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Perturbation technique for quantum fields in curved space
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We derive a concrete expression for the vacuum expectation value of the stress tensor for a massless,
nonconformal scalar field propagating in a background spatially flat Robertson-Walker spacetime, up to
second order in perturbation theory in the conformal-breaking parameter. The result, which is valid for an
arbitrary Robertson-Walker scale factor (subject only to vanishing scalar curvature at some moment) is

manifestly nonlocal, yet can still be written as an integral expression in closed form. The method should be
extendible to the massive field and anisotropic spacetime cases.

I. INTRODUCTION

The further development of quantum field theory
in curved spacetime is hampered by the paucity of
models that are exactly soluble in terms of known
functions. Most of the tractable cases have been
investigated by now, both for computing particle
production rates and the expectation values of
stress tensors. The soluble models by their very
simplicity hide the full nonlocal structure of the
theory, which can permit particles produced in one
region of spacetime to propagate to another region.

The si.tuation resembles that of atomic physics
in the 1920's, and as with that subject the time
comes when efficient perturbation and approxima-
tion techniques are essential. This is particularly
true if quantum stress tensors are to be used in
Einstein's equations for back-reaction calculations
on the dynamics of the universe. , or for evaporating
blpck holes. Stress-tensor expressions for re-
stricted classes of spacetimes are of no help if the
induced dynamics of the spacetime causes it to
evolve out of that. class. This is true of the non-

conformal massless scalar field in a Robertson-
Walker spacetime. Exact solutions were found in
closed form by Bunch and Davies' for the case of
power-law expansion, but the general evolution of
such a model universe would not always remain of
this form; this is clearly true if singularity avoid-
ance takes place.

In this paper we present a "once-and-for-all"
calculation of the quantum stress tensor for a non-
conformal massless scalar field in a spatially flat
Robertson-Walker background spacetime that is
completely general except for the assumption that
the scalar curvature vanishes at some moment in
the past. The technique should be extendible to in-
clude mass and anisotropy. We use a perturbation
technique where the conformal coupling parameter
($ ——', ) is treated as small."Our results are de-
veloped to second order in this parameter, but
higher-order terms should. prove easy to calculate
if required. The chief difficulty in our calculation
is the need to covariantly regularize the stress
tensor (T„„) to this order Highe. r-order terms
are all finite.

We find

(T„„)= (2880«') 't- —', "'H„, +&'&H„+10A '"H„~180 A'& "H „(1+&„«C & )+A'0A''

+ 2 e„„C 'g(q) g'(q, ) ln(q —)12(d)1,

rl 71

2 e)) C dg2 dr/2 g (q2) g ('g8) in
~ 7)2 —'q2 (

(1.1)
where A —=$-—', , the H„, tensors are in standard notation [see Eqs. (4.15) and (4.16)j, g=AAC, C is the
conformal scale factor, and P is the scalar curvature. The traceless tensor e„, has components epp 1,
e„.= —,'. The factor p, is an arbitrary scale factor. The tensor operator K„, is a generalization of '"II„„
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defined and discussed in Sec. V. The local bui nongeometrical tensor C„„is defined by Eqs. (4.17) and

(4.18). The primes denote derivatives with respect to the arguments, and all quantities without explicit
a.rguments are understood to be evaluated at conformal time 7}. (The result is homogeneous in space. )

A direct calculation shows that (1.1) is covariantly conserved, and has the following trace:

(8880w') 'I(1 —80A —1080A' —1080A'InAC'~')()() —(R A 8 —-'11*)+1(080A'0

71

z(ni)» ln —ni I dpi9'g
(1.2)

The lowest order (Eeroth order in A) is just the
famous conformal trace anomaly, the first-order
term is. purely geometrical, but the second-order
term contains a nonlocal contribution, having the
form of the integral of a geometrical quantity with
a logarithmic kernel over all the past history of
the universe back to the "in" region whe re the
vacuum state is defined. The appearance of the
nonlocal terms in (1.1) and (1.2) is the reward for
all the work invested. That they can be written in
such a compact and general form is very gratify-
ing. It is these terms which probe the full non-
conformal structure of the theory, and hence take
account of particle production as well as vacuum
polarization throughout the history of the cosmo-
logical model.
. The particle creation has been computed in this
approximation scheme by Zeldovich and Staro-
binski, 2 who find for the local rate of particle pro-
duction per unit volume

1/2e(k~x
q (q }

where ter~ satisfies the equation

C)2)
2" + (k +ABC)(j)» =0.

