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The gravitationally induced self-interaction force is calculated at a large distance from a Schwarzschild
black hole. If, instead of the electromagnetic field, the particle is coupled to a vector-meson field of
vanishingly small, but nonzero mass, then it is shown that the self-force has the same magnitude but
opposite direction. A sharp difference between massive and massless vector fields is a result of different
boundary conditions at the horizon surface.

I. INTRODUCTION
~ ~

2 2f~= 3e v (6)

I'he motion of a charged particle in the gra-
vitational field is described by the equation' ~ '

Du'
=fs+fc,ds

ds' = (1+2U)dt' —(1 —2U)dx'-,

where

p. (x')dx'
ix-x'i

(3)

(4)

is the gravitational potential, U(x) «1, and p, (x) is
the mass density. In this case Eq. (1) takes the
form

m(v+ &U) = f „+f G, (6)

where

where I' is the four-velocity of the particle,

2e' ~D'u" Duv Dec'
' ds' ds ds

~l
is the radiation-reaction force, and fo is the
gravitationally induced force of self-interaction.
To explain the origin of the force fo, we note that
Maxwell's equations in a curved space-time are
analogous to the equations in a medium with di-
electric and magnetic susceptibilities which are
functions of coordinates and time (see, e. g. , Ref.
3). The electromagnetic field of the particle
polarizes the "medium, " and this polarization
results in an additional force on the particle, fG.
It is clear that f~ is a nonlocal function of the
metric and of the previous trajectory of the parti-
cle.

DeWitt and DeWitt' calculated f o using the for-
malism developed by DeWitt and Brehme. ' They
considered a nonrelativistic charge in a weak
static gravitational field. In harmonic coordi-
nates, ' the metric is given by

is the nonrelativistic limit of Eq. (2) and"

(7

Note that f ~ is not zero, even if the charge is at
rest.

'The purpose of this paper is to calculate f ~ in
the field of a Schwarzschild black hole at a large

.distance from the hole (r»M, where M is the
mass of the hole). The result is

II. WEAK STATIC GRAVITATIONAL FIELDS

In this section we shall rederive the result of
DeWitt and DeWitt [Eq. (7)] in a less rigorous but
much simpler way. For simplicity, we shall con-
sider a point charge at rest in a weak static gra-
vitational field [(3) and (4)]. The electromagnetic
field of the charge can be found from the Maxwell
equations

(+ "v'-g ), „=4''v'-g,

vv v v v+0~

with

(9)

(10)

(8)

(the black hole is at the origin). It should be
emphasized that Eq. (8) is not a trivial conse-
quence of Eq. (7), since the latter equation has
been obtained assuming that the gravitational field
is weak everywhere, which is not so in the case
of a black hole.

It will be shown also that f ~ changes sign if the
electric charge e is replaced by a source of a
massive vector field having a vanishingly small.
but nonzero mass. A sharp difference between
massive and massless vector fields is a result
of different boundary conditions" at the horizon
surface x =M.
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j'v'-g =e6(x —x,), j'=0, A'=0.

Substituting Eqs. (3) and (4) in (9) and (10) and

neglecting second and higher powers of U we get

(1 —2U)V'A, —2VU ' VA, = -4me6(x —x, )

( )= ' -',
i, (')

xo —x

which coincides with the result of DeWitt and
DeWitt [Eq. (7)].

III. BLACK HOLES

(20)

A, = (1+ U, + U) —+ g(x), (13)

where p= ~x-x, ~. Substituting this equation in

Eq. (12) we get an equation for g(x):

4me
( )

p
(14)V'g = ——V'U =—

p

where p, (x) is the mass density. (VU'Vf is ne-
glected because g is of order U, as will be clear
a Posteriori. ) The solution of Eq. (14) is readily
found in the form of the Poisson integral, and we
obtain the final expression for Ao:

or, in the same approximation,

V'Ao —2VU ' VAO = -4ge(1+ 2Uo)6(x- xo) . (12)

