge theories take very

simple forms with only cubic interactions. Moreover, every local gauge transformation, e.g. , that of Yang
and Mills or Einstein, etc., has an essentially similar form. Other examples comprise a gauge theory akin to
the Sugawara theory of currents and the nonlinear realization of chiral symmetry. The octonion algebra is

found possibly relevant to the discussion of the Yang-Mills theory.

I. INTRODUCTION

It is well known that equations of motion for a
free field of arbitrary spin can be written as a
first-order differential equation

(P "S.-M)y(x) =0,
where P and M are constant matrices. The cor-
responding Lagrangian may be given by

L (x) =
2 (t) P "8 P —~zgM (t),

where g(x) is related to g(x) by

T()(x) = fr(x)C,

(1.2)

(1.3)

for another constant matrix C. The superscript
T denotes the transpose. It is easy to find the ex-
plicit forms of P' and M, using the fact that the
complexification of SO(3, 1) Lie algebra, is just
sl(2) 8 sl(2). Then all possible irreducible finite-
dimensional representations of the Lorentz group
are specified by D'"'"', where b'oth 2u and 2v are
non-negative integers. Note that the derivative
8, is an element of the D"/" "representation.
Decomposing the field g(x) into a direct sum of
irreducible components (t)'"' "', we can show that
8,$" "transforms as

L(x) = —,
'

P(x) P '& „P(x)——,
'

(t)(x) M P(x)

-g Qt~p t X X ~ X (1.5)

where P(x) = (P, (x), (t, (x), . . . , (t)„(x))r is now an N
dimensional field and a,» (j,k, f = 1, 2, 3, . . . , N)
are numerical constants which may have some
relevance to the octonion algebra. The term
(t)(x)M(t)(x), for example, implies

Hereafter, any first-order equation of the Eq.
(1.1) type will be referred to as the (free) Duffin-
Kemmer equation.

Although many articles and books' have been
written on those relativistic equations and the re-
sults are now well known, its extension for cases
involving interactions is less straightforward in a
small number of works. ' In this paper we are
primarily interested in this aspect of the Duffin-
Kemmer formulation, especially in connection
with Yang-Mills gauge theories. In Sec. II we will
show that the Lagrangian for a pure Yang-Mills
field can be rewritten as

D(l /2, 1/2) (3 D(u, v) D(u+1 /2, v+1/2) @D(tf+1/2, v-1/2)

g D(g-1 /2, v+1 /2) g D(u-I /2, v-i / 2)

(1.4)

Comparing these with Eq. (1.1), we are, in prin-
ciple, . able to determine the matrix forms of P'
and M. For example, the Dirac field corresponds
to the well-known four-dimensional decomposition
D' ' 'SD' ' '. For a spin-zero field, it is the
five-dimensional space D" ""SD"", corre-
sponding to (B,P, (t)), while for a vector field the
representation content is the ten-dimensional
space D(x.o)D(o, )D /' /". The latter two cases
are known as the Duffin-Kemmer formulation. '

0;(*)M;;0;( ).
i, j=l

P, (x) —P,'(x) = g U, (x)(t),(x) + V,.(x), (1.7)

The generalization of Eq. (1.5) which includes
the matter field is discussed in Sec. III. We may
still write the whole Lagrangian in the form of
Eq. (1.5), where P(x) now stands for a large
column vector involving both gauge and matter
fields. The usual local gauge transformation for
matter and gauge fields can be summarized as the
transformation of the field (t)(x):
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where U, ,(x) and V,.(x) are functions of the coordi-
nates but independent of the field variables &j&,.(x)
themselves. In this respect the usual distinction
between the gauge fields and the matter fields for-
mally disappears. U the matter fields include
fermions, then the supersymmetric theories' may
also be considered as an example of Eqs. (1.5) and

(1.7).
A similar thing happens in Einstein's general

relativity. The Lagrangian density

L(x) =4 gB, —

where A is the scalar curvature, is well known to
have a very complicated nonlinear functional form
of the metric tensor g„,(x). However, if we choose
g(x) as a 50-component vector consisting of
v'-gg"" and I',„(X,p, v=0, 1, 2, 3), then the non-
linear Lagrangian is remarkably reduced to the
much simpler form of Eq. (1.5). Furthermore,
the local coordinate transformation can be written
in the form of Eq. (1.7). These facts suggest that
all local gauge theories may be written and char-
acterized by Eqs. (1.5) and (1.7). Of course, any
attempt in this direction is very intricate and be-
yond the scope of the present article.