(2.3)

(2.4)

Henceforth we shall write ARC as g(q) and as-
sume

g()}), g'(q), g"(q)-0 (2.5)

at some moment in the past. For example, we
could have past asymptotic flatness

C(q)-1 as q- -~ (2.6a)

- The background spacetime is chosen to be
spatially flat Robertson-Walker, with the metric

(2.2)

In this spacetime, Eq. (2.1}possesses normal-
mode solutions of the form

A'R'
288m ' (1.3)

or choose the radiation-dominated, big-bang
Friedmann universe

which is a purely local, geometrical quantity.
The plan of this paper is as follows. In Sec. II

we outline the basic model, and in Sec. III we com-
pute the two-point (Green's) function which is the
basic quantum object of the theory. Passing from
these to the stress tensor is mathematically ex-
tremely arduous, but by now a routine procedure
in these sorts of calculations. We sketch the de-
tails in Sec. IV. Section V is devoted to computing
the vital nonlocal terms in the stress tensor.

II. DETAILS OF THE MODEL

We treat a massless scalar field (t) which satis-
fies the equation

C(q) ccrc' as )7 -0. (2.6b)

In that region of spacetime for which (2.5) holds,
Eq. (2.4) possesses standard exponential solutions

(2.7)

We construct a quantum vacuum state based on
these modes, in the usual way. For case (2.6a}
this will coincide with the conventional Minkowski-
space vacuum of ordinary quantum field theory,
and for case (2.6b) we will obtain the usual con-
formal vacuum. ' In what follows we shall write
-~ as the lower bound ori g, corresponding to
(2.6a). The treatment may be used for the other
case by simply replacing -~ by 0.

The essential feature of our treatment is to as-
sume that g(q) is small (i.e., A «1), specifically

where $ is an arbitrary parameter. The case ( = —',
corresponds to conformally invariant coupling, so
we shall be interested in the case where A —= ($ ——,'')
&& I.

(2.8)

and to seek approximate solutions to (2.4) that re-
duce to (2.7) in the remote past. This can be
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achieved by converting (2.4) to the integral equation

d, (n)=e "'—k ' f d(n, )d, (n, )sink(n —n, )dn

quire regularization. The finite remainder can be
routinely computed with ease to any required order
of the perturbation series.

(2.9)

and solving for i()» in a perturbation series in pow-
ers of g(q). By iteration, we obtain for the first
two orders in g

d, (n)=e ' "—k ' f n(n, )e "" sisk(n —n)dn,

+k +'gg dggg g~ g 'g2 e
00 00

&& sink(q, —q2) sink(7i —g, ) .

(2.10)

The crucial property of the perturbation series
which makes this approach so powerful is that
successive terms have greater inverse powers of

This means that when computing formally di-
vergent field expectation values, such as (T„,),
the higher-order perturbation corrections are all
finite. Indeed, only quadratic and logarithmic di-
vergences occur in the first two orders. Thus,
the orders that we treat are the only ones that re-

III. CALCULATING THE TWO-POINT FUNCTION

Ne first calculate the object

G(x", x') -=-.'(y(x ")y(x') + y(x') y(x")), (3.1)

+. 2j(:

0

x sink I ax, (dk,

where Axy: xy xy.

(3.2)

where ( ) denotes the expectation value in the
conventional vacuum state in the "in" region and x
denotes the spacetime point (q, x„x„x,). Because of
the isotropy of the spacetime (2.2) we may choose,
without loss of generality, the points x", x' to lie
in the q-x, plane. Inserting the appropriate normal-
ization constant in (2.3) and substituting a complete
set of mode solutions g» into (3.1) yields

I/2
(~ ee)C I/2

(q k)
C(x", x') =

a~'/ ~x,
/

From the solution (2.10) we obtain

q II

p»(n")p)k ()nl')+g»0(g")i()»(q') =cosk4)) —— g(71, ) sink(q" —rl, ) cosk(q' —q, )dq,
00

2
+ —, dq, dq2 g()1, ) g(q2) cosk()12 —71') sink(rl, —q2) sink(q"- q, )

