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Singular classical solutions of Euclidean field theories
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The classical solutions of the equations of motion are studied in some Euclidean field theory models either
conformal invariant or noninvariant. In the conformal-invariant models a virial theorem for merons is derived

which is of the same form as the known one for instantons. Some examples of singular solutions are
discussed. An interesting relation seems to hold between the local symmetry properties of the singular

solutions and the degree of divergence of the Euclidean action.

I. INTRODUCTION

Classical solutions of equations of motion in
quantum field models may help us understand non-
perturbative quantum properties. Although the em-
phasis has been on regular and sourceless solu-
tions with finite energy (solitons) or Euclidean
action (instantons), solutions with logarithmically
divergent action (merons) have also been con-
sidered interesting in the approximate evaluation
of the Feynman path integral as well as solutions
of gauge fields in the presence of sources in
studying the dynamics of heavy quarks. Thus it
seems desirable to understand the properties of
the general classical solution in Euclidean space. '

In Sec. II we derive virial-type theorems' for
meronlike solutions. As in the case of instantons
the theorem is useful in excluding solutions for
some models in certain space-time dimensions or
in finding exact or approximate solutions when they
exist. Virial theorems which may have a similar
use are also easily derived for higher moments of
the energy-momentum tensor. We discuss the
properties of meron solutions in two models: a
scalar self-interacting multiplet and the CP~ '
model. In Sec. III we indicate that some of the
meron properties are lost by the singular solu-
tions of nonconformal models. This is illustrated
by two examples in R': a scalar self-interacting
massless multiplet and a similar multiplet inter-
acting with a Yang-Mills field.

Finally let us remark that there seems to be a
connection between the symmetry properties of a
classical solution and the degree of divergence of
its Euclidean action. It is well known" that in the
conformal. g' model in Euclidean R~, the only so-
lution invariant under O(5), the instanton, has a
finite action, while the meron solution, invariant
under O(4) x O(2) only, has a logarithmically di-
vergent action.

Moreover, the general solution with O(4) sym-
metry only" which is computed in terms of
Jacobi elliptic functions has an action at least

logarithmically divergent. Similar features are
observed in pure Yang-Mills theory by using the
ansatz" that maps solutions of the conformal P'
model into solutions of Yang-Mills theory. Very
few solutions are known" which have less than O(4)
invariance, and they have an action divergent as a
power of the cutoff.

It may be useful to stress that the symmetry
property of the classical solutions that we are
discussing is a local symmetry property of the
solution in a region where the physical densities
are subtanstially different from zero, and we do
not refer to the global symmetry property which
may be less significant. For instance, by use of
conformal symmetry a meron-meron pair solution
that has one center at the origin and the other at
infinity [and therefore O(4) x O(2) global symmetry]
may be converted into a solution with both centers
at finite points, thus reducing the global symmetry
property of the solution, but not its local proper-
ties around the centers.

S,T,„[y,x]=0

implies

S (x,T „)=T„„.

(2.l)

(2 2)

If (2.2) is integrated over all Euclidean R" space
and if the regularity and asymptotic properties of
the fields allow one to neglect the surface contribu-
tion of the current J ""—= x'T ', one obtains

"xT,„[g,x]=0 (p, v=1, . . . , n). (2.3)

II. MERON SOLUTIONS IN CONFORMAL MODELS

Let us recall the Laue theorem" in its simplest
form which is useful for regular time-independent
solutions (static solitons and instantons). Let
2[P, x] denote the Lagrangian of a set of fields P
in Euclidean R" space and T,„[g,x] the energy
momentum tensor (it may be the canonical, Belin-
fante, or the "improved" one). The energy-mo-
mentum conservation law
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The usual form of the virial theorem' follows by
taking the trace of Eq. (2.3),

(2.4)

and the more detailed theorems obtained by non-
isotropic scale transformations correspond to
linear combinations of Eq. (2.3).

