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Application of the semiquantum approximation to lattice field theories
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%e show that the semiquantum approximation to energy levels of simple lattice field theories using site
variables gives results in agreement with those obtained with collective modes.

where p, are the momenta conjugate to the fields
P,. at sites i, and the gradient term is approxi-
mated by the difference of field values. It is ob-
vious that by introducing collective va.riables
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the Hamiltonian in Eq. (1) is diagonalized giving
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where k, =0 and k, = ~2.
The semiquantum (SQ) approximation consists

in general of replacing the kinetic term by
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If the wave function 4($) were known, the energy
eigenvalue would be given by the choice g= 4 '/4'
and a, minimization with respect to t. It is there-
fore convenient to represent gby

In recent papers a semiquantum method to
evaluate energy levels' has been applied to lattice
field theories. ' This method consists of replac-
ing the kinetic part of the Hamiltonian with a func-
tion of the coordinate which contains some pa-
rameters. The energy eigenvalue is obtained by
minimizing with respect to the coordinate and
maximizing with respect to the parameters. It
has been shown in Ref. 2 that a satisfactory ap-
proximation to the energy eigenvalues of field
theories is obtained by using the collective vari-
ables which diagonalize the intersite interactions.

The purpose of this note is to point out that
reasonable results may also be reached with site
variables, provided a suitable parametrization is
given for the kinetic terms.

Let us begin with the free-scalar-field case. The
essential aspect of the problem may be seen by
considering just the two-site Hamiltonian

where (,„and(, are the wave-function maxima
and zeros, respectively. Guessing the number of
maxima and zeros for a'particular level, the ap-
proximate energy is obtained by varying the pa-
rameters $„and(, until the highest value of the
minimum of the Hamiltonian as a function of the
coordinate is reached.

Applying the SQ method to Eq. (3), it is clear
that by having the ground-state wave function with
one maximum at the origin of the collective vari-
able $„andno zeros, the SQ approximation is
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Minimizing Eq. (3) with respect to $„,one obtains
in this case the exact result E =Q„—,'(M'+ k„')'~'.

Returning to the Hamiltonian Eq. (1), if we use
the SQ method for site variables
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the minimization with respect to P,- corresponds
to P, = (I)), and Z =Q, —,'M, a result which, as
noted in Ref. 2, is due to the fact that only the
mode with wave vector k, =0 survives.

We wish to remark that approximation Eq. (I)
comes from the assumption that the wave function
for each site is centered around P,. =0. It is, how-
ever, sensible to think that both wave functions
must be shifted because of the mutual interaction
giving the approximation
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In Fig. 1 we represent each single-site part of
H~z for A, =-A„i.e. , without the term -Q, (I)),.
It is clear that for a particular value of the pa-
rameter three minimal configurations can be made
equal, (a,a2)2 (b,b, ), and (a,b, ) corresponding to
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FIG. 1. Free field. H&(p;) represent the single-site
parts of Eq. (8).

FIG. 2. Quartic self-interaction. IfsQ(ib;) represent
the single-site parts of Eq. (10).

having both coordinates in the left well, both in the
right, and the first in the left and the second in
the right. In fact, the larger single-site energy
of the first two configurations is compensated
by their negative intersite interaction. The pres-
ence of configurations with nonequal p, and Q2

gives rise to contributions of both normal modes.
The equal energy of these configurations maxi-
mizes the minima of Il~@ attainable with this para-
metrization. The numerical calculation indica-
tes that for a weak coupling (M=3) the exact re-
sult 8 = 3.158 is well approximated by the SQ meth-
od applied to site variables which gives E =3.111
for A = 0.038, whereas with Eq. (7) the low value
E =3.0 is obtained. For strong intersite coupling
(M=0.5) the SQ approximation is not so goodsince
it gives E =0.629 for A =0.48 compared to the exact
value E =1.0 and the one coming from Eq. (7) which
is E =0.5. This occurs because the wave function
for each site is not suitably represented by a
simple shifted distribution with only a maximum
when the value of A turns out to be large.