00

yj
II gl

+ —, dry, d)12g(q, )g(rl2)cosk()12 —q, ) sink(q' —q2) sink(q" —q, )
OO

s

+ (q"—q'), (3.3)

where ~g =q"- g'.
Equation (3.3) reveals the second attractive feature of the perturbation technique. All the k integrals in

(3.2) consist of products of sin and cos divided by powers of k. All can be reduced to the standard forms

and

singx sin5x, g+ 5
~ ~

dx= —, ln
o

(3.4)

sinaxsinbxsincx, ' a+b+c~ ~

dx= —, a+b lnX'
,
a+b —c

+ —,
' c ln

~
(a+ b) ' —c'~ —(b - b), - (3.5)

where in (3.5) a ~ b &0, c &0. Thus, the major obstacle to computing concrete expressions for (T„„),
namely, evaluating the mpde integrals in terms of known functions, is surmounted. It is this fact which en-
ables us to calculate (T„„)for a general Robertson-Walker spacetime, (i.e., a general function C).

The first term on the right of (3.3) is the zeroth-order, conformally trivial term, treated in detail by
Davies et gl. W'e shall not repeat that work in what follows, but shall use some of their results. 'The sec-
ond and third terms of (3.3) may be rearranged as follows:
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k-
4 I""

g()1,) sin2k(f-q, )dq, + —,J) dq, dq, g(q, )g(q, ) sink(q+q, —2q, ) sink(q —q, )

. , kaq+ k, Jl d71, dq, g(q, )g()),) cos2k()), —rl, ) sin'
k)O

c

+infinitesimal integrals which vanish as ~q -0, (3.6)

where q =-,'(q" +q'), and we defer discussion of a number of integrals of the form
Henceforth, we assume that the separation between the points g" and ~' is small,
infinitesimal quantities. Note that the first two terms in (3.6) are the only terms
spacelike point separation, aq -0. To arrive at (3.6) we have used the property

'0

$2 dpgdg2 =
Qg 'g2 d'ggd'g2

f"+~" until later.
so that ~g and hay
to survive in the limit of

(3.V)

to collapse together the two sets of double integrals.
Expression (3.6) is now substituted into (3.2), the order of integration interchanged, and the k integrals

evaluated. The first term yields

C 'k(q")C '/'(q') "
q —q, +~&x, /2

8v'(zx, (
„g"' ~-q, — ax, /2g(q, ) ln ' ' dq, . (3.8)

The second-order terms are more complicated and require some thoughtful manipulation to avoid infrared
divergences. We omit the details here.

As l«xl is small, expression (3.8) may be expanded in a power series To a. void divergent )), integrals,
three successive integrations by parts must first be performed. In the end we arrive at

1/2
()hl sk)C 1/2

(q s) gx ) (shkkx )2 Qx 1]
2g(f) ln ' —2g(j) —2 g'(q, ) ln~q —q, ~ dq, +

12 g"(@ ln

4x'
g"(g, ) in~a —7), ~dq, + 0((&x,)'). (3.9)

2 g+ ~g/2

g(q, ) sink q —()), + cosk j- q, — dq,

sink g-g, +

dg, dq, g(q, )g(q, ) cosk q, —q+ sink q —q, + sink(q, —q, )+(bq--gq).
2 2

1 "+~"/

k

2 "+~"/

k

Cn g(h(, )g(hk) cnsk(h), —g, )sink(n h),——
his is the first-order correction to the conformal two-point function when the point separation is re-

stricted to be spacelike. 'The equivalent second-order expression is similar, but contains double integral
terms as well.

However, we are not finished yet. The full two-point function G requires the additional timelike pieces.
These arise from the third term in (3.6) and from the infinitesimal integrals omitted from that expression,
which are

(3.10)

Once again, the expression is substituted into (3.2) and the k integration is performed first. As a result,
a variety, of logarithmic functions replace the trigonometric factors in (3.10). These, and the g factors,
are then laboriously expanded in Taylor series about f up to order (Zq)', with integrations by parts
over g, and g, performed if necessary. Eventual)y, the g integrations can be carried out explicitly. The
final term of (3.10), which involves an infinite integral also, must be handled carefully. The integral
range is first broken into (- ~,f ) and (f, q, ), enabling the order of integration of the for'mer piece to be re-
versed and yielding a single integral term in the final answer. 'The other piece is a double infinitesimal
piece, similar to the second term of (3.9). These long and tedious manipulations will not be reproduced
here. Their effect is to replace (Ax, )' in the logarithms by ~b, rP —Ax, '~ and to contribute some additional
terms proportional to ~q .

