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Mechanism of stimulated radiation by charged particles
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We have studied the mechanism for radiation by charged particles called stimulated electromagnetic shock
radiation (SESR) by Schneider and Spitzer caused by the interaction between a relativistic charged particle
and an externally applied electromagnetic plane wave in a dielectric. The present theory predicts that the
SESR eAect is large when the frequency of the plane wave lies in the microwave region but is small at
higher frequencies for plane-wave field strengths smaller than the breakdown field of the dielectric.

I; INTRODUCTION

There has been considerable interest in recent
years in the study of stimulated radiation result-
irig from the interaction of relativistic electron
beams with coherent electromagnetic fields in po-
larizable media. In a series of interesting pa-
pers, ' ' Schneider and Spitzer have discussed a
mechanism for the generation of "stimulated elec-
tromagnetic shock radiation" (SESR). As of this
writing, the SESR process has not been experi-
mentally observed, although active experimental
efforts in this direction are under way at present. '
In order to aid in the interpretation of these ex-
periments, it is important to have theoretical es-
timates of the amount of SESR radiation produced
by a relativistic electron compared, for example,
with Cerenkov radiation.

Such estimhtes have been given by Schneider
and Spitzer"' based upon exact solutions for the
SESR fields in dispersionless media. In this case
the potentials are discontinuous along a conical
surface (shock front) which travels with the elec-
tron and are, in fact, infinite on this surface.
The trouble with this approach is that these singu-
lar expressions must be differentiated in order
to determine the radiated energy, a procedure
that is mathematically ambiguous owing to the
singularity on the shock front. In fact, Zin'
pointed out that the Cerenkov fields for a disper-
sionless medium have the wrong direction owing
to the fact that one is differentiating a discontin-
uous function. In view of this result, one might
expect that the fields corresponding to stimulated
radiation in a dispersionless medium may be sub-
ject to question.

In the case of Cerenkov radiation it is possible
to derive a relatively simple expression for the
radiated energy for dispersive media in which no
divergence appears, as shown by Frank and
TaDlm and TaDlDl

In the present paper we will discuss the results
of calculations for stimulated radiation of the saDle

type as that of Tamm for Cerenkov radiation. In
summary, we find that the SESR contribution to
the total radiated energy is large for plane-wave
frequencies in the microwave region but is small
in the optical region for reasonable external field
strengths (i.e., for those smaller than the break-
down field of the dielectric). These results are in
direct conflict with the assertions of Schneider and
Spitzer. The discrepancy is accounted for by the
fact that these authors neglected part of the SESR
contribution.

The power spectrum of Cerenkov plus stimulated
radiation has been investigated by Soln" by a dif-
ferent method, but he does not give a quantitative
discussion of the energy radiated in dispersive
media. In more recent work" Soln and Williams
have given some numerical results based on-this
approach. However, because of the occurrence
of a divergence that we discuss in Sec. III, they
do not calculate the total radiated power above
threshold. We will give results of this type.

In Sec. II we give integral expressions for the
fields for the Cerenkov and stimulated-radiation
mechanisms for a large class of real-valued di-
electric functions describing dispersive media.
Although the Cerenkov case is well known, we in-
clude a brief discussion of it for purposes of easy
comparison with the stimulated terms.

In Sec. IIIwe utilize these fields to derive integral
expressions for the energy lost per unit path by a
relativistic electron traveling in a dielectric. It
is pointed out that our analog of the method of
Tamm' is a good approximation in the microwave
region but, because of the SESR mechanism, this
appears not to be the case in the optical region.
We point out that it can still be concluded that the
stimulated terms .are small in the latter region on
the basis of a "general" scaling argument. The
quotation marks are used here because this argu-
ment is general in the sense that it is independent
of our method of calculation of the energy loss,
but it does depend upon the use of first-order per-
turbation theory. Actually, it can be shown that

20 1979 The American Physical Society



20 MECHANISM OF STIMUI, ATKD RADIATION BY CHAR~ED ~ ~ ~ 34l3

the result (3.21) agrees with the corresponding
quantity of Ref. 10 if the differences in units used
are taken into account so that our approximation
turns out to give the "exact" answer. The rea-
son for this is not completely understood. We
have put the word "exact" in quotation marks be-
cause both methods, Soln's and ours, depend upon
the use of first-order perturbation theory.

In Sec. IV we use the equations derived in Sec.
III to obtain numerical. results for the energy lost
by an electron in radiation for the case of a dielec-
tric function which is a modification of the well-
known Lorentz susceptibility model.