As another example of our approach we obtain
the Lagrangian which leads to the same equation
of motion as does the Sugawara theory of currents. '
A minor modification of our Lagrangian, which
is no longer local gauge-invariant, yields the
C remmer-Scherk-Kalb-Ramond Lagrangian for
dual models. '

Section IV is devoted to the chiral-invariant
Lagrangian in the Duffin-Kemmer formalism. We
will consider both the nonlinear o model' and the
Weinberg model. ' In the Sec. V the gauge theory
in the five-dimensional space is considered. We
have noticed that the group SO(4, 1), which con-
tains the Lorentz group SO(3, 1) as its subgroup,
appears somehow related to the Yang-Mills gauge
theory. This fact has tempted us to investigate
the gauge theory in the five-dimensional space.

II. YANG-MILLS GAUGE THEORY

The Yang-Mills Lagrangiari is given by

I.(x) = ,'F „-„(x)F'"'(x)+-,' m'A„(x)A "(x)

—,
' F „„(x)[s"A'"(x)-s "A "«)+gf"'A"(x}A-(x)],

(2.1)

where the notation is standard" except for an in-
clusion of the mass term m'Aa(x)A "(x). For the
pure Yang-Mills theory, we have to set m'=0, of
course. The Lorentz metric is taken as

~00 ~11 22 ~33

8„„=0(po v).
(2.2)

The Latin indices in Eq. (2.1) refer to the internal
symmetry with the Lie algebra

[ta fb] &fabctc (2 3)

for a, b, c = 1,2, . . . , n, where f"' is the totally
antisymmetric structure coefficient. Note that
when we take variations with respect to both I' '„„
and A; as independent variables, the Lagrangian
(2.1}reproduces the standard equation of
motion:

F '„„(x)= S,A'„(x) —B„A'„(x)+gf"'A'„(x)A„'(x),

(2.4a)

ScF a (x}—maAa (x)+gf abcFb (x)Acc(x) (2.4b)

p,a(x) (j= 1, 2, . . . , 10, a = 1,2, . . . , n)

by (see Appendix A)

In order to rewrite the Lagrangian (2.1) in the
form of Eq. (1.5), we introduce N(= 10n) component
column vector

P'(x) =(F2,(x), F;,(x), F,',(x), Fo,(x), Fc;(x), F;,(x),A;(x),A;(x), A;(x), Ac(x)) r. (2.5)

Then the Lagrangian (2.1) becomes

1-(x)=-.'y (x)a S'y (x) .'y (x)My (x) --—f"'F, ,y'(x—)y'(x)y;(x), (2.6)

with the ambiguity of total-divergence terms which do not affect the equation of motion. The 10 x 10 zeal
matrices, P„and M, are given by
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The sdjoint Q'(x) is defined by

P(x) =(4 '(x)) 'C,

where the 10&& 10 matrix C has the following diagonal form:
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~ (2 9)
FIG. 2. Another representation of the coefficients I"~,~.

unit element e, together with 10 elements e, Con-
sider a multiplication table defined as follows:

10

P~P P.+ P.P~P. = ~~~P. ~.~P~ ~ (2.io)

We can verify that the matrices P ~ satisfy the
Duffin-Kemmer relation'

e,.e, = e,e,.= e, , e080 ——80

e,e, =v. 6~,eo+ P~l~e~ (j,ka0),
tn=

(2.13a)

(2.13b)

PT CP C 1 Pll( qPPP )

Cr=C=C'= 1 2(PO)2.