The final expression for the two-point function up to order A', ~g', and ~x' turns out to be
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1/2
( tt)C 1/2

( t) 4
G(x", x') = "15 2

" —, , + [g+~24g"t]x' ——
(f) g'(t]q' —Zx')] In-,'~t2q' —t]x'~

(3.11)

+ [ 2g-'(n, )+ l t n'g(]T) g'(n, } l-&x'g(n, )g'(n, ) -,. t]x'g"'(14)]»I1T—11, I d]I

+ dg dg24gg~ gg2 +6~x gg~g" g2
420 420 'Ox

rl

--', no* dn, do,g(n, )g"(2 )1"lo —tl lj

where all quantities without explicit arguments are
understood to be evaluated at g.

The first term in the braces of Eq. (3,11) is the
familiar expression for the zeroth-order (con-
formal) two-point function (see for example Davies
et al.4). It is quadratically divergent as t21l and t2x

-0, leading to a quartic divergence in the stress
tensor. The second term contains logarithmic di-
vergences leading to quadratic and logarithmically
divergent terms in the stress tensor. These terms
are all, as expected, local objects. 7he remaining
terms are finite as ~g and ~x 0. It is necessary
to compute Q to order Qg and gx to obtain the
finite terms of (T„„)by differentiation.

A useful check on the algebra leading to (3.11)
can be made by substituting G into Eq. (2.1) and

ensuring that it is satisfied order by order in A.

IV. CONSTRUCTING THE STRESS TENSOR

The most convenient method of obtaining (T„„)
from (3.11) is the method of geodesic point separa-
tion. ' ' VFe assume the points x",x' lie a proper
distance 2g apart along a geodesic in the back-
ground spacetime, whose unit tangent vector at the
midpoint is g". This midpoint, which we shall label

(11, x), is the spacetime point of interest where
(T„„(x))is to be evaluated. It is not the same as the
point (]I,x), but differs from it by a factor of order
E

o effect the point- separation procedure, it is
first necessary to both transform (3.11) from

(]T, x) to (e, t") coordinates and to evaluate all func-
tions at q rather than g. This involves a double
expansion, for which we need the following series:

]I =11--.' e'D[(t')'+ (t')'), (4.1)

t 1}'=4e'(t')'[1+-,' e'(t')'(=.'D+ —,'D')

+ —g2(t )2 ( D+ 2 D2)]

t]x,'= 4e'(t')'[1+-', e'(t')'(-D+-,' D')

+ 1 (tl)2e2D2]

(4.3)

(4 4)

where D=—D(q)=—CC ' =—C 'BC)/Bri, and the t" vector
is restricted to the (0, 1) =-(q, x,) plane, as ex-
plained.

Substituting (4.1)-(4.4) into (3.11) one obtains,
after more tedious algebra,

C '"(q")C "'(q') =C '(g) (I+ "[(--2'D+-.'D')(t')'

+-'D'(t')']], (4.2)

[16r'C(O)] 'Ioontormet term+gin(e C') —2 + g'(t e)'[-( ,D=,'D )g ——, Dg' ——,g']'l—ne'C '

+ e'(t')'(4 D2g--, Dg'+ —', g" + 2g') 1ne'C '+e (t')'[(—', D —, D')g+-, Dg'+ —,
' g" +-,'g'—]

+ e'(t')'(-2D'g+ -'Dg'- » g"-
~ g')

Il 8 8 1 8—2 dg, In~11 —@2' I+a'(to)' —,D+-,'D' ,'D —g +—e'(t'-)2 ,'-D'- , D + —,+—g(q,) -g (1},)
8'gg 6 8'gg

+e'D[(t )'+(t )]f g'(o, )l'nlo —Dido, ,
W

(4.5)

+4 dg, dq, I+@' (t ) zD+ gD'- gD — ~+e'(t')' lD'- lD + —
~ »ln-](big(]I. )g(n2)

8n~]
71

-4 dn, dn 1 + e (t )
' =,D,+ D +

2
+ e '

(,t') ' D +
4

1"I'4 —'4*
l

dn, d)*j .
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We do not bother to write out the conformal term, as it has been treated elsewhere. All terms whose argu-
ments are not explicit are understood to be evaluated at q.

