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The construction of spinning mass solutions of Einstein s vacuum field equations, which can be obtained by
applying Kinnersley-Chitre transformations to known solutions, is facilitated by our discovery of a linear
integral equation of the Cauchy type, the solution of which yields directly the generating function F(t) of the
Kinnersley-Chitre hierarchy of potentials associated with the transformed spacetime metric.

I. INTRODUCTION

After a decade of heroic but often frustrating
attempts to obtain asymptotically flat stationary
axially symmetric solutions of the va,cuum Ein-
stein field equations, corresponding to the ex-
terior gravitational fields of rotating bodies, it
appears that the gepgg~gE solution of this problem
may well be at hand. Hoenselaers, Kinnersley,
and Xanthopoulos' recently proposed a way to
employ the Kinnersley-Chitre (KC) transforma-
tion theory' ' to construct asymptotically flat
stationary axially symmetric vacuum metrics
with arbitrary multipole moments. The direct
manner of executing KC transformations which
we shall describe in this paper should enable
comprehension of these exciting but complicated
developments by a wider audience.

Many are familiar with the idea' of associating
with any given stationary vacuum spacetime met-
ric a complex potential h„and then subjecting
that potential to an Ehlers transformation'

'

8 = (h, + ia)/(1+ tab, )

to get another complex potential h from which a
new stationary vacuum metric can be constructed.
The general character of the much more compli-
cated KC transformations may be described in a
similar way.

In Sec. II of Ref. 4 Kinnersley and Chitre dem-
onstrated how from any given stationary axially
symmetric vacuum spacetime ("seed metric") a
certain complex 2x 2 matrix potential E,(t ) can
be constructed. ' This potential, which has been
evaluated explicitly for an arbitrary static vac-
cuum metric, depends not only upon the nonignor-
able spacetime coordinates but also upon an addi-
tional variable t, which we permit to be complex.
In the following we shall assume that E,(t) is an-
alytic in an open neighborhood of t = 0 and that
E,(0) =i&, where

The main thesis of the present paper is that if
F,(t ) is the potential associated with a particular
seed metric, then

E(t) =— [I + tf (t)]E,(t)
is the potential associated with another stationary
axially symmetric vacuum spacetime, providing
that the 2&2 matrix function f (t) is analytic in an
open neighborhood of t = 0 and satisfies the linear
integral equation

( )
1 „[f(s)+s 'I]K(s)

( )

where the kernel K(s) is given by

K(s) =F,(s)T-(s)~[ E,(s)]

v(s)e —= exp[ y(s)e] I . —

Here y(s) is an arbitrary spacetime-independent
2&&2Hermitian' matrix function of s, analytic in
an annulus about s=0 inside the region of analy-
ticity of E,(s) and f(s). The contour C is any
closed positively oriented contour surrounding
s=0 and within this annulus. The point t in Eq.
(1.2) lies in the interior of the region enclosed
by C.

This integral-equation approach to KC trans-
formations was developed only after we had mas-
tered the original approach of Kinnersley and
Chitre. It was indeed derived using their infinite
hierarchy of potentials. Since, however, there is
no reference to these potentials in the final cal-
culational scheme and not even the KC function
G(s, t) appears, we are confident that a more di-
rect derivation of our integral equation will event-
ually be developed, one which will avoid com-
pletely the infinite-hierarchy-of -potentials idea.

Before presenting our interim derivation we
shall give several very simple examples of how
the integral equation (1.2) can be solved, for
many of our readers are likely to be more in-
terested in how to apply our formalism to gener-
ate new solutions of the vacuum field equations
than they are in studying our derivation.
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II. A SUBGROUP WHICH LEAVES MINKOWSKI SPACE

UNCHANGED

One approach which can be used in order to
solve Eq. (1.2) is illustrated when one attempts
to prove that the transformation induced by

(2.1)

maps Minkowski space into itself. In this ex-
pression P(s) is a real' function of s, analytic
everywhere (including infinity) except perhaps
for an isolated singularity at S=0. In this case
Eq. (1.4) gives

in the form F,(s)„z if we were ever to use indicial
notation. Keeping this in mind, it will be seen
that our stipulation concerning F,(0) is in exact
agreement with that to be found in Eq. (2.24) of
Ref. 2.