Here

U-=U(x), U, -=U(x,).
Now let us write Ao in the form

'The electromagnetic field of a point charge at
rest in the metric of a Schwarzschild black hole
has been found by Cohen and Wald. " To allow a
compariso'n with the previous section, we shall
write this field in the harmonic coordinate sys-
tem' (t, r, 8, P), which is related to the Schwarz-
schild coordinates (t, rs, 8, P) by rs r+=M (M is
the mass of the black hole). The metric is then
given by

dt' — — r' —r+ M 'de' ~

At large distances from the black hole (r»M)

d$ = ] dt ]+ dr +r de 22r )

which has the form of Eq. (3). The electrostatic
potential is given by"

e QG, (r, )F, (r)P, (cos8), r &r,
A, = [1+U(x, ) + U(x)]

i

p(x')dx'
(15)

e +r ro Gr r Pr cos6), «ro
l~O

(23)

The force of self-interaction can be defined as" where

f; = e&F'"(x))u„i„„,,
which in our case reduces to

f = —e(VA, (x))
~

„-

(16)

(17)

G, (r) =
1 for l=0

2'l! (l —1)!M'
M dP, r

(2l)! dr

(24)

Here angular brackets mean averaging over all
directions" in the three-plane orthogonal to the
particle's world line. After a simple calculation
we get

4e2~
f o

—————VU —eV(,
3 2Q

(18)

where a is the cutoff radius. The first term on

the right-hand side of this equation adds to the
well-known kinetic term of Abraham" and Lorentz"
to give

(2l + 1)! dQ, r
2'(l+ 1) l l!M" dr (25)

P, and Q, are the two types of Legendre functions.
Note that the functions G, and Fr are different
from g, and f, of Ref. 15, since we use another
coordinate system. 'The charge is located at
(r, 8)=(r„O).

'The asymptotics of Gr and Er at large distances
from the black hole (r»M) are given by

4e'———(v+ VU) .
3 2Q

(19)

Here e'/2a is the electromagnetic mass of the
particle and —, is the well-known factor arising in
all nonrelativistic calculations of the self-inter-
action. "" The contribution (19) is absorbed in
the mass renormalization in Eq. (5). The renor-
malized force is given by

G, (r) =1,

r M M
G, (r)=r' 1-—+0 —, , 1& 1,

F,(r)=r ' 1 ——+0r
Substituting Eqs. (26) in Eq. (23) and assuming
that r, r, » M, we find (for r &r, )

(26)
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+ 1-————Q I

—'
I ~r (cose)e / M e M M " (ro&'

g.~ & r ]
M M eM

1 ————+ (2
p rp r rpr

where p is the distance between the points (r, 8)
and (r„0),

p = (r'+ r, ' 2r—r, cos &)'~ '.
Here we have used the well-known relation"

r—' ~, cose =-.
p

(29)

(29)

IV. MASSIVE VECTOR FIELDS AND BLACK HOLES

If the mass of the vector field A„ is not exactly
zero, then Eq. (9) has to be replaced by

'To find Ap at M «r(rp, one has to interchange r,
and r in the expression for A,, at r&r, [this fol-
lows from Eq. (23)]. Equation (27) is invariant
with respect to such interchange and therefore
at r &r„A, is given by the same expression (27).

Equation (27) has the form of Eq. (15) with U(x)
=-M/r and p(x) =M5(x). The self-force is there-
fore given by Eq. (20) with p, (x) =M5(x):

f o
——e'Mxo/ro~ .

In the case of a massless field, the divergence of
A„A" at the horizon causes no difficulties (as long
as the invariant E„,E is finite). This is easily
seen from Eq. (31) or from the gauge invariance
of the massless vector field.

