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An axially symmetric, torque-free rigid body, rotating and precessing, emits gravitational quadrupole
radiation at two frequencies, co and 2', corresponding to the I = 2, m = 1,2 spherical harmonics. We
present explicitly the waveforms of the two polarizations at both frequencies. From observations of
gravitational waves, one can derive information about the body's orientation and its precession amplitude.

Electromagnetic radiation emitted by a spot fixed on the surface of the body arrives in pulses at a mean

frequency Q which is typically different from co. If the body is not axially symmetric but the amplitude of
the precession is small, the gravitational radiation at the lower frequency co is split into two frequencies on

either side of the electromagnetic pulse frequency. We present explicit waveforms for the two polarizations in

this case also.

I. INTRODUCTION

Pulsars are widely interpreted as rotating,
rather rigid neutron stars. ' Some of the nearer,
more rapidly spinning pulsars might be good
sources of gravitational waves. ' ' Experimental
searches for these waves have already been made, "
so far with negative results. In these experiments
and in theoretical discussions of gravitational
waves from pulsars, it has generallybeen assumed
that the gravitational radiation is emitted at pre-
cisely twice the observed pulsar frequency. Qle

point out here that this assumption is typically
incorrect. The, simplest pulsar model, an axially
symmetric rigid body undergoing free precession,
emits gravitational quadrupole radiation at two
frequencies, & and 2&. The frequency & and the
radio pulsation frequency 0 differ by the preces-
sion frequency &~; hence an attempt to resonate
a high-Q gravitational-wave antenna with the
pulsar's emissions, in order to build up a detect-
able signal, may fail if the radio pulses. are used
as a guide and if radio measurements have failed
to determine the precession frequency. Also the
gravitational radiation at frequency 2w is usually
much weaker than that at frequency .

In this paper we present explicit. gravitational
radiation waveforms for two of the simplest imag-
inable pulsar models: (1) a rigid, axisymmetric
body undergoing free precession, and (2) a rigid
asymmetric body, freely precessing with small
wobble angle. Future papers will discuss more
general models.

Section II of this paper outlines the assumptions
and methods used here. Section III gives the re-
sults for the axisymmetric model and explains how

a gravitational astronomer can deduce a pulsar's
spin orientation, inclination, wobble angle, and
ellipticity, from gravitational-wave observations.

That section also explains the reasons for the
difference between the fundamental gravitational-
wave frequency and the electromagntic pulsar
frequency. Section IV presents waveforms for the
asymmetric model rotating with small mean wobble
angle 8, and discusses how a gravitational as-
tronomer can deduce information about a pulsar's
orientation, oblateness, etc. in this case. Finally,
Sec. V summarizes and reviews these results and
other recent work on gravitational radiation from
rigid bodies. 'That section also points out an error
in Zimmermann's estimates' of gravitational lum-
inosities for the Crab and Vela pulsars and gives
corrected estimates.

II. METHOD

For the purposes of this paper, we model pul-
sars as torque-free, rigidly rotating bodies. Ac-
tually, radiation reaction, accretion, and other
torques certainly exist, but simple estimates of
their size suggest that their effects are likely to
be small compared to the free precession. ' There-
fore we ignore them. Also, solid neutron-star
matter is not perfectly rigid, so the precession
rate calculated for a rigid body needs to be re-
duced somewhat, depending on the shear modulus
and structure of the specific model being investi-
gated. Fortunately the precessional equations of
motion for a nonrigid body are isomorphic to the
rigid-body equations, in the limit that the body's
oblateness and wobble angle are small, and pro-
vided that the body acts as an elastic solid on
precessional time scales. ' " The rigid-body
gravitational radiation waveforms calculated below
should therefore be correct for a nonrigid body, if
the actual reduced precession rate is used in place
of the theoretical rigid-body rate. Liquid-core
neutron-star models typically precess slower than
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rigid bodies by factors ranging from 1o' to 10',
solid-core models of more massive neutron stars
typically precess within a factor of 2 of the per-
fectly rigid precession rate. '" P recession peri-
ods of -20 hours for the Crab and of a few minutes
for a solid-core Vela neutron star have been esti-

We take, as our theory of gravitation and mech-
anics, standard Newtonian theory (the weak-field,
slow-motion, small-stress approximation to gen-
eral relativity), augmented by the quadrupole-
moment formalism for gravitational-wave gen-
eration. " (This formalism is discussed in most
textbooks on general relativity; see, for example,
Misner, Thorne, and Wheeler, "whose notation
and conventions we use. in this paper. ) We are
fairly sure, and shall attempt to prove in a sub-
sequent paper, that the strong-field, slow-motion
approximation" to general relativity (which is
more nearly valid for neutron stars where GM/
Rc'-0.2) will give precisely the same waveform
predictions as the weak-field formalism we use.
The only difference to be expected is in the ex-
pressions for the body's moment of inertia and

quadrupole-moment tensors as integrals over the
body's mass and stress distributions. ""

In our analysis the only relevant parameters
from stellar structure are the three principal
moments of inertia of the body and the wobble
angle 8 between the total angular momentum vector

~ ~ ~ ~J and the body's third principal axis x,.