(2.1i)

(2.12)

The triple linear coefficient I', ,~ in Eq. (2.6) has
some complicated structure: First, it is com-
pletely antisymmetric in three indices i, j, and k,
which is obvious from the construction. Second,
it assumes only three values +1, 0, and -1. The
value +1 is taken only for the combinations (i, j,k)
= (8, 3, 7), (7, 2, 9), (9, 1, 8), (8, 10, 5), (9, 10, 6),
and (7, 10,4). Parallel to the octonion case, as
done by Freudenthal, "we depict our case in Fig.
1. Actually, we can also use the diagram shown
in Fig. 2 for the description of I'&». However,
for the reason which will be clear soon, we will
prefer to use Fig. 1 from now on.

Because the coefficient ~,» is completely anti-
symmetric in i, j, k, it is naturally related to a
noncommutative Jordan algebra. " Following the
method of Osborne and Falkner, "we introduce a

Furthermore, the standard relations for the trans-
posed matrices P

r and Cr are satisfied as follows:

(e, , e )=6,. (j,k=0, 1, . . . , 10),

we can e r ss the coefficient ~ as

(2.i4)

xp /km

I'» =(e~e„e )=(e,, e,e ) (j,k, m&0). (2.15)

We note that the algebra defined by Eqs. (2.13a)
and (2.13b) is not Lie-admissible, "and therefore
~;» cannot be a structure constant of any Lie
algebra.

There is a. relation between P, and I'„~. De-
fining the 10x 10 matrices I'. (j=1,2, . .., 10) by

(2.i6}

so that

(2.17)

we have

Then the algebra among e& becomes a nonasso-
ciative 11-dimensional algebra, which is, how-
ever, a noncommutative Jordan algebra, since
it is obviously Jordan-admissible. ' Although both
signs in Eq. (2.13a) are equally acceptable, we
choose the upper sign -1 hereafter for a reason
which will become clear.

Introducing the bilinear form (x, y) defined by

Cpi = 77 CP2= 78 CP3 = Vs CPO =Vio ~ (2.iS)

Our formalism is intimately related to the
SO(3, 2) symmetry. Let us set

~.~ = PuP. P.Pu ~—
Then in view of Eq. (2.10), we find

t~...P, l = n,.P. n,.P. , —

(2.19)

(2.20)

FIG. 1. The structure diagram of the coefficients I'; »
for the Yang-Mills theory.
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for p, v, X, r = 0, 1, 2, 3. Note that Eq. (2.21) defines
the Lie algebra of Lorentz group SO(3, 1). The
Lorentz invariance of the interaction terms of the
Lagrangian (2.6} implies

(o)

l' a+(~ }' ''a+( )a'a ' a'= (2.22)

If we introduce the fifth coordinate by setting

and

f55 1
y x)5p 0 for p 0 5 (2.23}

~~a=-~5~= p~ f» ~~5

J»=O for A. =5,
(2.24)

IO (b)

we find that Eq. (2.21) is valid for p, , v, X, ~=O, 1, 2,
3, and 5. In other words, J„„(p,v = 0, 1, 2, 3, 5)
now describes the infinitesimal generators of the
SO(3, 2) group. Our reducible ten-dimensional
representation space corresponding to D" "SD""
SD"~"~"of the SO(3, 1) group is now specified
by a single ten-dimensional irreducible represen-
tation of the la, rger group SO(3, 2). Indeed, analo-
gous to Eq. (2.24), if we define F~, by

F~5=-F,~=A~ for A. 4 5,

F55=0 for A. =5,
(2.25) FIG. 3. (a) The structure diagram of the coefficients

where the cubic interactions are invariant under the
group SO(3, 2). (b) Another representation of (a).

then the antisymmetric tensor F '„(p, v = 0, 1, 2, 3,
5) specifies our irreducible tensor in the SO(3, 2)
group. Of course, these results are well kriown
if we neglect the interaction terms. As a matter
of fact, the usual Duffin-Kemmer theory corre-
sponds to a special case of a more general SO(5)
theory by Bhabha. " Using the five-dimensional
terminology, we see that both the mass terms and
the interaction terms in the Lagrangian (2.6) be-
have as a T,' component of a tensor T"„with non-
vanishing trace (p, v = 0, 1, 2, 3, 5), while the ki-
netic term behaves as a fifth component of a vec-
tor V~.