In the Appendix we state conditions which define
the class of dielectric functions for which our
considerations in Secs. II and III apply, and then
we give a justification for taking derivatives with
respect to space and time coordinates inside cer-
tain integrals over frequency which appear in the
field expressions given in Sec. II. This procedure
is essential in the calculations of energy loss dis-
cussed in Sec. III.

II. FIELDS

j,(x, t) =en'(x - ut),

j,(x, t) =-ev(t) 5(x- ut),

(2.1)

(2.2)

(2.3)j,(x, t) =-eu[r(t) ~ V ]5(x- ut) .
Here j, represents the current density corres-
ponding to the Cerenkov mechanism whereas the
remaining terms, j, and j „represent a decom-

In this section we give expressions for the elec-
tromagnetic fields-of the radiative mechanisms of
interest for a nonmagnetic homogeneous dielec-
tric medium of infinite extent for a class of-dielec-
tric "constants" which are real-valued functions
of frequency cu. We use Gaussian units throughout
the paper.

Consider a cylindrically symmetric coordinate
system in which a charged particle with charge e
is traveling along the z axis with constant velocity
u=Pcz, where c denotes the velocity of light in a
vacuum. In the presence of an external electro-
magnetic wave with amplitude E, the current den-
sity reads, to first order in E„

j (x, t) —= j,(x, t) + j,(x, t ) +j,(x, t},
where

position of the SESR current density into trans-
verse and longitudinal parts, respectively. It will
be convenient for calculational purposes to con-
sider this decomposition even though the total,
j,+ j„is the only meaningful object in a physical
sense. " There are charge densities p, and p,
corresponding to j 0 and j» respectively„which
differ from the latter only by the factor u.

The quantities v(t) and r(t) represent the velocity
and position perturbations, respectively, caused
by the electron's interaction with the incident wave.
These quantities are obtained by solving the fol-
lowing approximation to the Lorentz force equation:

u
y v(t) = —E+ —x H

dt m c (2.4)

where y = (1 —p') "' and the incident wave is repre-
sented as

R = E sin((u —k ~ u) t

0 = 0, sin(&u, —k, ~ u)t

where H, = [&(~,)]"'k,x E, with k, a unit vector and
e(&,) denotes the dielectric function evaluated at
the angular frequency of the incident wave. We
will evaluate the field at the instantaneous pos-
ition of the electron, ut, and will consider the
case in which the electron and the plane ~ave are
counterstreaming so that

k, =-—' [c(~,)]"'z .
One finds, from (2.4),'

v(t) = ' cosset,
ym~,

-ego
r(t) = ' sinnt,

ym~on

(2.5)

where 0 = &u,(1+P[a (~,)]"']..
We now consider the fields. These are obtained

by solving Maxwell's equations subject to the cur-
rent densities (2.1}-(2.3) and the corresponding
charge densities [in the cases (2.1) and (2.3)].

The vector potential for the Cerenkov fields is'
t eo

X'(x, t) = z —J' d(u exp[i~(t —z/u) Ja(r, u)),2c

where we have introduced cylindrical coordinates
(r, (])), z) with the cylinder axis along the direction
of the electron's velocity and have defined

I 2 (' —X, (
& — [) - P*&(r&)]"'), ()*&(&r) &1

a(r, r&)=[ (ii,"'(& —[i)'&(r&) —)]"*),P' ( ))), &r-&r&&0

(i)iiir'r & [(('&(r&) —)]"').; ()'&(r&) +1, r&& 0.

(2.6}
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Here K, is a modified Bessel function and

H,"',H,"' are Hankel functions corresponding to
outgoing and incoming cylindrical waves, respec-
tively. The Cerenkov electric field has nonvan-
ishing radial and axial components, but we shall
need only the latter.

OO

E',(x, t) =, d&ue xp[i ~(t-z/u)]

x ~[1—1/p'c(ur)]a(r, v) . (2.7)

The Cerenkov magnetic field has only one nonvan-
ishing component:

e 8
ao(x, t) = — — d(d exp[i(d(t z—/u)]a(r, ~) .

