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Quantum numbers for Dirac spinor fields on a curved space-time
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The most general first-order differential operator that commutes with the Dirac operator and hence permits
the construction of quantum numbers is given. Necessary and sufficient conditions for its existence are
expressed in terms of the generalized Killing tensors of Yano. As a special case we obtain-an extension to

curved space-time of a covariant description of spin.

INTRODUCTION

The construction of first integrals of the evolu-
tion equations for the variables of a physical
system plays a crucial role in the resolution of
different problems in classical mechanics,
classical field theory, and in quantum theory.
When the equations of motion are derivable from
a Lagrangian invariant under the action of a
symmetry group, Noether’s theorem allows one
to associate a constant of the motion to each
generator of the group. In general the symmetry
group of a Lagrangian appears as the direct pro-
duct of a subgroup of internal symmetries and a
subgroup of geometrical symmetries. The geo-
metrical symmetries most usually considered are
the isometries. They are described locally by the
so-called Killing vector fields that can be inter-
preted as representing the infinitesimal displace-
ments of an isometry group.’ The consequences
of the existence of a Killing vector field are well
known.? When the lines of the coordinate system
being used are such that one of them coincides with
the integral curves of a Killing vector field (a
coordinate adapted to a symmetry) the correspond-
ing coordinate does not appear in the Lagrangian.
In this case the equations of motion admit a first
separation of variables involving this particular
coordinate defining a corresponding constant of
motion. Moreover, and this is of considerable
interest in quantum field theory, the derivative
operator involving this privileged coordinate
commutes with the field equation operator. In
fact this derivative operator is the Lie derivative
operator associated with the Killing vector field
being considered. Its eigenvalues on the solution
space of the field equations are the quantized values
corresponding to the classical constant of motion.
The average value of this quantity for a given state
is obtained by calculating the flux of a conserved
current across a spacelike hypersurface. ‘

The constants of motion generated by Killing
vector fields are not the only ones possible. Re-
cently Carter® has developed a general formalism
for this problem and has illustrated its use in the
particular case of constants of motion for the
equations of motion of a particle and of a scalar
field in interaction with an electromagnetic field.
This led him to distinguish the notions of Stiackel
tensors and Killing tensors, second-order sym-
metric tensors by means of which are generalized
the more familiar constants of motion which arise
from Killing vectors. A particularly remarkable
result due to the existence of these tensors is the
separability of the Hamilton-Jacobi equation and
the Klein-Gordon equation in the Kerr space-time
whichadmits only fwo Killing vector fields. Itwasthe
discovery by Carter? of an unexpected fourth constant
of motion in this space-time which was the starting
point for the kind of study just described. More
recently Chandrasekar® has devised a pro-
cedure (generalized by Page® and Guven”) of se-
paration of variables for Dirac’s equation on the
Kerr space-time. An analysis of this method due
to Carter and McLenaghan® shows that this se-
paration procedure depends on the existence of a
differential operator constructed from an anti-
symmetric second-rank tensor, the Penrose-
Floyd® tensor, that commutes with the Dirac
operator. ' :

The aim of the present paper is to construct the
most general first-order differential operator
which commutes with the Dirac operator. We show
that the tensors from which this operator is con-
structed must all satisfy the same kind of equation,
namely the generalized Killing equations of Yano
and Bochner.' Such tensors have also been studied
in the context of general relativity by Collinson.
Each of these tensors is completely antisymmetric.
In order to avoid confusion with the terminology
introduced by Carter'? we shall call them Killing
forms. In particular, we show that in addition to
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the constants of motion obtained from Killing .
vectors and Penrose-Floyd tensors there exist
first integrals depending on the existence of a
completely antisymmetric third-rank tensor
satisfying the equation of Yano and Bochner just
mentioned. We shall call these tensors and their
duals respectively tensors and vectors of Yano.
Since it seems that the third-rank Yano tensors
have been overlooked we present some of their
properties. In particular, we show that they are
intimately related to certain conformal-invariant
properties of the space on which they are defined.
We describe them briefly on Minkowski space,
where their physical significance is the most
transparent, and also in the de Sitter universe
and on the Kerr-Newman space-time.