The form of Eq. (2.5) is also affected by the
fact that we place the spacelike Killing vector be-
fore the timelike one, the opposite order to that
used by Kinnersley and Chitre. This means that
both the columns and the rows of 2X 2 matrices
such as F,(s) are interchanged. In particular,
the KC matrix f„z corresponds to our 2X 2 ma-
trix

~(s) = n(s)

where

a(s) =—(2i) 'fexp[2iP(s)s '] —1}.

The kernel

K(s) = [1etF,(s)] ' F,(s)v(s)F, (s') re

(2.2)

(2.3)

(2.4)

where the minus sign arises from the use of the
opposite signature, and where for us A.

' is a 2x 1
matrix whose upper and lower elements are, re-
spectively, the spacelike and timelike Killing vec-
tors.

Let us now return to the transformation of Min-
kowski space, noting that the kernel (2.7) vanish-
es at infinity and is analytic everywhere except
for an essential singularity at s = 0. The auxiliary
kernel K (s), constructed by reversing the sign of
P(s), shares these properties, and furthermore,

is easily evaluated for Minkowski space, where
(cf. Ref. 4) [I+K(s)][I+K-(s)]=I . (2 8)

F,(s) = F"'(s)

(—(A, —1+ 2 sz)/2A. s i (X+ 1 —2sz)/2A. )

(2.5)

In other words, the evaluation of the inverse of
the matrix I +K(s) is trivial.

Equation (1.2) can be expressed in the form

1 f(s) [I+K(s)]
C S —t

Here and elsewhere in this paper

X(s) =- [(1 —2sz ) + 4 s'p'] ' (2.5)

1
&

I+K(s)
(2 9)2' c s(s —t )

Substituting Eqs. (2.2) and (2.5) into Eq. (2.4), we
obtain the kernel

However, if L is a positively oriented closed con-
tour surrounding t = 0 and t =r but entirely within
the contour C, then for s on C one has

2i s
K(s) =a(s)l

0 (2.7)
1

&
I+K (t)

2' (s —t )(t —r)
I +K (s) (2.10)

where a(s) was defined in Eq. (2.3).
If the reader notices certain superficial differ-

ences between the expression F",s(s) given in Eq.
(2.5) and the corresponding expression to be found
in Ref. 4, he should attribute these to the fact that
we are staying with spacetime signature(+++ —),
which we have always used, instead of switching
to the signature (- —-+ ) which was introduced by
Kinnersley and Chitre. The sign differences in
Eq. (2.5) are not due to our attributing mixed up-
per and lower indices to the elements of the ma-
trix F,(s). We would write the elements of F,(s)

This can be seen by expanding the contour L out
to infinity, where K (t) vanishes. If one multi-
plies Eq. (2.9) by

1 I+K, (t)
2' t -r

and integrates over the contour I., Eqs. (2.8) and
(2.10) permit one to infer that f (r) = 0, thus es-
tablishing that Minkowski space is not altered by
the transformation (2.1).

The subgroup of KC transformations which we
have here identified is from our point of view
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somewhat simpler than the B group of Kinnersley
and Chitre, to which it is closely related. Their
8 group corresponds to

(i 0)
r(s) = P(s) (2.11)

III. KERR-NUT (NEWMAN-UNTI-TAMBOURINO) METRIC
FROM SCHWARZSCHILD METRIC

The same general approach is applicable when
our- version of the 8 group is applied to other seed
metrics. If.the seed metric is static, the potential
F,(s) can be expressed in the form (cf. Ref. 1)

(e ~'"' 0 ~
(e-~"' 0 )

where k+ and k are independent of s and ~.
Proceeding as in the Minkowski-space case, we

obtain this time the solution

t —2 t+ —,
(3.6)

Here

A, =in(+ —,')(x+ 1) '(x wy)

where f, and f are f -independent matrices, which
may be identified by substituting Eq. (3.6) back into
the integral equation. We find that

(A, ai (x + 1)(1 a y)A,)
I B, ~i(x+ l)(1+y)B,

K(s) =, , B(s),
S

where

(3.4)

B(s) =i

i (1+ 2 sy) (x —2 sy) 1+ 2 sy

2 x + I 4s

s(x —2 sy)
(x+ 1)'

ib(s)
2(x+ 1)

and

b(s) = —1+ 2 sy(x —1)+4s'(x+ 1 —y').