Of course one may easily obtain infinitely many
other relations of the virial type by partial inte-
gration,

d "x T,„s„f (x„.. . , x„)=0,~ ~ ~ (2.5)

provided that f„(x„. . . , x„) is a, set of smooth
functions and the integrals converge. Equation
(2.5) contains both the local property (2.1) and the
asymptotic properties of the energy-momentum
density tensor.

If the set f is chosen to be a complete set of
orthonormal functions in R", Eqs. (2.5) are well
defined and fully equivalent to Eq. (2.1). Some-
times the first few equations are helpful in the
search for approximate solutions which do not
have simple symmetry properties. "

%e shall n'ow extend this theorem to the singular
solutions often called merons. Such solutions
have only been studied in some conformal models:
nonlinear o models in R',"massless Q' theory in
8', ' pure Yang-Mills theory in R,'"Yang-Mills
field coupled with a scalar multiplet in R,"mass-
less scalars interacting with massless fermions in
O'." Multimeron solutions in these models have
also been studied i8

Most of the single-meron-pair solutions here
mentioned have the following properties:

(i) The Lagrangian density is regular and has a
finite integral over any region of Euclidean space-
time excluding the neighborhoods of two points
which we call centers of the meron pair. These
two regions give logarithmically divergent con-
tributions.

(ii) In non-Abelian gauge models the gauge field
is proportional to a pure gauge; in some models
the topological charge density is concentrated at
the centers of the meron pair.

(iii) The meron solutions have a large group of
symmetry. For instance, in models in Euclidean
8' space invariant under the conformal group
O(5, 1) (generated by M,„, P», K», and D), while
the instanton solutions are invariant under the
subgroup O(5) generated by M „„and 8„=P „+K „,
the meron solutions are invariant under the sub-
group generated by M „„and D.

Yet no single such property holds for all the
above-mentioned solutions (in fact no general
characterization of meron solutions seems to

x f((x —a )'). (2 6)

The conservation of the energy-momentum tensor
implies that

(2.7)

c, being a constant. One might check for example
that the solutions of the conformally invariant P4

theory in R' which have O(4) symmetry'o (but not
a higher one) do not allow the local representation
[(2.6) and (2.7)] even in the cases where the action
is minimally (i.e. , logarithmically) divergent.

By using conformal symmetry, one of the cen-
ters of the action density can be shifted to the
origin and the second to infinity. Then it is plausi-
ble that the assumed local behavior (2.6) holds
glob a,lly:

(2.6)

Indeed, Eq. {2.8) holds for every known meron
solution, but it will not be needed in the deriva-
tion of the virial theorem.

%e shall now easily prove the virial theorem for
merons. Let us call a„and b„ the centers of the
meron pair and o, and 0, two small spheres with

exist).
Property {ii) is probably the less appropriate

not only because one may be interested in classical
solutions (regular or otherwise) in models that
have no topological number but mainly because it
was shown that for a sing. ~lar solution the topo-
logica. l number may be changed (by a singular
gauge transformation) without affecting the type
of singular behavior of the solution" (this does
not happen for regula, r solutions). One may also
notice that properties (iii} and (i) seems to be
closely related. %'e then adopt a definition based
on property (i) and, furthermore, we require a
specific local behavior of any symmetric traceless
energy-momentum tensor T"", in the regions
where the solution 'is singular. Such local behavior
is suggested by properties (i) and (iii) and indeed
it holds for all known solutions where (i) and/or
(iii) hold. However, it is more convenient than the
above properties in looking for exact or approxi-
mate solutions in less simple cases (for instance
multimerons}. Specifically we shall here consider
the sourceless solutions of conformal field theories
in the Euclidean R" space everywhere regular ex--
cept for two points, the centers of the meron pair.
In the neighborhoods of each center, say x, -—a,
we assume that the energy-momentum tensor is
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centers in a„and 5„. By integrating Eq. (2.2)
over all R" space and using the divergence theorem
we have

and

d'xe„(f),8„$'=0 (gW v). (2.15)

(2.9)

The integral over the surface at infinity S„van-
ishes because of the meron property that the action
density is integrable over any domain that ex-
cludes the centers of the meron pair. By using
(2.6) and (2.7) we obtain

d"xt =(( —n)c, f dA

+((-n)c Jun (y -& )y
b n y2

(2.10)

Hence meron solutions may only exist for nega-
tive X. If we look for a meron solution with a cen-
ter in the origin and the other at infinity, the glo-
bal assumption (2.8) yields

J' y'

(2.i6)

Analogous equations may be obtained for Yang-
Mills systems and they are of first order.