III. AXISYMMETRIC MODEL:
WAVEFORMS AND ANALYSIS

We first consider a symmetric rigid body with
moments of inertia I, =I, +I3. 'The free precession
of such an object in Newtonian theory is discussed
in most classical mechanics texts. "" It is
straightforward to plug the resulting time- changing
quadrupole-moment tensor into the gravitational
radiation equations" and grind out the waves pro-
duced.

Suppose that the object's conserved angular
momentum J has an "inclination angle" i relative
to the plane of the observer's sky. (Inclination
angle i is defined as astronomers do for binary
star systems: i = o means that J points toward
the observer, i =90' means that J is perpendicular
to the line of sight, i = 180' means that J points
away from the observer. ) For an object at dis-
tance r, we find that the two polarizations" of
gravitational waves have dimensionless ampli-
tudes.

2I,~~& sin8
h, = ' [(1+cos'i) sing cos2+t

+ cosi sini cos8 cosset],

2I] 6 sin0
hx = (2 cosi sin9 sin2&ut

+ sini cos9 sinet),

where the frequency is & =J/I„ the ellipticity is
a = (I, —I,)/I„and 'we set c = G = 1.

A particular choice of coordinate axes and of
the origin of time, t =0, was made by the observer
to yield the above wave amplitudes: If v and u are
orthogonal unit vectors chosen transverse to the
direction of wave propagation, with v xm = (di-
rection toward observer), then

h =h» =-h" =( 1/~)(I I )

where TT refers to the "transverse-traceless"
gauge, dots are time derivatives evaluated at the
retarded time t —x, and the minus signs come
from our use of

I,b
—— p x 6,„-x,x d'x

instead of the

b p xgxg

of Ref. 13.
The observer can get into our "preferred" orien-

tation by rotating his transverse axes v and m

so as to maximize the observed ratio
~
h, ,„~ /

~h„,„~ (where h, ,„means the amplitude of h, at
frequency 2, with its cos 2t time dependence
factored out, etc. ). The same orientation of v

and ~ must also maximize the independently
observable ratio ~h„„~/~h, „ if the waves come
from a freely precessing, axially symmetric body.
In this orientation, the projection of J into the
plane of the sky lies along one of the directions
v, M), -v, or -m. The quadrupole nature of the
waves makes this 90' ambiguity unavoidable.

ln Eqs. (1) the observer's origin of time t=0 is
chosen so as to make the component of h~ at fre-
quency & proportional to + sin &t, with a positive
constant of proportionality. The same choice of
t =0 must make the piece of h, at 2~ proportional
to +cos 2t and

(h, at (u) ~ (~ cos (ut),

(h„at 2&v) ~(+sin2(ut),

with the sign determined by the sign of cosi. With
this choice of time origin, it turns out that at
(retarded t ime) t = 0, the body's s ymme try axis
x3 l ies iri the pl ane defined by J and the direction
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to the observer. If the body's ellipticity e is
positive (oblate spheroid}, x, is at its farthest
from the observer at t =0; if e &0 (prolate spher-
oid), x, is at its nearest to the observer. (We use
the convention that the constant of the motion
A

x3 - J=J cos 9 is positive; in other words, 9 lies
between 0' and 90'. During free precession, x3
moves around J at angular rate &u. )

~ith his transverse axes aligned and his origin
of time selected in the above manner, the observer
can read off from his measured waveforms and

Eqs. (1) the inclination and wobble angle of the
gravitational wave source. The independent ratios
h„„/h, „and h„,„/h, ,„determine the inclination
i in the ra.nge 0' to 180'; given i, the ratios h, ,„/
k, „and h„,„/h„„determine the wobble angle 8

between 0' and 90'. Finally, the overall amplitude
of the signals determines

If the distance x is known by other means, then
a direct measure of the nonaxisymmetry ~I, —I,

~

follows. Note that gravitational observations alone
cannot distinguish an oblate from a (perhaps im-
probable) prolate spheroid.

To compare the gravitational radiation wave-
forms with the electromagnetic pulsar signals,
one needs a simple pulsar model. Suppose that
something fixed on the surface of the neutron star
(a magnetic pole, for examp'le) at colatitude &

relative to the x, body axis is associated with
radio, optical, or other pulses observed once per
turn of the star. The apparent rate of pulsation
seen by a distant observer varies during the body's
precession and depends on the precessional mo-
tion, on ~, and on the details of the pulsar radi-
ation beam. Free precession would produce
periodic peregrinations in the perceived pulse
period, the mean pulse profile, and other pulsar
parameters, such as pulse polarization.