Unlike the kernel (2.7) this kernel has simple poles
at s= + —,', points which lie outside the contour C
and the contour L. Consequently, Eq. (2.10) must
be replaced with

1 I +K (f)
2mi, (s t )(t r)-—

I+K (s) h, h

(s —.)(& - -.) (s+ -')(&+ -.')

(3.1)

where g(s) is a generalization of Weyl's potential
function g such that

dg(s) =[A(s)] '[(1 —2') —2sp*]dg, g(0) =g,

(3.2)

where the two-dimensional duality operator is de-
noted by *. In particular, for any Zipoy-Voorhees
metric (in prolate spheroidal coordinates)

x —2 sy —A(s) '
x —2 sy + X(s)

We shall at this time consider the Schwarzschild
metric (6 = 1).

We find that the kernel now has the form

x[1~y+ iC '[-n(-.')(x -y)(1+y)

+n(-l)(x+y)(1 -y)]],

B, = in(~2)(x+ 1) '(x ~ y)

'[ (-')( — ) (--.')( )]],

d F(t)+F(t)t
dt t=0

=h+izc .
I

[Cf. Ref. 4 following Eq. (2.4).] Upon substituting
into this equation the relation

F(f ) = [I + ff (f )]F,(f ),
we obtain the following formula for the change in
h:

C=x+1+in(-,')(x -y)+in(--,')(x+y).
From f (t), using Eq. (1.1), one may easily

evaluate F(t ) for the transformed spacetime. This
should be very useful, for the transformed space-
time is Kerr-NUT (Newman-Unti- Tambourino)

[simply Kerr if P(s) is an even function of s and

simply NUT if P(s) is an odd function of s]. If one
should desire, for example, to construct a Kerr-
like solution with an arbitrary quadrupole moment

by employing another KC transformation, it would

be natural to begin with the Kerr metric as the
seed metric. To our knowledge ours is the first
determination of the potential F(t) for the Kerr
metric, and this is the basic ingredient which will
allow one to perform subsequent KC transforma-
tioris.

The construction of the metric from f (t ) is
straightforward. One can choose the additive con-
stants in the potential F(t ) so that

(3.5) b, h= ',i[f(0)e+e-f(0)t]. (3.7)
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However, —h is one of the 2x2 blocks of the metric
tensor. The other can be constructed by a variety
of techniques, one of which was suggested in the
work of Kinnersley 10

IV. KERNELS VATH NO ESSENTIAL SINGULARITY
AT s=o

In the examples which we have considered thus
far the kernel K(s) had an essential singula. rity at
s=0. A more direct method of solving the integral
equation is available when the kernel has no es-
sential singularity within C. Such is the case, for
example, when

f(t)+[f(t)+t 'I]K(t)+ Q * ' ' =0 (4 4)
a=i.

where b, —= b(u,. ) and X,. =—X(u,. ), with

X(s) =— [f(s)+ s 'I]h[q(s)].
Multiplying Eq. (4.4) by (I K(-t)] and using the
fact that [K(t)]'=0, we obtain the solution

N

f(t)=-t 'K(t)-Z ' * * [I-K(t)] (4.6)

of the integral equation. In particular, the change
in the complex 8 potential is given by the lower
right element of the matrix f (0)ie, that is, by

(4 1) N

Zg=-z ' ' fx.
lower left element (4.6)

(4.2)

where

t)(s) = s3[ g(s)] -)e2)) (s)

q(s) =-
)).(s) + 1 —2 ss

where n,. and u, are real constants.
For any static seed metric Eo(s) is given by Eq.

(3.1), and the kernel K(s) assumes the form
N

K(s) = Q ' t)(s)h[q(s)],s —Q ~

The determination of the t -independent matrices
X, (1&i &N) involves multiplying Eg. (4.4) by
I)[q (t )] and then taking the limit t —u,. (1 & j & N ).
In this way we obtain a system of K linear equa-
tions

Here I), =—I)[ q(u,. )] and a,. —= a(u,. ), where

a(s) =- [ sl)).(s)]'q(s)e'~") .
and

( iq qae-24(o))

I[q]-,.o(o) ) .

