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We examine some general properties of an approximation scheme for taking a strong-coupling lattice
theory off the lattice proposed recently by Bender et al.

In the past few years there have been several
attempts by many authors' ' to formulate a
strong-coupling expansion for local field theories
by perturbing in the kinetic terms of the action
about the remaining static-ultra-local' ' (or inde-
pendent-valued') theory.

There is a major difficulty in that the diagrams
in the resulting diagrammatic expansion are ex-
tremely divergent. This happens because the
"propagator" in these diagrams is the inverse
of the usual Feynman propagator, and hence is a
very singular distribution. As an intermediate
step, the easiest way to give numerical meaning
to the diagrams is to regularize by introducing an
elementary length a. Most authors put the fields on
a lattice, ' but alternative regularization schemes
can be'devised. This introduction of a length
eliminates problems of measure, ' and makes all
diagrams finite.

The difficulty arises in taking the length a to
zero. Most authors do not attempt this necessary
(for a local field theory) final step. Recently in
Ref. 7 a novel attempt was made to come off the
lattice, and this brief paper is a comment on the
methods adopted in Ref. 7 to do this.

The organization of our work is as follows:
First, we summarize the ansatz of Ref. 7 for
setting the length a equal to zero. Second, we
attempt to determine general circumstances for
which the ansatz is true. Third, we consider ex-
amples, including a simplified theory fO(N)-in-
variant &(q ')' theory in the large-X liinit], in
which our conclusion can be tested.

We begin by reiterating the tactics of Ref. 7,
to which the reader is referred for greater de-

tail. Restricting ourselves to 4p' theory in
d& 4 dimensions, we define the dimensionless
parameter

) -I./2 ft/2-2

where each A.„ is a fixed combinatoric factor ob-.

tained from the relevant regularized diagrams.
As in any perturbation theory, only the first few
A„'s are readily computable.

The new step made in Ref. 7 was to postulate a
sequence of approximants s~ (p = I, 2, . .. ) for the
x-~ limit of s(x) that converge sufficiently rapid-
ly for a useful result to be obtainable from know-
ledge of a very few A„'s. First, the power series
for

s(x)'~ =x Q a x"
n=O

is determined. This is then inverted as

s(x)'~8 = (4)

n=O

Then, if this denominator

f(x) = Q a„x"
n=O

where a is the lattice length. It is found that all
relevant quantities (e.g. , masses) are expressible
in terms of the dimensional bare parameters of
the theory multiplied by series of the type

s(x)=x~ P A„x", p& 0, A, e 0 (2)
n=O
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has, for its pth power, the series

a(P&xn
n=o

we compute the sequence s„s„s,-, . .. , where

If the s~'s are real, ' and the limit

s= llm sp
phoo

exists, it is tempting to assume that

s = lim s(x)

also exists, and that

S=S~ ~

(6)

(8)

the way. For large P any are of the contour be-
ginning and ending on zeros and traversing a
saddle point will give a contribution dominated by
it.

Suppose, for the sake of simplicity, we have a
single finite saddle-point solution to (12) at x =x, .
Furthermore, suppose that C can be split into
two arcs C, and C~ (terminating at zeros of f)
such that Cs traverses the saddle point. Then

&~=(B(p)+Ap ' 's(x, ) ~ [1+O(p ')]) (13)

where B(P) is the contribution from the "back-
ground" arc C, , and the second term (with A in-
dependent of p) is the saddle-point contribution
from C, .

We see that, if the saddle-point term dominates
B(p), we have

s= lim s~ = s(x, ) f s (in general). (14)
There is no doubt that for the examples consid-

ered in Ref. 7 the approximants s~ seem to con-
verge rapidly. Moreover, for the anharmonic os-
cillator the s~'s converge rapidly to the known sol-
utions (e.g. , O. Pfp error by s,). For this reason
the approximant scheme must be taken seriously,
and the whole merit of Ref. 7 depends upon its
usefulness. However, on applying this approxi-
mant scheme to random series f (x) it is not diffi-
cult to find functions s(x) with finite s„, such that
(10) is not true. This possibility was not dis-
cussed in Ref. 7. It follows that the approximant
scheme is worthless unless its success can be an-
ticipated by invoking further information than
merely the existence of series s(x).