Electromagnetic observations of pulsars have
shown no evidence for precession. ""In par-
ticular, any precession with a period between
about 2 and 150 days must have an amplitude less
than a few degrees" in the observed cases.

There are two scenarios which could explain
the absence of observable precession. First, if
the angle A. (between a pulsar's x, body axis and
the source of the radiation beam) were small com-
pared to the wobble angle 8, then a pulse would be
seen whenever the x, pulsar axis passed sufficiently
close to the observer's line of sight. The mean
observed electromagnetic pulse frequency 0 would
thus equal the gravitational-wave frequency &
=J/I, . But during the body's precession time

2m/Q~ =2wI, /~(I, -I,) cos8,

the observer would pass through the pulsar ra-
diation beam from many different directions. For
the precession to be invisible, the pulsar beam
would have to be not only nearly axisymmetric,
but also would have to be without observable linear
polarization. Any net linear polarization would
rotate through 360' during a precession time; this
has not been observed. '"

The second and much more plausible scenario
to explain the lack of electromagnetic precession
observations is that the pulsar's beam source is
at an arbitrary angle ~, but that the wobble angle
8 is small. In this case, the body-frame preces-
sional angular velocity A~ adds to the inertial-
space x, angular velocity ~ to give a mean electro-
magnetic pulse frequency 0 =&+0~ different from
the gravitational-wave frequency. (For an oblate
body, Q&~.) The observer always passes through
the pulsar beam from approximately the same
direction, so no significant changes in pulse profile
or polarization would be expected. A simple knife-
beam model of the pulsar radiation pattern gives
the result (for small 6) that during a precession
time pulses arrive early and late by a phase of up
to 9/tank, with sinusoidally varying phase shift.

Small (but nonzero) values of 8 have been sug-
gested in order to explain pulsar "glitches"
(speed ups) and timing "noise" in terms of pre-
cession- and spin-down-induced starquakes. """
Although the estimated fractional frequency dif-
ference between the electromagnetic pulses and
the gravitational radiation is small, probably in the
range 10 ' to 10 " (Refs. 6, 11, 20, and 23}, the
fact that a difference may exist is critical for
some gravitational-wave experiments. For i@-
stance, it has been suggested' that by controlling
the frequency of a high-Q crystal to follow the
radio pulsar emission, one might mechariically
integrate up an observable gravitational-wave
signal. Other proposals (Ref. 24 and references
cited therein) involve heterodyne techniques to
mechanically convert a monochromatic pulsar
signal to zero frequency. These schemes clearly
will fail for the simple freely precessing model
described here, if the integration time needed to
produce a measurable signal exceeds the reci-
procal of the body-frame precession frequency.
A more sophisticated broadband method of grav-
itational-wave detection is required. Any splitting
between the gravitational and electromagnetic
frequencies is a potential difficulty, but as com-
pensation it provides another measure of the
object's oblateness, including its sign (oblate vs
prolate).
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IV. TRIAXIAL MODEL WITH SMALL WOBBLE ANGLE:
WAVEFORMS AND ANALYSIS

If the object lacks axial symmetry but its wobble
angle is small enough, then its free precession
and the resulting gravitational waves can still be
expressed simply. Following a classical mech-
anics text, "let the body have principal moments
of inertia I, &I,&I,. Define two (not necessarily
small) eccentricity parameters

e, =[2(I,-I,)/I, )'"
and

e, = [2(I, -I,)/I,]'".
The mean ellipticity is E =-,'e,e,. Let the preces-
sion amplitude be small, with J always near the
x, body axis and with mean wobble angle 8. To
first order in 8, the mean electromagnetic pul-
sation frequency (from a spot fixed on the body,
far from the x, axis) is 0=J/I, and the precessional
frequency is O~ =- &O. Define the small parameter
a—= 28'/(e, '+e,')'~'. [Note that 8 must be much less
than max(e„e, ) for a to be small and for this ap-
proximation to hold. ] Then by plugging into the
quadrupole radiation formulas, "we obtain

h, = —(1+cos'i)(I, —I,)Q' cos20t+ [(e,I, +e,I,) ~.'cos~, t+ (e,I, —e,i,)~ ' costs t],2 &a sin2i
y 2&2~

h = —cosi(I I )0'sin—2Qty [(e,I, +e,i, )&u 'sin~, t+(e, I, —e,i,)~ 'sin&a t],4

&assam

1 2
W2~

(2)

where e, —= (1 + e)A.
The above h, and h~ are defined using the same

choice of transverse v and m vectors discussed
following Eqs. (1). To get into the orientation and
time origin of the waveforms (2), an observer can
rotate his transverse axes to maximize ~h, » ~