An interesting fact is that we can make the cubic
interactions invariant under SO(3, 2) by adding the
term

&.v- ~.v ~ (2.27)

In this space it is allowed to have the fields
(pseudoparticles or instantons) which satisfy the
self-conjugate property of the tensor F „

F:„(x)= *F:„(x), (2.28)

where the dual tensor *F'„„(x) is defined as usual
by

this time they correspond to the structure con-
stants of the Lie algebra of SO(3, 2).

The whole theory can be simplified if we discuss
it in Euclidean space-time instead of Minkowski
space-time. The metric tensor is now

L ' = ——gf' 'F ' „(x)F ',(x)F;,(x)p "'p~"p"' (2 ~ 26)
1

to the old Lagrangian (2.1), where the summation
over the indices runs only from 0 to 3. The re-
sultant interactions in this new Lagrangian take
the same form as Eq. (2.26), where the only dif-
ference is that the summation goes to the fifth
component. Note that the local gauge invariance
of the Yang-Mills type is not violated by the terms
in Eq. (2.26}. As before, we rewrite the new La-
grangian in the Duffin-Kemmer form. Then the
coefficients I';„become more complicated than
before, as shown in Figs. 3(a) and 3(b). Note that

FIG. 4. The structure diagram of F;» when the self-
conjugate properties are imposed on P»
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we can write the whole Lagrangian easily in the
form of Eq. (2.6):

I-,..., =-' f(x)(p's. —~)g(x)

+r 8;;p4;(x)0,(x)4g(x), (3.3)

FIG. 5. The structure diagram of I';~& for the self-
conjugate E&, case when the additional interactions are
present. This diagram exactly corresponds to that of
the octonion algebra.

*&;„(x)=he, 8&"'(x) (V, ~, o', p=o 1 2, 3)

(2.2&)

Consequently, as far as these fields are con-
cerned, we can replace the ten-dimensional column
vector P'.(x) by the seven-dimensional vector:

g,.(x) —g,'.(x) = g U, ,(x)P,(x) + V (x),
k~j

for some functions U,.~(x) and V, (x) which do not
depend upon the field g,. itself. Obviously any .

supersymmetric gauge theory can be written in
the form of Eq. (3.3) with its gauge transforma-
tion in the form of Eq. (3.4).'

Next let us consider Einstein's general rela-
tivity. The Lagrangian density is given by

(3.4)

where the summation over the indices i, j,k runs
from 1 through N. The numerical constant coeffi-
cients 8;,, in the interactions no longer have any
simple symmetry, since g, (x) now contains both
fermions and bosons. Nevertheless, the local
gauge transformation in our notation can be sum-
marized as

P;.(x) =(F;,(x), F;,(x), F f,(x),A;(x),

A;(x), A;(x),A;(x)) '. (2.30) where. the scalar curvature R is defined by

(3.5)

Accordingly, the interaction structure diagrams,
Figs. 1 and 3(a), now become Figs. 4 and 5, re-
spectively.

Note that Fig. 5 corresponds to the structure
diagram of the. octonion algebra" if we choose
the upper sign in the right-hand side of Eq. (2.13a).
Hence the cubic interaction terms

R p R py (3.6a)

(3.6b)

It is well known" that the variational principle ap-
plied to this Lagrangian

fa bcf' pa(x) y b(x) pc(x) d xl=O (3.7)
are invariant under the exceptional Lie group G„
where P;(x) transforms as the fundamental seven-
dimensional representation of G,. Unfortunately,
we do not know whether the invariance under the
group G, has any physical meaning or not. This
will be left to future investigations. In Appendix
B we will present one of the transparent realiza-
tions of the octonion algebra.

q,(x) =(q(x), q(x), y,'(x), .. . , y"„(x)), (3.2)

III. FURTHER GENERALIZATION

First we show that our method can be applied to
the cases where the matter fields are present.