Looking now at a case where neither the site
variables nor the collective ones diagonalize the
Hamiltonian, the outcome is that the SQ method
applied to both sets gives similar results. To
show this, we analyze a scalar field with a two-
minima potential, again restricting to the two-
site system
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We may replace the kinetic terms by the functions
of the fields corresponding, for each site, to a
wave function with maxima around the minima of
the potential and a zero near the maximum of the
barrier. Therefore for &=1 and f'=1.5 we take
the parametrization for the ground state
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Now each single-site part of Eq. (10) has four
minima, as shown in Fig. 2 where for reasons of
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the resulting energy turns out to be E =1.84 which
is clearly too low. The reason is that prescription
Eq. (12) corresponds to a wave function in $„with
only one maximum, whereas rewriting the quartic
potential of Fq. (11) in terms of $„aquartic po-
tential appears again. Since this potential has
two minima as in the site case, one must choose
a prescription for the kinetic terms which cor-
responds to a ground-state wave function with two
maxima and one zero, i.e.,
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Taking A, =A, =0 since the intersite term does not
break the symmetry $„--$„,the optimum value
is E=3.80 for B,=2.56 and B,=1.56, which is
quite close to the one calculated with the sites in
Eq. (10). We note that because of the numerical

symmetry the zeros of the wave functions have
been chosen A, = -A, and the maxima B,=B,.
Maximizing with respect to these two free pa-
rameters, it is possible to make equal the minimal
energy configurations (a,a2), (a,b2) and their sym-
metric counterparts (d,d, ), (c,d, ). The energy
turns out to be E = 3.90 for B = 1.56 and A = 0.07,
quite close to the result E = 3.83 for A =0.07 ob-
tained when B is kept fixed to the value 1.54 which
corresponds to the minimum of energy of a single-
site Hamiltonian, showing that A is the most re-
levant parameter.

Introducing the collective variables Eq. (2) which
diagonalize the intersite term, the Hamiltonian
Eq. (9) may be written as

a= —,
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Its classical solution is Q, =Q, =sf, i.e.,
=W2f, $2=0, and the conjugate momenta s, =F2=0,
which corresponds to zero energy. If we apply the
SQ method in the simplest way to avoid this clas-
sical configuration
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value of B, the configuration corresponding to the
classical solution of Eti. (11}is avoided in this
case, too. The conclusion is that a simple way
to apply the SQ method is to write the Hamiltonian
in terms of site or collective variables and re-
place the kinetic terms by functions 'suggested by
the eigenfunction of the single-site (-mode} Ham-
iltonian allowing small shifts in the parameters
to be used to maximize the minimal energy con-
figurations. ith both choices the number of free
parameters is equivalent.

Having shown that the calculations with site or
collective variables give similar results, for
larger number of sites the site prescription is
more convenient because of its greater simplicity.
This is because it is not necessary to diagonalize
the intersite terms and all the site potentials are
equal. To limit the number of parameters neces-
sary to evaluate the ground-state energy, one may
keep the maxima of the wave function B; fixed to
the one-site value and vary the position of zeros
A, . It turns out that the optimum values for a
free end-point chain correspond to smooth changes

of A, from A, to A„=-A, . For N = 3, e.g. , this
means A, =-A, and A, =O.

Similar calculations with the site variables may
be performed for a closed ring with periodic
Q„„=Q, or antiperiodic Q„., =-Q, conditions, the
former corresponding to the vacuum and the latter
to a kink solution. It turns out that this site pro-
cedure gives values quite close to the ones ob-
tained in Ref. 2 where the displacement with res-
pect to the classical solutions had been used as
variables for the SQ method. E.g. , already for
%=3, and X=1, f'=1.5, our site prescription
gives an energy per site of 2 for the vacuum and
2.3 for the kink configuration, whereas in Ref. 2

the calculation for N =8 gave 2.3 and 2.4, respec-
tively.

We have shown that the SQ method with site
variables represents a quick procedure to compute
approximate energy levels of simple lattice field
theory. This is the only version which can be
practically used in cases where the diagonalization
of the intersite terms is quite complicated as in
the Reggeon field theory. '
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