/
h» . The same orientation will maximize

producing the gravitational waves is indeed a
precessing triaxial body with small wobble angle.
An additional check is that the frequency of the
20 radiation must equal the sum of the frequencies
of the other two components of the radiation (plus
corrections of order 8'). As before, one of the
transverse axes v, sv, —v, or —~ lies along the
projection of J into the sky, but gravitational
observations cannot resolve the 90 ambiguity.
The choice of t =0 to make the time dependence
of the measured h's agree with Eqs. (2) corre-
sponds, as for the symmetric case earlier, to the
body x, axis lying in the plane defined by J and the
direction toward the observer, with x, at t=0 as
far from the observer as it ever gets.

The object's inclination angle i is again defined
unambiguously and redundantly by the ratios of
the components of h and h„at the three frequen-
cies, However, in making the small-8 approx-
imation, we have sacrificed the information
[O(8')] necessary to derive the mean wobble angle
8 itself from the observations. The splitting be-
tween the various frequency components of the
gravitational waves does enable one to measure
the mean ellipticity E. 'The relative amplitudes
of the waves then give a variety of nonlinear com-
binations of the three moments of inertia and the
wobble angle. If the distance to the object, x, is

known by other means (so that the 2~ radiation
gives a value for I, I,), the-n the observations are
sufficient to determine all of the unknowns: I„
I2, I3, and 9.

We view the results of the triaxial-rigid-body
case [Eqs. (2) for small II and the waveforms for
arbitrary 8 in a subsequent paper] not necessa. rily
as predictions of actual gravitational waveforms
to be expected, but as indications of the probable
complexity and high information content of grav-
itational waves from astrophysical sources. Pul-
sars in nature are not perfectly rigid, and they
are subject to significant electromagnetic radia-
tion-reaction torques, accretion of matter,
glitches, timing noise of uncertain origin, and
other effects which we have omitted. Gravitational
astronomy may be a powerful way to get a handle
on the details of those effects.

V. CONCLUSIONS

Previous investigators have derived the correct
energy and angular momentum loss equations for
rigid rotating bodies in general relativity. '""
For the case I, =I„ their result for the gravita-
tional-wave luminosity is, in our notation

L o„=—,'e'I, '&u' sin'9(16 sin'8 + cos'9),

where the 16 sin'g term is from 2' radiation and
the cos29 term is from & radiation. To our know-
ledge, the fact that & radiation exists and is sig-
nificant has never been clearly pointed out. (Per-
haps it has been overlooked because it vanishes
when an object rotates about a principal axis. )
For small wobble angles 0«90'; the radiation
at frequency w is in fact larger than the 2m radi-
ation for a sufficiently symmetric object. [The
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reason is simple: A body, such as an American
football, wobbling by a small angle about its
symmetry axis, has a large time-changing piece
that "looks like itself" after a time 2v/~, but only
a small piece that "looks like itself" after time
v/~. In contrast, a football tumbling end-over-
end (8-90') "repeats itself" every half revolution,
and radiates gravitational waves most strongly
at 2~.] The possible difference between the fre-
quency of the gravitational radiation (produced
by the body's inertia tensor) and the mean electro-
magnetic pulsar frequency (produced by a spot
fixed to the body's surface) is also significant.

A recent estimate by one of us (Zimmermann)
of the actual astrophysical amplitude of the waves
produced by pulsars, such as the Crab and Vela,
found h-10 24 to 10" (Ref. 6) at frequency 2&@.

Energy conservation, balancing spin-down and
gravitational-wave luminosity, means that neither
of these objects can have h at frequency & much
over 10 ". But we must point out here that the
formulas used for this estimate' are in error.
For small 8, the gravitational luminosities
(erg sec ') calculated in Ref. 6 are too high by a
factor of 16 and the bulk of the luminosity occurs
at frequency ~, not 2+. The actual mean wave
amplitude h at frequency ~ is a factor of 2 smaller
than the values quoted; at frequency 2~, the actual

h is smaller by a factor of 0 '-100, if 9 is as
small as estimated. (These errors are smaller
than the astrophysically induced uncertainties in
the estimates of Ref. 6.)

It is conceivable that experiments sensitive
enough to detect sources with h-10 '4 will be
running within the next decade. Qravitational
astronomers who 'do such experiments should be
aware of the likelihood that the strongest radi-
ation will be near but not at the radio pulsar fre-
quency. Successful observations of these grav-
itational waves will yield new information about
pulsar structure and spin alignment, information
probably not obtainable by any other means.
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