Let q(x) be fermion fields interacting with gauge
fields A„(x) via the minimal coupling scheme:

& = iq(x) y" [&„-igA'„(x) t'] q(x) —q(x)m 'q(x), (3.1)

where t' is the p-dimensional matrix of the under-
lying gauge symmetry for a fermion multiplet.
Defining an N(= 8p+ 10n)-component vector gz(x)
as

yields Einstein's equations

R,„=O, (3.8a)

(3.8b)

when we choose both g„, and I'„„to be independent
variational variables. It is easy to see that the
complicated nonlinear Lagrangian (3.5) can be re-
cast in the form of Eq. (3.3), if we define the 50
dimensional vector g,.(x) by

8,(x) =(~-g r'",1'..), (3.9)

and discard some of the total divergence terms in
the Lagrangian. We simply remark here that the
50 x 50 matrices p~ now obey complicated fifth-
order polynomial identities, instead of the third-
order Duffin-Kemmer algebra of Eq. (2.10). The
detailed analysis on these properties of P„will be
given elsewhere, and we will not pursue this case.
At any rate, it is clear in our form that even gen-
eral relativity may be regarded as the ordinary-
Minkowski-space field theory with cubic self-in-
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(3.1o)

where we set

y (x)-=y"(x)C, P.=CP„, waif =-CM. (3.11)

However, we do not necessarily assume the ex-
plicit forms of P„, M, and I";,.„as given in Sec. II,
except the property that the matrices P, are
diagonal in the internal-symmetry space. The
general local gauge transformation is given by
the same form as Eq. (3.4):

P,'(x) —P,"(x)= g U;

blab(x)

+ .V;.(x) . (3.12)
k, b

Without loss of generality, we can assume the
following properties of P„and M:

P = —P„, M =M, (3.13)

since we are dealing only with bosons.
Now the invariance of the Lagrangian (3.10) under

the local gauge transformation (3.12) demands the
validities of the following equations:

Uab p
a Uac p

a abcik i j jl kl

U, 'M; U"=Mik ij jl kl

fabcUaa Ubb' Ucc'I —g'a bc I''ii' jj' kk i jk zl ~1kt

(3.14a)

(3.14b)

(3.14c)

as well as other equations involving V,.(x) which
are not reproduced here. Since we restrict our-
selves to Hermitian boson fields, it is reasonable
to choose U';j as a real unitary matrix in the sense
that

(Uac) &Ubc E5ab (3.15)

where we regard U;& as the (i,j) element of the
matrix U'~ and E denotes the unit matrix. Then
Eq. (3.14a) can be written as

teraction terms where the gauge transformation
is given by Eq. (3.4).

These results suggest that a general study of
Eqs. (3.3} and (3.4) may be worthwhile. However,
in this payer we will confine ourselves to the
generalized cases of Yang-Mills theories because
of the complexity.

We only consider a Lagrangian of the form de-
scribed by Eq. (2.6):

&(x) = —,
' P'(x)P'S„P'(x) ——,

' P'(x)tif P'(x)

+gf'"A "(x)A'"(x)]. (3.18)

This Lagrangian gives two equations of motion:

S A. '(x) SA—'(x)+„f"'A'(x)A'(x) = 0, (3.19a)

a'f'„„( )+gf'"A'"(x)F'„„(x)=0. (3.19b)

Equation (3.19b) is compatible with Eq. (3.19a),
since the integrability condition for I'„„

8'S"F'„„(x)= S "8"F',„(x)= 0, (3.20)

does not contradict with Eqs. (3.19a) and (3.19b).
We recognize that Eq. (3.19a) is the same equa-

tion of motion which the Sugawara theory of cur-
rents' gives. In the latter, the fields A'„(x) satisfy
the usual algebra of currents at equal times, while
in the former we should use, at least in principle,
canonical commutation relations among A'„(x}.
Thus our theory may differ in some aspects from
the Sugawara theory. The quantization of our La-
grangian will be discussed elsewhere. The La-
grangian (3.18) is invariant under the usual local
gauge transformation of Yang-Mills.