Two simple (sourceless) solutions are obtained
from (2.12) and (2.16):

(2.i7)

where y, is the coordinate with respect to one of
the centers of the meron pair and 0„ is the total
solid angle in R". Now by taking the trace of Eq.
(2.10), conformal symmetry implies c,= -c„
therefore

~ ~ ~d"xr,.[y, x]=0 (p, , v=1, . . . , n). (2.11)

(2.18)

because we need T,~=O, but the improvement
gives no contribution after integration. Then Eq.
(2.11) yields

'x(R, ('.)*=f d'x(&, ('.)'= d'x(ll

The virial theorem for merons then has the same
form as for instantons. Of course it will not be
useful here to consider the trace relation, as in
Eq. (2.4), because by conformal symmetry this is
a trivial identity.

As an example of the use of this theorem, let us
consider a set of massless scalar fields (t),
(a= 1, . . . , 4), which transforms as a vector under
the internal-symmetry group O(4) in the Euclidean
84 space with the I agrangian

(2.12)

The proper energy-momentum tensor here is the
improved one,"

which is well known, ' and

(2.18)

The topological cha, rge of a Higgs multiplet (t), is
usually calculated from the Kronecker index of the
normalized vectorial field (t), = P,/(g, P")' '. This,
however, requires regularity properties for the
modulus (Q,Q')'~ which do not hold in the solution
(2.18). Every regularization of (2.18) would pro-
duce a unit topological charge.

The meron solution (2.17) is invariant under an
O(4) && O(2) group, where O(4) is generated by the
four-dimensional rotation operators and O(2) is
generated by D = x,8 „+1. In the case of meron
solution (2.18), since space and internal indices
are mixed, the space-time rotations have to be
supplemented by similar transformations in the
internal space, so that (2.18) is still invariant
under an O(4) x O(2) group where now O(4) corre-
sponds to the "complete" (i.e., space plus inter-
nal) four-dimensional rotations and O(2) is gene-
rated by D = x„B„+1. A s another example of a
meron solution in conformal models, we consider
the two-dimensional Euclidean CP" ' nonlinear o.

models" with Lagrangian density

(2.19)

where e (x) (n =1, . . . , N) is a complex N-compo-
nent field satisfying the constraint z z" = 1.

A meron solution which is a simple generaliza-
tion of that of the O(3) o model" is

1
e (x)= ~ (e '"'u + e"~'v ), (2.20)

(2.i4) where 8= rg(xa, +i )anxd u„u =v v =1, u v =0.
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It has a topological charge density

q(x) -=.&,(z e,„&„z')=-', 5'(x);
27r 2

(2.21)

the canonical energy-momentum tensor is

T „= 5 „—2 (2.22)

and the Lagrangian density is

&(x) = 1
2x' (2.23)

III. SINGULAR SOLUTIONS IN NONCONFORMAL MODELS

It is clear that the singular solutions of equations
of motion of nonconformal model lack most of the
properties of meron solutions in conformal models.
However, nonconformal models also are in-
teresting and the singular solutions that we
describe in this section are of obvious relevance
in the study of the general solution of the classical
equations of motion.

First we consider a scalar massless multiplet

P, (a = 1, .. . , n) which transforms as a vector under
the internal-symmetry group O(n) in the Euclidean
R" space described by the Lagrangian density

(3.1)

With a radial ansatz P, = (x,/r) f(r), y= (x,x„)'~',
one has the equation of motion

K(~)A'= &„,x,. ez

H(r)
6 aer2 ~
=x

(3.7)

the Euclidean action is

in the preceding section. For n=3, Eq. (3.3) is
essentially the equation discussed by Wu and
Yang" that describes static solutions of a pure
Yang-Mills system in R'. We note some obvious
properties of the solution (3.6) in R'.