Our first aim is to determine necessary and
sufficient conditions for the equality of s and s„,
assuming that s„exists. We have no particular
expectations for the f(x)'s arising in &y' theory,
but we assume that any series f (x) has nonzero
radius of convergence (and can be defined outside
this radius by analytic continuation in the cut x
plane). It follows from the definition (7) that s~
can be written as

1 cfog

s~ = . —s(x) ~~8
2@i c x

where the contour C of integration is a. counter-
clockwise loop around x = 0 within the circle of
convergence of f. The integrand vanishes at the
zeros of f and, in addition to x=0, has singulari-
ties at the singularities at f. Moreover, the sad-
dle points of -lns occur whenever

If we further assume that, if the saddle point
does not dominate, s=s„, we must identify

B= lim B(p)

= lim . —s(x) ~i~
2~ c

with s . Thus if a single saddle point exists at
x =x, , a plausible rule of thumb for the approxi-
mants s~ to converge to a limit s different from
s„ is that

s' (x, ) =0, s(x, ) 1

f(x) =bx+a g (-x)", b&0
r=O

(integer N). For ~x~ & 1, f converges to

If there is more than one saddle point, we ex-
pect sW s„ if (16) is satisfied for any of the saddle
points. A corollary to these assumptions is that,
if there are no finite saddle-point solutions to (12),
we expect s=s„. (If s does not exist, we would
expect s~ to diverge if there are no saddle points. )

To show how this works in practice we consider
the following simple example:

Example I. A simple (unphysical) series with
one saddle point. Consider s(x) =xlf(x) where

s'(x) =O=f(x) xf'(x) . - (12) f(x) =bx+a(1-x) N (18)
In order to evaluate s~ we try to deform C in

such a way that it passes through zeros of f (x),
negotiating the nearest (of any) saddle points on

and is defined by this elsewhere.
Evaluating s~ directly we find that
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2n'(N+1) 'i' ' ' I'@/(N+ 1)) 1 2 N 1 2
I'(I!N) "" " P'N+1'N+1'"'N+1'N'N'"' '

(N+ 1)"". a
(19)

where „„I„is a generalized hypergeometric function. The integral representation for „„+„e»b&esus
to rewrite s~ as

(sp )
2N(N + 1)'

N ~"'t1 N(N+ 1)

E

J [dt t "'~~"+ '1(1-t )
"'~"~ "']

0 1

(N + 1)N+ 1

~ ~+ (20)

The large-p behavior of s~ is thus given by the
end-point behavior of the integrand. We have
several cases to consider:

give

8=6 = s~ ~ (25)

(N+1)»" a
(i) b40, 1+ „—&1. (21)

As expected from (16) the approximant scheme
works, the saddle point not dominating [Fig. 1(b)].

Finally, we consider b=o, when
The dominant contribution comes from t, = 1 to
give s(x) =a 'x(1-x)N- x»" (26)

(N ~ 1)N+1 -1
8= 5+ ~ 0 =SXq (22)

and s„does not exist. However, (20) reduces to a
product of 8 functions to give

s= s(x, ) & s„=b ', (23)

satisfying (16).

(ii) b & 0, 1 + &1.
i s(x, ) i

(24)

The dominant contribution comes from t, = 0 to

where x, = (N+ 1) ' is the position of the saddle
point. That is, the saddle point dominates the
contour integral [Fig. 1(a)] and, as expected,

(N + 1)»+1
S=

N Q=S(X ) (27)

That is, s exists and is real (although s~ is not
necessarily real) even though s„does not exist,
and can take any power behavior. (If however,
there had been no saddle point, we would have
expected s, to diverge appropriately. )

With this example reinforcing our prejudices,
our conclusions are that a necessary condition
for the working of the approximant scheme is
that, if s(x) has any extrema in the cut x plane,
~

s/s„~ & 1 at them all. Further exactly soluble

(b}

W O

I0
o

C, O 0
I

FIG. 1. Contours for the integral (11) for 8& for the example (17). Crosses denote singularities of the integrand atx
=0 and x =1, open circles denote zeros, and the solid dot denotes the saddle point atx, =(N+1) . (a) g/6 &0 (and small)
satisfying (21). There is no contour C& and the saddle point dominates. {b) z/b &0 (and small) satisfying (24). The con-
tour C, containing the saddle point is dominated by C~. In both cases we have taken 3, odd.
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examples can be constructed. We have not bebn
able to find any contradictions.