In closing this section, we would like to make
the following remark. If we choose the mass ma-
trixM as

0

in each irreducible space. This implies that we
cannot mix the space-time indices with the inter-
nal-symmetry labels under the conditions de-
scribed above.

It is easy to see that these conditions are actually
satisfied by the ten-dimensional Duffin-Kemmer
theory studied in Sec. II. However, this does not
imply that the solutions for M and I'; jk are unique.
Indeed, we have seen that we could have the solu-
tions for I";jk specified by Fig. 3, not by Fig. 1.

We can find another peculiar solution as follows.
Let us choose the mass matrix M =0 in the La-
grangian (3.10). Then we obtain the following La-
grangian in an ordinary language:

I.„,= =,'F;,(x)[s'A "(x) 8 A"(x)

[p U'b] = 0 (3.18) (3.21)
in the matrix notation. Hence, if the matrices P,
(p, =0, 1, 2, 3) either form an irreducible matrix
algebra ox do not contain the same equivalent irre-
ducible components more than once in their de-
composition into irreducible spaces, Schur's lem-
ma tells us that U' is diagonal in the i-j space, or

(U") =5„u" (3.17)
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and consider the Abelian gauge group U(1), then
our Lagrangian takes the form

a„(x)= 8„a(x),

rr2( x)+ o'(x}= C'.
(4.5)

(4..6)

I ==2 (8 A„8„—A„)Ii""+', A„A—", (3.22)

where we suppressed the index of the trivial one-
dimensional U(1) symmetry. Although this is no
longer invariant under the local gauge transforma-
tion, it is of some interest by the following reason.

Introducing new fields by

Therefore, the new Lagrangian produces the same
equations of motion as the old one with the con-
straint (4.2) gives. Now it is easy to rewrite the
Lagrangian (4.3} in our form (1.5). Introducing
the 21-component vector P,.(x) ( j= 1, . . . , 21) by

y,.(x) =(rr, (x), rr(x), o,(x), o(x), y(x)}, (4.&)

G 4vx f pA& A

}IT,:p = j'
we obtain the following form from Eq. (3.22):

(3.23)

(3.24)

we obtain

i = ', 7r(x)-P'8„q(x) ——,'y(x)mq(x)+C, y,.(x)

4vv- 4'vv= 4'vv+ 8v~v —8v~v ~

Gl „}t G~„x=G„„

where A, satisfies

8 (8"A' 8 "A")—0

(3.26a)

(3.26b)

(3.27)

The quantization of this model has been discussed
by Kaul and Hagen. "

IV. CHIRAL-INVARIANT LAGRANGIANS

The nonlinear realizations"" of the chiral
group SU+(n) S SU+(n) can also be regarded as
examples of our method. Here we consider the
simplest case where n= 2.

The first example we consider is the nonlinear
o model' where the Lagrangian is given by

1 C C vs+ r. g (8vyvh+ 8vykv+ 8xyvv)

(3.25)

which is the famous Cremmer-Scherk-Kalb-
Ramond Lagrangian for dual models. ' Note that
this Lagrangian now has the local gauge symmetry
of the type

(4.6)

Note that we now have a linear term in g,.(x). The
chiral transformation is linear in this model.
Thus we can write it as

q, (x) —rt,'.(x) = U, ,g,(x) . (4.9)

The second example consists of the canonical
realization by steinberg. The chiral-invariant
Lagrangian is

I =arD. F(x) D'v(x), (4.10)

+, , (2f' v)rr'rr' 8vrr'(x),
rr2+ f'

(4.11)
where e satisfies the equation

1

f + ( f2+ f2)1/2 (4.12)

where D, denotes the covariant derivative. The
most general form of covariant derivative is given
by

1
D„rr'(x) = . 2 .2), r2

6"p+J

I, = ', [8'rr 8 rr+-(8"o)(8,o)],
with the nonlinear constraint

rr '(x) + o'(x) = C' = const.