The calculation has now reached a nadir of complexity. It is not manifestly covariant, and considerable
simplification occurs if we make use of the explicit definition of g as ARC, written in terms of D, h, etc. ,
and group the various combinations of D's into known geometrical objects. These will be R.&„, CIRg„„,
R"~R 8g„, R'g„„,,' and R „R „. Expressions, for these geometrical objects in terms of D and its
derivatives are given in the appendices of Refs. 4 and V, and it is a straightforward matter to fit the coef-
ficients in expression (4.5). As a final check on the algebra, we applied the wave equation (2.1) again, but
in the e, t" coordinates. This is easily accomplished by taking the trace of what is called (T'„'„~) in Refs. 4
and 7, computed using (4.5), and adding to it the (R term. The relevant formula for (T'„'„') is given in Ref.
V.

To discuss the result, we shall first consider the local pieces of (4.5). These can be written

(16m) '(conformal term+A[R In(e'C ') —2R+ —', (- 2RR„&t"t +R, „at"t —OR —3R'A)e'In(e'C ')

+ e'A„Bt "ta+ e'AB 8t"ts]}t, (4.6)

where the local, but nongeometrical, tensors A„„
and B„„have the following components in the (q, x,}
coordinates:

ADO =C (2D+2DD+3D ++~DD -2D ),
(4.7)

A~~ =C ( +D —~DD —~6—D +2DD -2D ),

Boo = ~2 C '(D +DD ' + 4 D ),
B» =-~2C '(D'+DD'+-'D4)

(4.8)

We are now ready to compute the geometrical
piece of (T&,(x)). To do this involves differentiat-
ing (4.6) and letting e -0, 'This is by far the hard-
est part of the calculation, as the process is not
just conventional straightforward differentiation.
Fortunately, however, the procedure has been
done once and for all in earlier work' for a com-
pletely general G(x", x'), and so we merely have to
plug (4.6) into the general formula and read off
(T&„). Because of the Ine' terms in (4.6), the re-
sult is both quadratically and logarithmically di-
vergent. This was expected, and a useful check on
this part of our calculation is to ensure that the diver-
gent terms are identical to those calculated by
Christensen' for an arbitrary spacetime. They
are.

To obtain a finite (regularized) (T„„), it is
necessary to subtract Christensen's two-point
function, which is purely local and geometrical,
from our G (see, for example, Refs. 7 and 8). The
result is

ens=+zso ( 2Ra Ry8+, RR„B-R.„8)X

+A[A„8+AB„B+&61ng2C(2RR„g+R. „a}],
(4.11)

f=~(&( 3R +OR+R BR q)

+ A [(—' OR + —,
' AR') ln p, 'C —+ OR ——AR'] .

and

'"H„, =2R. ~„—2(OR)gp„+2(RRp„——,'R'g~, )

(4.15}

(4.12)

In arriving at expressions (4.10)-(4.12) we have
inserted the results of Davies et a/. 4 for the con-
formal term. The factor p,

' is an arbitrary scale
factor which always arises in the regularization of
a nonconformal massless field stress tensor.

The final step is to plug (4.9)—(4.12) into the
formula for the stress tensor, as given by Bunch. '
This is

(T„„)=(—,', —A)c.„,+(A+ —,', )g„„c—(A+ —', )cG„„
—28~ +48 g~„+ pfgp„. (4.13)

After some algebra, we find, for the local piece of
(T„„)up to order A',

(2880w') '(--' '"H + &'&H +10A &'&H

+180A'[—,
' '"Hq„ ln(p, 'C)+ "'Hq, Cq+„]],

(4.14)

(16m') '[c+ e'(e„8t t 8+f)], (4.9) (3) 1 2
IIpv -R Ro, p8v + 12 R tv (4.16)

where

c = ——,'SR —OR (2+ Inp'C}, (4.10}
are known to the only geometrical conserved ten-
sors of this adiabatic order in the Robertson-
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C =C '(- DD—— D)—,
C~~ = C (8DD+ ~ D + ~ DD —~8 D ) .