Example II. The charge-N) O(N) -invariant &(y')'
theory in one dimension. In the previous example
there were variable parameters, giving different
results in different ranges. In physical problems,
all parameters in f (x) are purely combinatoric
and fixed. Let us first consider the O(N)-invar-
iant anharmonic oscillator (the anharmonic os-
cillator being the most discussed example in
Ref. 7) with Lagrangian

6„K(x -y) = 5„s'5(x -y) (29)

as their propagators, and the derivatives ~„of

W[j, ] =a '
J dxlnF(j. (x)) (30)

(u = 1, 2, ... ,N). We take m, '& 0 .
As an example of a power series s(x), consider

the diagrammatic expansion for the propagator of
the scalar fields. All diagrams have

(28) (at j = 0) as their n-point vertices, where

&(e.) =
N

dx, exp -a -', m, 'x, '+ ~ (x, ')'+q x,
I

(31)

It is sufficient for our purposes to note' that the P point vertex is O(N' ~ '). Furthermore, every closed
loop gives a factor ¹ In the large-N limit we see that the propagator S', is a geometric series of the form

(32)

where A is the sum of all one-particle irreducible [in the sense of (29)] bubble diagrams. Figures 2(a)
give examples of such diagrams.

Rather than evaluate A (on the lattice) directly by summing such diagrams, we know by conventional
large-N tactics" that it obeys the equation"

+A'[1+A s'+A'(s')'+ A'(s')'+ ~ ~ ~ ] 5(x —y) i

1 m~A
A.o x=1

(33)

2r ix-y „~= — 0
( ))2

&'"6(x- )) =(-1)"a '" '

whence (33) becomes

m'A
+ —1 —2 —,~+6 —, + ~ ~ ~

g 2)

(34)

The right-hand side of (33), containing progres-
sively more singular terms, is evaluated on the
lattice (lattice spacing a) by the replacement

h(x) =1+x -—x + —x - 2x + x + ~ ~ ~

ln fact, by exact calculation h(x) is given by

3 h(x) = [ 2(s + s 2+ 1)&I2 —(s —s )]

+[s,—s ]' ',

where

& =[(1+27x')"+3~3x']"

(39)

(4o)

(41)

m'A A2
0

(4A +a')"'

Rewriting (36) as

(35)

(36)

showing that it has a finite radius of convergence
in the x plane (and further that it is a power ser-
ies over the rational numbers).

From (39) the approximants

(37)

and expanding the right-hand side in powers of
A, (37) can be solved iteratively for A as a power
series in ~, ' ', the lattice strong-coupling ex-
pansion. Defining x by (1), A can be further ex-
pressed in terms of series of the type (2). For
example, if m, '=0 for simplicity, we have

p„2/3~ j./3
X h( )

A.o g
(38)

(b)

FIG. 2. Diagrams contributing to A. (a) Typical dia-
grams contributing to leading 0(1) in. the N expansion,
of order A, p, A.o, ~0, respectively (from left to right)
(b) The diagram of order ~0 contributing to 0(N ).
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s =&-»3A (42)

toA are

s, = 1.442,

s, = 1.513,

s, = 1.53V,

s4 = 1.550,

s, = 1.557,

converging monotonically to the known limit

s„=2»3=1.587 .

(43}

(44)

No doubt improved schemes would give more
rapid convergence.