II. CONSTRUCTION OF THE CONSTANTS OF MOTION
FOR THE SPINOR FIELD

The equation of the spinor field on a curved
space-time in the presence of an electromagnetic
field (with potential A,) has the form

Hyp=myp, (2.1)
where Dirac’s operator H is given by

H=4y*(V, —ieA,). (2.2)
In this expression the Dirac matrices y* are de-

fined in local coordinates up to a similarity trans-
formation by the anticommutation relations

P, rPr=2¢"1, . (2.3)

while V, denotes the canonical covariant derivative
for spinors.!®> The essential properties of this
derivative are summarized in the following for-
mulas:

Vrt=0, 2.4)
v[ nvu] = %Raapuyays s (2.5)
where R,;,, denotes the components of the Rie-

mannian-Christoffel curvature tensor.
The most general first-order differential
operator

K=FV +G (2.6)

which commutes with Dirac’s operator is obtained
by setting separately equal to zero the symmetriz-
ed coefficients of the covariant derivatives of each
order in the expansion of the commutator [H,K].**
This leads to a system of three necessary and
sufficient conditions for K to be a constant of mo-
tion. The first of these conditions is

[, F»]=0, 2.7)

from which one finds on introducing an irreducible
tensorial basis that F* has the form

F®=B%[+Cy* +D%°y® +E%,v*®y"1, (2.8)
where

Dog=Diagyy Eagy =Erasr) 2.9)
and ‘

7 =—41—!17a3757°‘7°‘7’7° . (2.10)

In the last equation 74,5 denotes the components
of the volume element of the space-time. In
natural coordinates it is given by

Nagys =41 V=8 012030553 ;- (2.11)
The second condition is

[G,Y"‘]_—)/BVBF“ —ieAg[F*, y*]=0, (2.12)
from which one deduces the conditions

Co=0, (2.13)

B4y =0, (2.14)

Dygiry =0, (2.15)

Eug;0y=0. (2.16)

These are just the equations satisfied by the Kill-

ing forms of Yano!® defining respectively Killing

vectors, Penrose-Floyd tensors, and Yano tensors.
The last two equations are equivalent to

*Dugiy = 38y *Dat’ss » (2.17)

Eoip=48aE"s (2.18)
where ,

*Dyg = 5Magys D 5 (2.19)

Eq =MagyosE”° (2.20)

denote the tensors dual to D,z and E_g,, respec-
tively. We also may deduce from the condition
(2.12) on taking account of the conditions (2.13) to
(2.16) that only the trace of G remains undeter-
mined. We obtain explicitly
G=®I —3E%,7° + (5 *D%; , — ieCA)y*
+ieA Dy*y°v® + (ieA Eg®, — $Bs,, ey 1.
(2.21)
The- third condition becomes on account of the
Ricci identities (2.5) for the spinor covariant de-
rivative
%{Fta, 8 ]}Rag.,a?’y’)’ﬁ +78G;5
+ie(Ag o F*v? + A[G,¥%])=0, (2.22)
from which follow the additional conditions
@, +ie(BP A,z +AgB®,,)=0, (2.23)
F oD% =0, (2.24)
Fa[BEa‘rb]:oa (2.25)



where

Fas=2Ata;a1 (2.26)

is the electromagnetic field tensor.

The basic principles of quantum mechanics'® re-
quire the operator K to be formally self-adjoint the
same as Dirac’s operator. Since any operator may
be formally decomposed into self-adjoint and anti-
seli-adjoint parts this results in no loss of genera-
lity. Indeed the operator K is linear in the Killing
forms. Thus the most general anti-self-adjoint
operator may be deduced from the general self-
adjoint operator by multiplication by i. Fora
spinor field the dual is obtained by the following
operation (Dirac conjugation):

Y=-u'8, (2.27)
where B can be chosen to satisfy the relations
v,8=0, B=p". (2.28)

Following Carter'” an operator K will be formally
self-adjoint if for arbitrary spinor fields ¢, and ¥,.
with compact support we have

f WIB(E?Y, + G Wy = f [(F*V, + G)p,]"B,dv .