By taking advantage of the property (4.3) of the
matrix h[q], one can solve the Eqs. (4.7) without
great difficulty. The solution can be expressed in
terms of the auxiliary fields

The latter matrices have the useful property

Ilq]I[q']+I[q']I[q]=(q q')'I . - (4.3)

1+wx) 6;-it.i

In particular, (h[q])'=0 .
If one restricts attention to spacetime points

sufficiently close to the origin s = p= 0, then the
branch points of the function )).(s) lie outside the
contour C, which we shall assume encloses only
the poles at s =u,. (1 & i & N) and at s = t. Thus the
integral equation gives us

and

We find that

X,=(detQ) '
Q.i

Q31
. ~

Q..
Qss Qss

(I), 'I),), (4.8)

with analogous expressions for X,. (i & 1).
To evaluate the complex h potential using Eq. (4.6) we require the lower left component of the matrices

X, One finds that
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1 1 1
Q2 Q3

[X ] =it& 'e'~"'(det(&&) '
(4.9)

with analogous expressions for X, (f & 1).
In the simplest case, when N= I, the complex

potential is given by

vacuum case given by

L„(y)= g g A'Prey" ~&PA ',
~[u/) (u)] 2e2(IP (n)+4(0)&

1+io[u/z(u) ]q(u) e'~(n& ' (4.10)

P=o q =0

a=1

in agreement with Eq. (4.3) of Ref. 1. In the
same reference the h potential was worked out
for W = 2 too, at least when the seed metric is
Minkowski space. Aside from these special cases,
we believe that our evaluation of f(t) given in

Eqs. (4.5) and (4.8) results in new solutions. The
metrics corresponding to these solutions can be
constructed in the manner suggested at the end of
Sec. III or from the complex 8 potential, given in
Eqs. (4.6) and (4.9). For the reasons discussed in
Ref. 1 these solutions will be asymptotically flat
(except for the possible inclusion of a NUT pa-
rameter).

Let us turn now to a description of the interim
derivation of the integral equation (1.2). Readers
who are familiar with Sec. III of Ref. 2 should have
no trouble understanding the starting point of our
derivation. Others may wish to consult the Ap-
pendix, where we outline how the infinitesimal
KC transforms, tion equations can be deduced.

J. , (y)=- g
P =1 q=O

(5.3)

(y)=g g A'P'y"-'&ePA-',
P=l q= 1

where P is a 2~ matrix with 2&& 2 by blocks

P(n)

g(m. n )
fft pe + 1

[A-&](rn, n&

For each value of 0 (-~ & && ~), y'"' is an arbitrary
constant Hermitian" 2&2 matrix.

We associate with the infinite hierarchy of
parameter matrices y'"' the 2~2 Hermitian' ma-
trix function of the complex variable t

V. EXPONENTIATING INFINITESIMAL KC

TRANSFORMATION S y(n& f -&&

k =-~
(5.4)

In the case of vacuum-vacuum transformations
T is an ~& ~ matrix consisting of 2&2 blocks
T'"'" '

(—~ & m& ~, —~ & n & ~). In terms of the
KC potentials, we have

T(o ~ n) off(n) (u & 1)
T(ms n & g(m, n) (m& 1 &» 1)

T' '"'=0 otherwise.

(5.2)

The ~ x constant L matrices are in the vacuum-

Equations (3.1)-(3.3) of Ref. 2 can be expressed
in the elegant matrix form

5T =L, (y)+L (y)T TL (y) —TL-, (y)T.

(5.1)

where

~(t )~ =- exp[ y(t)e] f. - (5.6)

The derivation of Eq. (5.5) is facilitated by re-
writing Eq. (5.1) in the even more concise form

The L matrices may- be regarded as functionals of
y(t ).