(4.17)

(4.18)

The conformal term in (4.14) is the by now fa-
miliar expression. ' The first-order term, curi-
ously, does not contain "'II„„orlogarithmic

Walker spacetime. ' The tensor C„, is local, but
nongeometrical. Its appearance in the second-
order term arises because of the presence of the
lnC term, whi'ch gives a local but nongeometrical
expression when covariantly differentiated. Thus,
without C„, the local A' term would not be con-
served. 'The components of C„, in these coordin-
ates are

terms. Also, by fortune, the nongeometrical
pieces which come from differentiating lnC in
(4.13) combine with A„„ to give a purely geometri-
cal result. This does not happen in the A' term.

In arriving at (4.14) we have also had to take ac-
count of the celebrated conformal anomaly. ' Al-
though the theory is not conformally invariant
above zeroth order, there will still be "anomalous"
terms to order A and A'. These are given from
Christensen's two-point function' as

-(2880m') '(15AOR+45A'R')gq„, (4.19)

and have been included in (4.14) along with the other
terms from (4.10)-(4.12) and, of course, the terms
arising from the familiar zeroth-order anomaly.

V. THE NONLOCAL PIECES

We now return to (4.5) and deal with the more interesting nonlocal pieces which must be separately con-
served.

Consider the first two nonlocal terms in (4.5). They may be written

First we note that

(5.2)

tain a coefficient of lnp2 identical to that of the lnC
local term which, as mentioned in the previous
section, vanishes in (T„„)to order A.

However, there will also be a contribution from
(5.1) to order A'. The A terms in (4.13) are

which may be proved by first integrating the log-
arithm by parts. Moreover, as (5.2) is a function
of g only, any spacelike derivatives may also be
taken through, formally, onto f(q, ), along with any
Christoffel symbols that arise from covariant dif-
ferentiation, as they are all evaluated at g. These
quantities also commute with the 9/&q, derivative
in (5.1). Hence we may apply formula (4.13) di-
rectly to the expression in square brackets in
(5.1), inside the integral.

When the A-independent part of (4.13) is applied
to the A-independent terms inside the square brack-
ets in (5.1) we obtain a surprising result zero In- .
fact, this can be anticipated by noting that the lnp, 2

factors in the geometrical piece can be absorbed
into the Inl)I —q, l factor of (5.1): The coefficients
are identical to that of the local logarithmic pieces.
Therefore, inspecting (5.1) we see that with (u re-
placing l)I —r1, l we may integrate trivially and ob-

-A(V)) Vp —
g))p +R)(p —pRg)(p)c)

so, if c =AR, then comparison with (4.15) shows
that (5.3) is

(5.4)

If, on the other hand, c=AR(q, )C(7h)C '(q), as is
the case in (5.1), then we must replace ")H„, by
the object

2(V~ V„—g~„+Rp„—g Rg~„)

C g' g~ In g —g~ dg~ . 5.5

It is convenient to abbreviate the operator in small
parentheses as X&„and to regard (5.5) as a sort
of nonlocal generalization of '"H„„. Note that

X„,[R (q) ] = '"H „„(q).
Next consider the first double integral term in
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(4.5). We note the following property:

8 ~l
dg2 q, q2 ln g —g2

0, ln '0-0x d~x ~ (5.7)

Thus, as far as the double integral part of the
above result is concerned, the effect of 8/sq is to
operate on f(il, ) as 8/sq, in the integrand. This is
the exact analog of (5.2), and a comparison of the
first double integral with (5.1) shows that the oper-
ators inside the square brackets are identical to
first order (i.e., ignoring the g terms in the lat-
ter). Hence we may apply the result found in the
single integral case, namely, that the contribution
of this integral to the above double integral part of
(T„„)is zero. There will, of course, be some
single integral pieces that originate from the final
two terms in (5.7).

Most of the final term in (4.5) also gives zero
when (4.13) is applied. The only surviving double
integral piece to order A in (T„,) is, in (t), x) co-
ordinates,

which is actually traceless. In arriving at (5.8) we

have performed an integration by parts, and used
the property (3.7) to symmetrize the double inte-
gral.

The only remaining contributions to (T&„) are
single integral pieces. These come from the final
single integral in (4.5), from single integrals of
the type shown in (5.7), from the extra term cor-
responding to the second term of (5.4), from the
g(7)) and g(t), ) terms in (5.1), and from the partial
integration leading to (5.8). Combining all these
pieces together results in much cancellation,
leaving only

32m'C(i))

1
3

(5.9)

The sum of (4.14), (5.5), (5.8), and (5.9) yields
the full stress tensor up to order A' which we gave
in Sec. I.
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