If p, '»M, then the field in the region r«p, '

can be approximated by a solution of the massless
vector field equation (9) with the boundary condi-
tion (32). Such a solution is easily obtained from
the solution of Cohen and Wald (23) which we shall
denote A«. For /OO, G,(r)-0 as r-M. There-
fore

Ac„(r =M) = eE,(r, ) = e(r, +M) ' (33)

2Me
(r+M}(r,+M)

' (34)

"The addition to Ac„ in the last equation is just a
spherical solution of the homogeneous Maxwell
equations, namely, one proportional to F,(r). The
second term in Eq. (34) indicates that the black
hole acquires a charge e'= 2Me(-r, +M) ' in the
presence of a point charge e at r =r, . Note that
e+ e'-0 as rp-M, in agreement with the "no hair"
corij ecture. '""'

Returning now to the case M «r, «p, ' and using
the asymptotic form (27) for Ac„, we get (M «r

)

(F""v'-g ), „—p'A'v' g= -4vj "v-'-g . (30)
A = —1-—-M (35)

If the gravitational field is weak everywhere and

the mass of the vector field is very small (i.e. ,

p,
' is much larger than the characteristic distance

of the problem), then the massive term in Eq. (30)
can be neglected and the self-force is given by
Eq. (20). Thus there is a smooth transition from
p, 40 to p, =0. The situation is different in the case
of a black hole. I et e be a charge of a massive
vector field A„at a distance r, from the black
hole and let M «r, «p, '. 'Then it will be shown

that the self-force is given by Eq. (29) but with an

opposite sign. A sharp difference between massive
and massless vector fields is a result of different
boundary conditions at the horizon surface r=M.

If we require that the energy-momentum tensor
of the field A„,

Tv (4 )1[ L5vpoOF +y' y'vu

+ p, '(A A" ——'5"A A )], (31)

A, =o (32)

be nonsingular at the horizon, then the invariant
A„A" must be finite at r = M and the potential Ap

must vanish at least like (r —M)'~' as r -M. Thus
all the physically meaningful solutions of the field
equation (30) must satisfy the boundary condition" '

The self-force is given by

f o
——-e'Mx /ro (36)

We see that f ~ has the same magnitude as in the
case of the electromagnetic field, but its direction
is opposite. Electric charges are repelled from
black holes, "while the charges of massive vector
fields are attracted to them.

V. DISCUSSION

(1) lt would be interesting to calculate the self-
force at r-M, where the gravitational field is
strong. However, an analytic calculation of f G in
this case encounters formidable difficulties. 'The

source of the difficulty lies in the fact that the
Cohen-Wald solution has the form of an infinite
series in which all terms are important for the
calculation of f~. Fortunately at r»M this series
reduces to a form which can be summed explicitly
[see Eq. (27)]. However, this does not happen at
r-M

(2) The self-interaction can be important in the
physics of mini black holes and, in particular, in
the Hawking radiation process. " Obviously, the
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self-force cannot by itself give rise to particle
production. However, it can result in a potential
barrier suppressing the radiation, or it can re-
duce the existing potential barrier, which is due
to gravitational and centrifugal forces and thus
increase the emission rate. The potential energy
corresponding to Eqs. (29) and (36) is given by

V(r) =me'M/2r', (37)

where the upper and lower signs correspond to
massless and massive vector fields, respectively.
Taking a characteristic value r-M for the dis-
tance x and extrapolating Eq. (37), to r-M, we find

coupling (e'& 1). The sign of V(r) in Eq. (37)
suggests that the particle emission rate is in-
creased in the case of a massless vector field and
is decreased for a massive vector field. It should
be noted, however, that Eq. (37) has been derived
for the case of a classical particle at rest at a
large distance from the black hole and therefore
it cannot serve as a basis for any reliable con-
clusion concerning the Hawking radiation. A
reliable calculation of the particle emission rate
with the self-interaction taken into account would
requi're a full- fledged quantum theory of inte r-
acting fields in curved space times.

V/T-+e', (38)

where T = (8') ' is the black-hole temperature.
One expects that the effect of self-interaction is
important if V/T&1, i.e. , in the case of strong
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