Do our previous considerations explain the suc-'
cess of the approximant scheme in this case'P
From (37) we see that

[X,%' —(1-m 'A)'+ 2Am, '(l. —m, %)]

(1-m, 'A) + —,
' m, 'x (46)

1 m A 3A
(4K+a')' ' (46)

obtained trivially from (36) by the replacement
~,-3~,. The approximant scheme will therefore
be valid for this approximation which, as antici-
pated, is numerically good, the errors in A ' '
being 6/q or less over the whole range of &, and

m, '.' It has been shown' for a = 0 that there
are yet better polynomial functional relationships

with no finite x solutions to A'=0 and hence no
saddle points. We would thus expect the success of
the approximant scheme.

This is very gratifying, but the large-N behavior
is really a classical field theory to be treated in
its own right, and it is difficult to estimate its
relevance to the N = 1 anharmonic oscillator of

.Ref. V. However, we note that, of the totality
of diagrams of order ~
contributing to W„only the single diagram of
Fig. 2(b) (order &, ') would be omitted to leading
order in an N expansion. This leads us to the
next example.

ExamPle III. The Hartree -Fock aPProximation
to Xy' theory in one dimension. The previous ex-
ample suggests that, insofar as the first few
terms of (for the N= 1 anharmonic oscillator) are
any guide, it may be a good approximation to re-
tain orQy the one-particle irreducible bubble dia-
grams. This is the Hartree-Fock approximation
toA, in which 5', is still a pure pole term with
A now satisfying

1 m, ' 1 b 1 A

2') 2v (4A+a')"' (47)

or, in terms of x,

1 m, ' & x'

1 A&~'
2v (1+4A~ 'x 4)"' ' (48)

We know that the correct renormalization pro-
cedure (in general) is to make m, ' (which needs
infinite renormalization) a function of x'. That is,
for this case we take"

m, (x)=m—2 2 I 0'x'
2r (49)

where m' is x independent.
We are unsure of the merits of keeping m, '

fixed and developing series in x, as suggested
in Ref. V. If we wish to do this, however, and
a prior neglect the fact thatA ' diverges as x',
it follows from (48) that there are no solutions
to A'=0 for finite, x. From our early comments,
this suggests that all sequences of approximants
s~ diverge. Still proceeding as in Ref. 7, and
evaluating the most singular part y, of A '

(by
setting m, ' = 0), we can incorporate this diver-
gence by writing

Xs x Xf x Af (&0)

where [cf. (48)]

than (46) (which presumably would be mimicked by
nonleading terms in the N ' expansion). We have
not attempted to construct these a4 0, but they
would enable us to assess the validity of the ap-
proximant scheme for the full theory.

Alternatively, if there were a general theorem
to the effect that, for fixed m, ' and X„ the energy
levels of. the anharmonic oscillator were monoton-
ic functions of the lattice length a, this would pro-
vide a sufficient condition for the validity of the
approximant scheme.

So fax we have not considered infinite renorma-
lization.

Example IV. The (large N) 0-(N) A(cp')' theory
in three dimensions. We very briefly consider
the O(N) scalar theory in three dimensions in
the large-N limit (or equivalently, the Hartree-
Fock approximation to the N = 1 theory). In Ref.
7 it was shown that the s~ diverged, which was
interpreted as indicating the need for infinite re-
normalization.

Let us again consider A of (32). As before, A
satisfies (33) [with 6(x) replaced by 6'(x)]. On the
lattice we would expect this to become
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2m A~
(1+4A X x2)'~2 (51) in general the approximants will have limits

As x-, A& remains finite and, since A& = 0 has
no finite-x solutions, the approximants for A&

(or equivalently, y, /x') converge to the correct
limit.

We conclude with an observation on the stability
of the approximant scheme which will be import-
ant for divergent series such as the above. This
is that if s(x), h, (x), h, (x) are series in x of the
form (2) such that

lim (s/h, ) = lim (s/h, ), (52)

(s/h, ) = lim (s/h, )~ c lim (s/h, )~ = (s/h, ) . (53)
p~ oo P ~ao

This is because these latter limits depend on the
finite-x behavior (e.g. , saddle points) which can
be markedly different. Thus choosing trial func-
tions h such that (s/h) exists via real s~ is an
gygQEgQo'Ms pl ocess.

The author would like to thank Professor P. Sur-
anyi for helpful discussions.
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