Weak effects in Σ^0 decay

Stephen Wolfram

California Institute of Technology, Pasadena, California 91125 (Received 2 November 1978)

It is pointed out that weak interactions should admix a small parity-violating E1 component into the M1 electromagnetic decay $\Sigma^0 \rightarrow \Lambda \gamma$.

The decay $\Sigma^0 \rightarrow \Lambda \gamma$ is dominantly an *M*1 electromagnetic transition. Strangeness-conserving weak interactions should, however, admix a small *E*1 component into the decay, leading to $\langle \hat{\sigma} \cdot \hat{\mathbf{p}} \rangle \neq 0$ for the Λ and γ even from an unpolarized Σ^0 . The most general amplitude for $\Sigma^0 \rightarrow \Lambda \gamma$ is $(\sigma_{\mu\nu}\gamma_5 \text{ is}$ not second-class¹)

$$\overline{u}_{\Lambda}\sigma_{\mu\nu}(1+\delta\gamma_5)u_{\Sigma}(p_{\Sigma}-p_{\Lambda})_{\nu}\epsilon^{\gamma}_{\mu}.$$
(1)

The average helicity of the Λ or γ produced in the decay of an unpolarized Σ^0 is then²

$$\langle \hat{\sigma} \cdot \hat{p} \rangle = \frac{N_L - N_R}{N_L + N_R} = \frac{2\delta}{1 + \delta^2}.$$
 (2)

If the Σ^0 is polarized, then the angular distribution of the outgoing γ with respect to the initial Σ^0 spin direction is

$$\frac{dW}{d\Omega} \propto \left(1 - \frac{2\delta}{1 + \delta^2} \hat{\sigma}_{\rm E} \cdot \hat{p}_{\gamma}\right) \quad . \tag{3}$$

The parameter δ is a measure of the strength of the nonleptonic strangeness-conserving part of the weak-interaction Hamiltonian. *W* and *Z* exchanges between free quarks in the Σ^0 and Λ give

(essentially) absent in a gauge theory. ²R. E. Behrends, Phys. Rev. 111, 1691 (1958).

$$\delta \simeq 4 \times 10^{-5} \,. \tag{4}$$

Quantum-chromodynamics effects do not appear to modify this result significantly, ³ although diagrams consisting of weak vertex corrections to gluon exchange could be important. If the weak amplitude is taken to be equal to that in $\Sigma^* \rightarrow p\gamma$ (multiplied by $\cot\theta_c$), then one finds

$$\delta \simeq 2 \times 10^{-5} \,. \tag{5}$$

A measurement of these small $\Delta S = 0$ weak-interaction effects should help to clarify the structure of the nonleptonic weak Hamiltonian.

Several authors⁴ have suggested measurements of parity violation resulting from interference between the processes

$$\Sigma^{0} \rightarrow \Lambda \gamma_{-e^{+}e^{-}}$$
 and $\Sigma^{0} \rightarrow \Lambda Z^{0}_{-e^{+}e^{-}}$.

This effect should be entirely swamped (except perhaps for very small Λ momenta) by the *E*1 admixture into the photon-mediated decay $\Sigma^0 - \Lambda \gamma_{-e^+e^-}$ discussed here.

This work was supported in part by the U. S. Department of Energy under Contract No. EY76-C-03-0068, and by a Feynman fellowship.

345

¹This coupling to the photon can arise from $\gamma_{\mu}\gamma_5$ couplings between the quarks, and therefore does not correspond to a second-class effect, which should be

³M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov,

<sup>ITEP Report No. ITEP-113, 1976 (unpublished).
⁴H. S. Mani and H. S. Sharatchandra, Phys. Rev. D <u>10</u>, 2849 (1974); J. Schecter and M. Singer, Nuovo Cimento <u>26A</u>, 117 (1975); E. S. Abers and M. Sharif, Phys. Rev. D <u>16</u>, 2237 (1977); M. A. Pérez,</sup> *ibid* <u>19</u>, 400 (1979).