(4.1)

(4 2)

If we choose f equal to

(4.13)

-y{x}(rr'+o' —C') . (4.3)

Note that Q(x) is the Lagrange-multiplier field.
Choosing rr „rr, o„, o, and Q to be independent
variational fields, we obtain

2 „(x)= 8 „rr(x),

The field m is an isospin vector while o is an iso-
scalar. Because of the constraint Eq. (4.2) the
Lagrangian (4.1) is nonlinear. However, we can
write the equivalent Lagrangian to Eqs. (4.1) and

(4.2) by introducing the auxiliary fields rr, (x),
o,(x), and P(x):

i = rr, (x)8" rr(x)+ o„(x)8'o(x) -2 (rr, rr '+ &,o')

(4.14),-,()], . ()'(),
where we have chosen the scalar factor n as

n = 1/4'. (4.15)

In order to rewrite the Lagrangian (4.14} in the
form (1.5), we introduce the auxiliary field $'„{x)
by

1
q„(x) [,,

( ),rr (x).

Then the Lagrangian (4.14) is equivalent to

for some constant X, the Lagrangian (4.9) becomes
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L = .'P(x)p"s.e (x)

--', y (x)~y (x)[1+~'y'(x)1'y'(x)]', (4.17)

model is nonlinear:

5 v'(x) = (I/~)e'[-'5 "(I ~'&')+ ~'» ] (4.19)

where we have set

g'(x) =(y'„(x), v'(x)) r,

y (x) =(y (x))'C.

(4.18a)

(4.18b)

Unfortunately the chiral transformation in this

where 8~ is a small constant parameter of the
chiral transformation. Therefore it is impossible
to write the transformation as Eq. (3.12).

The explicit forms of 5 x 5 matrices p„c, M,
and I' are given as follows:

0,
1 0 0

010
001

-10 0

0 0

0 0 -1 0

0 0 -1
(4.20)

0-1 0 0 0-1

Note that the 5 x 5 matrices p, satisfy the same
Duffin-Kemmer relations,

p.pgp. + p.pip~= &~.p ri~p-~— (4.21a)

V. GAUGE THEORIES IN THE FIVE-DIMENSIONAL SPACE

In Sec. II, we have seen that the group SO(3, 2)
may have some relevance. However, as shown in
Sec. II, the whole Lagrangian is not invariant under

p.'= cp„c-'= p", c'=c=c-'=-1-2(p,)',

(4.21b)

as those for the vector field case, Eqs. (2.10),
(2.11), and (2.12).

It is regrettable that the new Lagrangian (4.17)
is more complicated, since it contains a sixth-
order polynomial term in P;(x). In this respect,
only the o-model realization (4.8) ha, s resem-
blance to the Yang-Mills case.

&;„(x)= S „&„'(x)—S,&;(x)+gf'"A'(x)A'(x), (5.1)

for p, , v = 0, 1,2, 3, 5. Hence the Lagrange density
is now simply written as

L = --.' +' (x)E'""(x) (5.2)

where the summation over the "Lorentz" indices
runs from 0 to 5.

this group, since it contains both T,' component of
a tensor T„and V, component of a vector V . In
this section we will construct a simple example of
the gauge theories which are invariant under the
de Sitter group SO(4, 1)."

We introduce a fifth coordinate x„ formally,
although we assume that somehow the gauge fields
are independent of x„or at least their dependence
is practically negligible. The departure of the
present scheme from that given in Sec. II is that
we do not regard E'„(x) as independent variables,
but those given in terms of A'„(x):
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From our assumption on the dependence of the
fifth coordinate,

8
A'„(x) =0.

. ~x5

Defining the scalar field Q'(x) by

y'(x) =A'(x)

(5.3)

(5.4)

with the metric q»= -1, instead of Eq. (2.23), we
can rewrite the Lagrangian (5.2) as follows:

L=Lp+ Lx, (5.5)

i,=--.' P F:.(x)F ""(x),
Q~ P&

3

L, =2 D„'x D" 'x

(5.6)

(5.7)
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where we have set

D „Q'(x) = F'„,= & „Q'( )x+ gf'"A'„( x)P'(x) . (5.8)

The resultant Lagrangian (5.5) is actually equiva-
lent to the usual four-dimensional theory where the
scalar field Q'(x) is coupled to the gauge field
A~(x) via the minimal way. Note that the scalar
field P'(x) belongs to the adjoint representation
of the group.