(2.29)
Since this equation must hold for arbitrary sup-
ports of the fields we may deduce the following
two conditions. The first condition is

BF* + F*'3=0, (2.30)
from which one obtains the following conditions:

BY = —B%* (2.31)

C=-C*, (2.32)

D,, =D%;, (2.33)

E g =EY%, . (2.34)
The second condition is

BG -G'B=0, (2.35)

which on account of the preceding conditions re-
duces to

d=3*. (2.36)

We now make the following substitutions in Eqgs.
(2.8) and (2.21):

C—~ic, B*~ik%, Dug~faz, Eopy=Yasys
Ea*yon @ -9,

where ¢ is a real constant, 2* a real Killing vec-
tor, fus a veal Penrose-Floyd tensor, y,s, a veal
Yano Killing form, and ¢ is a real-valued func-
tion. '

We are now able to enunciate the following

(2.37)
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theorem: The most geneval self-adjoint first-
order diffevential operator which commutes with
Dirac’s operator is

K =[BT+ cv*) +F V%% + Y v a7y 1]V
+OI =39% %+ G ¥, , + ecAP)y,
+ieA, [P0y +i(eAays®, — thay WY,
(2.38)

wheve ky, fag, and yqe ave antisymmetric tensors
satisfying the Yano-Killing equations

(2.39)

and the electromagnetic field tensor F .4 defined
by Eq. (2.26) satisfies

C,a =Ra;py =Sabiry =Vasr;0 =0,

eFapf*n =0, (2.40)
eF,159%1=0, (2.41)
b0 —e(PA s +AR®,,)=0. (2.42)
III. DISCUSSION
First of all we note that Eq. (2.42) implies
efFaB:O, (3.1)

where £, represents the Lie derivative in the
direction of the vector field 2*. This equation
reflects the gauge invariance of the second kind of
the Dirac equation. Clearly we can always choose
¢ constant by a gauge transformation. This re-
mark elucidates the apparent lack of gauge in-
variance of the corresponding operator of Carter
and McLenaghan'® where the gauge is implicitly
fixed by the assumption ¢ =0.

The constants of motion associated with Killing
vectors and Penrose-Floyd tensors have been dis-
cussed by the previously mentioned authors. Thus
we shall concentrate our attention on those as-
sociated with the tensors and dual vectors of Yano.

It follows from Eq. (2.18) by virtue of Poincaré’s
lemma that the Yano vector is derivable from a
potential

Ya=2Y. (3.2)

In addition this vector is the generator of an in-

~finitesimal conformal transformation since

Y(apy = i8asY 5y - (3.3)

We propose to call such vectors the generators of
conformal translations. Note that the orbits of
these transformations are geodesic since

Vase* =5V Ve - (3.4)

If one differentiates Eq. (2.18) and applies the
Ricci identities the following identities are obtain-
ed:
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ym;Br:—%gaBRrﬁyGy (3.5)
(Rapys —%g‘r[aRB]b)yﬁ:O- \ (3.6)

By contracting the latter equation with y” we de-
duce that the Yano vector is an eigenvector of the
Ricci tensor: k o

Ros 9 =2yq - (3.7)
On an Einstein space Eq. (3.6) reduces to
Coprs°=0, (3.8)

where C,q,; denotes the Weyl tensor. It follows
from this equation that tke existence of a Yano
vector on an Einstein space implies that the space
is conformally flat or of Petrov type N.

latter case the Yano vector is a characteristic

null vector of the Weyl tensor. A further algebraic
" condition is obtained by writing Eq. (2.41) in the
form

eF ;"= 0. 3.9)

This condition implies that if the spinor field is
effectively coupled to an electromagnetic field
(e# 0) the latter field must be singular in order
for a Yano vector to exist.