The thesis of this section of our paper is that if
T, is the T matrix associated with a vacuum seed
metric, then the T matrix of the solution which
results from the finite KC transformation is given
by

T[I+L „(7)T,+L (7)]=T,+L~(v)T, +L, (7),

(5..5)
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5v= —veL(y)v+ L(y)v,

where

=(")

(5.7)

(5.8)

where it should be recalled that II"'= i&. In terms
of the generating function

E(t ) Q II(n) t n (6.3)

Eq. (6.1) implies that

E(t ) E (t ) g g g II&I )7(P+q) T(a, n) t n

g g P «OO q «00

0 I
I-I 0)

'

Equation (5.7) can be solved by expressing v in
the form

v =&(y)D(y) 'e, D(0) =e . (5.9)

Without loss of generality we may choose ~ and
D so that

5N=L,K, 6D= —IN . (5.10)

Equations (5.10) are easily solved, and thus we
discover that

v(y) [ I —e(I —e~'~' )v(0)] = e '~'v(0) . (5.11)

Furthermore, one can show that

A= 1 P=«~
~(P)7 (P - n) ~ t n

ds s '7(s),1
2' (6.4)

we obtain

E(t) —E,(t) = . ds E(s)7(s)s 'T, (s, t)
1

27TZ c
ts '

—E(s)7(s)e

for t within the contour C. Here

(6.5)

providing one sets H'"'= 0 for all n& 0 and T(, '"'
=0 for m& 0 or n & 1. Substituting

e "&'=I +L(7), (5.12) T,(s, t) -= v'
0 (6.6)

where 7 is defined in Eq. (5.6). Equation (5.5) re-
sults when one substitutes Eq. (5.12) into Eq.
(5.11) and then reexpresses v in terms of T using
Eq. (5.8).

It should also be mentioned that if two KC
transformations are performed in succession,
then the o which results from two applications
of Eq. (5.11) can be obtained through a single
application of Eq. (5.11) with e '~' replaced by
the matrix product of the corresponding factors
for the separate transformations. Thus, the
matrices e '&' provide a representation of the
KC group.

In particular, for all n~ 1, we conclude that

Il (n) II(n) ~(P)~(P+q) y(q. n )
0 0

P=Q q=0

+(P) (P-n)
& 7

P=0
(6.2)

VI. DERIVATION OF THE INTEGRAL EQUATION

Our interim derivation of the integral equation
(1.2) for the vacuum-vacuum case proceeds from
a consideration of Eq. (5.5), which can be expres-
sed in the form

T —T, = T[L, (7)T, +—L (v)] + L„(v)T,+ L, (7) .
(6.1)

is the generating function for the T'0 '"'.
Our versions of Eqs. (2.21) and (2.22) of Ref. 4

permit us to conclude that

T,(s, t) = (e -e[E,(s)] 'F, (t)'I (6.7)

and hence that

1 S-
F(t) F,(t) = — .-ds E(s)v(s)

x [F ( )] 'F (t).
This integral equation is completely equivalent to
Eq. (1.2) for the function

f(t)=t '[F(t) F,(t)][E,(t)]-

VII. REMARKS

The linear integral equation (1.2) provides a new
way to think about KC transformations. For the
first time the full power of complex function theory
can be brought to bear upon the stationary ax~.ally
symmetric field problem. In addition, contact has
been made with the well-developed field of linear
integral equations, which have been studied widely
in connection with many areas of physics, and
concerning which there exists an extensive mathe-

maticall

literature.
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The transformations which were the subject of
study in Ref. 1 correspond to especially simple
analyticity properties for the kernel of the integral
equation. Accordingly, for such transformations
the solution of the integral equation presents no
great difficulty. Since it appears from Ref. 1 that
a/l asymptotically flat solutions can be construct-
ed in this way, what remains to be done is to ren-
der the general solution in a particularly useful
form. This will undoubtedly be the subject of in-
tensive study.

Parallel to these efforts will be the actual con-
struction, using KC transformations, of solutions
of special physical significance. It should be re-
marked that in the case of static vacuum metrics,
where Weyl provided the general solution long
ago, little attention has yet been paid to the identi-
fication of solutions of special physical signifi-
cance. Perhaps what is really needed is some
progress on the interior problem. Now that there
has been developed a constructive procedure for
generating all asymptotically flat exterior fields,
the interior pxoblem deserves move attention.

In addition to trying to accomplish these practi-
cal objectives, we are attempting to develop a
simpler, more direct derivation of our integral
equation, and to generalize the equation to the
electrovac -electrovac transformations. "

Finally, we should like to compliment Kinners-
ley and his co-workers on having discovered the
key which unlocked the door to finding all spinning
mass solutions of Einstein's vacuum field equa-
tions. We hope that our refinement of the KC
transformation theory does indeed enable a wider
audience of physicists to appreciate these exciting
developments.
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APPENDIX

The basic equations (2.8)-(2.15) of Ref. 2 can be
cast into a convenient matrix form

E(n& (II(n& ~(n&) for n) 1

z "& = (fe, O),

E '"' = (0, 0) for n & —1 .