It is interesting to note that in the grand unified
gauge theories" at least one of the Higgs scalars
which break the unified symmetry to SU(2) SU(1)
8 SU„„,(3) transforms like the adjoint represen-
tation. In particular, in the SU(5) case, you need
only one Higgs scalar, which belongs to the adjoin
representation, for that job. Thus the present
theory may provide a clue to the grand unification
scheme. However, we will not pursue this point
further in this paper.

02-3065-000.
Note added. After completion of this paper we

were notified of the following: First, even super-
gravity has the interaction which can be written as
a single cubic term by a suitable redefinition of
the fields. We would like to thank Professor S.
Deser for this comment. Second, there are series
of papers on the interactions among Duffin-Kem-
mer-Petiau fields [see B. G. Kenny, D. C. Peaslee,
and Michael Martin Nieto, Phys. Rev. D 13, V5V

(1976) and references therein]. The general Bhabha
SO(5) formalism for a free arbitrary-spin field has
been dealt by R. A. Krajcik and Michael Martin
Nieto, Phys. Rev. D 15, 445 (1977) and references
therein. The supersymmetry of arbitrary spin has
been developed by Jarmo Hietarinta, Phys. Rev.
D 13, 838 (1976). We are grateful to Professor
Michael Martin ¹ietofor this information.

APPENDIX A

In the text we neglect the dimensional considera-
tion of the fields, since we are only interested in
the transformation properties of them. For ex-
ample, in the Yang-Mills case the vector P "(x)
which has the correct dimension is given by

where m, has the dimension of mass. This para-
meter m, is arbitrary and need not be identified
with the mass of the gauge fields. The choice
m, = 1 corresponds to the one used in the text.

The Lagrangian still takes the same form as Eq.
(2.26), except for the following changes in the
definition of the matrices P and M, and'the cou-
pling constant g'.

This work is supported in part by the U. S. De-
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g' ™og.
Note that the parameter mo is spurious in the
sense that it does not change the theory at all.

However, as we will do later, the introduction
of the additional cubic interactions, Eq. (2.26),
makes mo have the physical meaning, since the
added terms in the correct mass dimension are the
following:

fabc~a ~b ~c rlvu~Byr vx1
tv e8 yX

0 ~

Thus the solutions with these additional interac-
tions have the inherent size 1/m, . At any rate,
the form of the Lagrangian and its symmetries
in the Duffin-Kemmer formulation remain the
same.

APPENDIX B

We consider the following realization of the
octonion algebra. Although this realization may
not be entirely new, "we present it in view of its
relevance to the discussion in Sec. II. Hereafter
all greek indices refer to the Euclidean space-
time with x4= ixo.

Let f,„be a self-conjugate antisymmetric ten-
sor,"i.e.,

(B1)

Let a„be a vector. Furthermore, we introduce

the unit element e,. Then the set consisting of

f„, a„and e, provide the bases for an eight-di-
mensional space. Now we impose the following
multiplication table

a a„=f„„—6„„eo,

f~„&),= —&y fp„6,gy&„6~y&g+ 'E y ygy&g i

f..f g=~. f.a —&. f.e ~.af-+~.ff.

(B2)

(B3)

(B4)

The consistency among Eq. (Bl)-Eq. (B4) can be
checked easily.

If we set

el f14 f 3 82 f24 f31 &3 = f3~ = F2 (B6)
4 l 5 +2 6 ~3 e7 4

we can rewrite Eqs. (Bl)-Eq. (B4) as follows:
7

e,e, =-6.,,e, + P 1"„e (j,@&0), (B6)

where the totally antisymmetric coefficients I',.
~

assume the values+1, 0, -1, only, and behave
like those in Fig. 5. Therefore, the eight objects
e,. (j =0, 1, . . . , 7) now define the desired octonion
algebra. The fact that the cubic terms I',, Q',

for the three seven-dimensional objects P,". (a= 1,
2, 3) are invariant under the group G, requires
some further algebraic discussion. This is left to
the reader.
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