From the Yano tensor y,s, One may construct
a Stackel-Killing tensor by setting

auv:%yuaﬂyvuﬂ:yuyv"guvyaya- (3.10)

In fact as a consequence of Eqs. (2.18) and (3.9)
this tensor satisfies the conditions®

e
@u1=0, @y =0, -&a,(uF",ﬁO (3.11)

that are the necessary and sufficient conditions for
the quadratic form

K=a,u"u (3.12)

to be a first integral of the classical equations of
motion of a particle in interaction with an electro-
magnetic field:
o e 8
u?, uaz—F“Bu . (3.13)
m’,

This is not the only link between the Yano-Killing
forms and the constants of motion of these equa-
tions; Carter and McLenaghan® and Collinson?!
have exhibited an analogous property of the Pen-
rose-Floyd tensor. In addition, Carter® has
shown that when the source-free Einstein-Maxwell
equations are satisfied on the space-time the
Stidckel-Killing tensor defined by Eq. (3.11) is a
Killing tensor. This means that the operator on
scalar fields defined by

K =Dya**D,, . (3.14)

where

D, =V, -ieA, (3.15)
commutes with the Klein-Gordon operator
H=D, g"“f‘D,3 . (3.16)

In this situation the integration of Eqs. (2.18) can
be simplified by the following consideration.
Indeed if

R%; = x(F**F,, - 56§ F*°F ), (3.17)
Eq. (2.18) implies

RaB;‘ryu:(RaBya);v—%RrBya;a- (3.18)
On the other hand, from Eq. (3.5) it follows that

R 0819y =0. (3.19)

Equations (3.17), (3.18), and (3.19) imply when
e+ 0

Ry Vo =5%y0, 8, (F s F*°)=0. (3.20)

Thus in view of Eq. (3.2) we find that the potential
of the Yano vector field is a function of the invar-
iant F,, F*° of the electromagnetic field. In parti-
cular, if the electromagnetic field in this model is
radiative (a null field) there can exist no Yano
vector.

To conclude, we note that the maximal number
of independent solutions of Eq. (2.18) on an n-
dimensional space is n+1. In particular, this
number is attained on a space of constant curva-
ture. In Minkowski space the general form of the
Yano vector in rectilinear coordinates is

y* =3(a* +bx*), (3.21)

where a® and b are five arbitrary constants. The
corresponding operator given by Eq. (2.38) gives a
covariant description of the operators of helicity
and spin®® when 5=0 and is diagonalizable simul-
taneously with the energy and momentum opera-
tors. This is no longer true when b is not equal
to zero. In this case the interpretation of the
operator is less clear, although its structure
suggests that it could be related to the operator
of spin-orbit coupling.

Likewise in the de Sitter universe, which in
Nachtmann®® coordinates has the metric

3
ds?=R*\"? (d)\z - (dx‘)2> , (3.22)
{=1
the general form of the Yano vector is given by
yi=3R " (at+ bx?), (3.23a)
=4S latyt+ 30
=]
+3RD(A\2=R?)+3a. (3.23b)

It also depends on five arbitrary constants which
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have been chosen in such a manner so as to re-
duce to the Minkowskian expression (3.18) in the
limit when the curvature of the de Sitter universe
tends to zero (R —«). Finally it can be shown that
the Kerr-Newman solution does not admit a non-
zero Yano vector.

CONCLUSION

The novelty of the method developed here stems
from the fact that first integrals of Dirac’s equa-
tion have been obtained without any explicit re-
ference to the existence of a particular isometry
group. This technique is important for the study
of wave equations on a curved space-time. Indeed
if in flat space-time constants of motion of a sys-
tem can be interpreted as proper values of opera-
tors defined from the generators of the Poincaré
group, new constants of motion independent of the
isometry group can appear in curved space-time.

The equations that we have written here generalize
in this sense Killing’s equations and, it seems,
should play a crucial role in the field theory
whether in the frame of general relativity or in a
situation describing an interaction with an external
field in flat space-time. In particular, we have
been able to give a seemingly new geometrical
interpretation of the concept of spin for the Dirac
field; our approach leads directly to a covariant
formulation which would be interesting to com-
pare with others.?® '
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