(A4)

The matrix S is an ~ & ~ matrix consisting of
3&&3 blocks S' '"' (-~& m& ™,—~& n& ~). It
can be expressed as the sum of a constant part
S„about which more will be said later, and a part
T, which is defined as follows in terms of the KC
hierarchy of potentials:

( )

y(O~ n ) (n& ]),
0 0

@(m, n ) ~(m, n)

T'"'"'= &,„& &„,„& l (m~ 1, n~ 1), (A5)tel I tl A Ill ~ tl )
(0 0)

T(m, n& —
~ otherwise .

The matrix G is an ~x ~ matrix consisting of
3X3 blocks

( ..)

0

+ (5,5„,+ 5„,5„,) ~

01'"' &0 0&
(A6)

Subtracting from (A2) the adj oint of the same equa-
tion, we obtain the relation

S-S —K=8 &E

where 0 is a constant matrix of integration. This
equation corresponds to Eqs. (2.16)-(2.18) of Ref.
2. While the constant matrix 5 may be simplified
by judicious choice of S„ it cannot be eliminated
altogether.

From Eq. (A3) we obtain the relation

A-'E'=-S GE',
so Eq. (A2) yields immediately the result

-A. 'dS= -A 'E e dE =S GE- &dE=S~GdS .

ip 'h~*dE. ,

dS=E cdE,

(A1)

(A2) S~A. -A 'S=StGS-A 'KA. (AS)

Subtracting, from this equation its adjoint, we ob-
tain

EA. =EGS, (A3)

where h is a 2x2 matrix which we introduced in
Sec. II, A. is an ~&& ~ matrix consisting of 3&3
blocks A'"' " ' = 5

~ „„I (-~ & m & ~, —~ & n& ™),
and E is a 2X matrix consisting of 2&&3 blocks
E'"& (-~ & n & ~) such that

(s —a)w —a 's=(s —m) Gs-x 'KA,

corresponding to Eqs. (2.19)-(2.22) of Ref. 2.

(A9)

where K is a constant matrix of integration, which
like 5 cannot be eliminated altogether, no matter
how S, is chosen. Finally, using (A7), we obtain
the relation
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In Ref. 2 the choice which was actually made for S, was
I

0 0 -c 0
(A10)

This corresponds to

(e 0)
m (m'n&

mo no p p~
(A11)

(A12)
(0 0% (e 0)

g (m& n) mln10 ~ 2 onl ml nO 0

We found, however, that in later calculations it was convenient to use instead of (A10) the simpler form

0 —e 0
+(™,-,'., —5-.'..—&-,'. , -,) I {) {) I

~ (A13)

This choice corresponds to I given again by Eq. (A11), but now K is given by

0 0 e 0)
(A14)

2(p -'*)dS+A, '*dS= —(S -'C)G*dS,

(S-Q)A. —A 'S=(S —I)GS-A 'KA,

dS=S~ e dS,

S-S' -~ =S'

(A15)

(A18)

(A17)

, (A18)

The first variation of each of these four relations
is calculated, subject to the gauge condition ISO
= 0, and the trial transformation

Our derivation of Eq. (5.1) from Eqs. (Al), (A2),
(A3), (AV), and (A9) entails first deducing a com-
plete set of relations satisfied by the matrix S.
Th'ese relations are the following:

5S = C+ + C, + S —SC —SC + S (A19)

is substituted. Without making any further special
assumptions concerning the form of S, we find
that the constant matrices C, , C„, C, and

C, must satisfy certain algebraic relations. A

lengthy analysis of these relations permits one to
obtain their general solution. When these constants
are substituted back into Eq. (A19), and the result-
ing equation is reexpressed in terms of the matrix
T, we obtain Eq. (5.1), our version of Eqs. (3.1)-
(3.3) of Ref. 2. In the present paper we presented
the L matrices only for vacuum-vacuum transfor-
mations, saving for the future the consideration
of electrovac -electrovac transformations.
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