(a) It is invariant under the group O(3) x O(2)
generated by the usual "complete" operator M,„
and D (where D = x„a,+ 1 while the canonical di-
mension of P, in R' is —,'}.

(b) The density of the canonical energy-momen-
tum tensor vanishes.

(c}The Euclidean Lagrangian density is regular
everywhere in R' except at the origin; it diverges
linearly when integrated in a domain that includes
the origin.

(d) The same comment made on the topological
charge of the solution (2.18) holds here.

As a second example of singular solution for a
nonconformal theory, we consider the SU(2)
Yang-Mills field coupled with an SU(2) Higgs
field in Euclidean R' space. For convenience,
as in the previous example, the scalar multiplet
is taken to be massless. With the usual radial
ansatz

d f (n —1) df (n —1)
dr2 '

y dr i2 (3.2}

By a change of variables g = rf, ~= e' one obtains
the autonomous equation

d g d
dg' dz, +(n-4) -2(n-2)g-xg'=0. (3 3)

The associated autonomous system of first-order
differential equations

(yH' —H)2 XH+' -+

and the field equations are

&2K« K(K2 1)+KH—2

y2H"=2HK + —H
g2

(3.6)

(3.9)

dg
dz

—y = (4 —n) y+ 2(n —2)g+ Xg'
dz

has three singular points (dg/dz = dy/dz = 0):

(3.4)
After the change of variable y = e' we have the
hutonomous system

dK
dg

2(2 —n) '~'
g=0, g=+

which yield the singular solution

2(2 n} '" x—

(3.6)

(3 6)

=K(K —1)+KH
dz

dH
dg

= 2HK2+ —
2

H3.
dZ 8

(3.10)

For a=4 the model is conformal invariant and the
singular solution is the meron already mentioned

There are two sets of singular points (dK/dz =

d Y'/dz = dH/dz = dW/dz = 0):
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2e'
2 y P 2 2 (3.i2)

The second set provides, for negative A. , singular
solutions that have interesting properties:

(a) The non-Abelian gauge field is proportional
to a pure gauge:

A'0Ao., 1 K
z 2 2 1

where U=ioI, x, /r.
(b) The solution is invariant under the group

O(3) && O(2) generated by the "complete" rotation
operators and by D=x~e~+1.

(c) The density of the symmetric (Belinfante)
energy-momentum tensor vanishes.

(d) The Euclidean Lagrangian density is every-
where regular except at the origin; it diverges
linearly if it is integrated in a domain that in-
cludes the origin.

(e) The same comment made on the topological
charge of the solution (2.18) holds here.

The first set implies the vanishing of the Higgs
fields and then yields the singular points of the
self-coupled Yang-Mills system discussed by Wu
and Yang. We just recall that K = 1 implies
F', =0, while K=O provides the singular solution

~g & ~g +g l

(f) This solution, like the solution of the pre-
vious example, is closely related to the Wu- Yang
solutions" of static Yang-Mills fields and has the
same source problem. It is easily seen that the
radial equations have a source proportional to
5'(z) and therefore the solution (3.12) actually solves
the equation of motion of the field A;. in the presence
of a source proportional to J;=E„,(x,. /r). 6'(r)
which is obviously ill-defined. " One may note that
by taking K=1, H40, the gauge fields A, vanish
so the previous example is recovered.

As a last example we consider the same system
allowing for massive Higgs fields, restricting to
the simpler configuration with K=O. Then the
only equation is

r 2+II Q 3
p 2+~ 2 (3.14)
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where p, is the Higgs mass.
The powerlike solution H(r) =+ (ep/WX)r yields

$,(x) with spherical and scale symmetry (although
with noncanonical scale dimension). Now the
Euclidean action is divergent both at the origin and
at infinity.
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