OO

(2.8)

The vector potential for the transverse SESR
fields is

A, (x, t)=-
4

' '
Jt d(uexp[i~(t- z/u)][exp(iQz/u)b (r, (u)+exp(-iQz/u)b, (r, (u)],

y 0 -co

where r, =e'/mc' denotes the classical electron radius and we have defined

(2.9)

—tf„—a,'(ro)), [a,(rul]'(0

),b, ~) =[ -iH~'( —a, (ro)), [a,(ro)]* &0, re ~0 (2.10)

iH,"' —a, e, a, x '&0, co& 0

with

[a,(u))]' = —[a,'(~)]' = P'&u'e ((d) —((u + n)' . (2.11)

Since e(~) is real valued and an even function of frequency, as noted in Eq. (Al), we obtain the following
symmetry properties for the functions defined by (2.10):

[b,(r, ~)]*=b-,(r, ~) . (2.12)

Since there is no charge density associated with the transverse SESR fields, these are obtained from (2.9)
by means of the formulas

E,(x, t) = ——A, (x—, t), H, (x, t) = V x A, (x, t) . (2.13)

The fields associated with the current density (2.3) and the associated charge density are polarized in
the same direction as the Cerenkov fields. Thus, there will be nonvanishing radial and axial longitudinal
SESR electric fields and an azimuthal longitudinal SESR magnetic field. We will need only the latter two
of these, which are

r, E S/er
4yh) Q

d&u exp[i(d(t z/u)]—
(d —Q iQz (d+ 0 -iQz

x
~

ur —, exp b (r, ~) — cu ——, exp — —b, (r, (d), (2.14)
P& (() u

irocE~s /Br in~ 't . Q~ &

H, o(x, t) = ' d~exp[i~(t —z/u)] exp [[b (r, (d) —exp -i
~
b, (r, ~), .

4yco Q u ) u )
(2.15)

In order to calculate the energy loss of the elec-
tron due to the Cerenkov and stimulated-radiation
mechanisms, which we will do in the following sec-
tion, it is essential that we be able to take the in-
dicated differentiations in (2.8) and (2.13)-(2.15)
inside the integrals over frequency. It is not ob-

vious a priori that such a procedure is valid. In-
deed, it is not valid for a dispersionless medium
because the integrals in question are discontinuous
in this case. This can be seen explicitly in the ex-
pressions given in the Cerenkov and transverse
SESR' cases when q is a constant. We prove in the
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Appendix that the procedure in question is justified
for the dielectric functions that we consider.

For dispersive media the integration over ~ in
any of the preceding formulas is limited to a finite
frequency range, say 0& z, &(d &~„&~. We now

want to mention briefly some problems that arise
in the application of the results proved in the Ap-
pendix. The first thing is that e(v„) may be infin-
ite when medium absorption is neglected. Thi.s
happens, for example, in the case of the simple
Lorentz susceptibility model,

(2.16)

where ~„denotes the resonance frequency. This
difficulty is really not very serious and can be
remedied by giving the medium nonzero absorp-
tion. All real materials have this property any-
how. We will consider only dielectric functions
for which e(~„)&~. The second difficulty is more
serious. Because of the different behavior of the
functions (2.6) and (2.10) when P'&(&u) & or &1, re-
spectively, [a,(&u)]' & 0 or &0 it will be seen in
Sec. III that it is desirable to divide the integration
into portions corresponding to these different fre-
quency regions. We are then left with Bessel and
Hankel functions with arguments that vanish at an
end point of the integration region. Moreover, this
situation occurs irrespective of whether the med-
ium is absorptive or not. It presents a problem
because of the singularity of the Ko and Hankel
functions at vanishing argument.

It will be shown in Sec. III that the expressions
for energy loss can be given in a relatively simple
form (as compared with the expressions for the
fields) which do not involve Bessel or Hankel func-
tions even though the fields depend upon them.
Our procedure, therefore, will be to replace the
limit +, at which the arguments of the Bessel and
Hankel functions vanish by a different limit ~, + v,
v & 0, for which the proof in the Appendix is valid.
The limit v-0, will then be taken at the end of the
energy-loss calculation where it can be shown to
be harmless. The estimates of the Appendix show
that the transverse SESR fields are the only ones
for which this procedure is necessary.

/

Fermi" in the Cerenkov case. That is, we calcu-
late the energy loss per unit time, 4, by integrat-
ing the radial component of the Poynting vector
over the surface of a cylinder of radius r and in-
finite length whose axis lies along the z axis. The
energy loss per unit path length, W, is obtained
by dividing C by the magnitude of the electron's
velocity ~u+v(t) ~—= ~u~.

The presence of the transverse SESR contribu-
tion disrupts the symmetry of the above picture
because, in general, this component of SESR has
nonvanishing E ~, H„, and H, components in ad-
dition to those components exhibited by the Ceren-
kov and longitudinal SESR fields. Nevertheless,
the main features of the above picture will be
preserved for incident frequencies eo in the mi-
crowave region because then the transverse SESR
contribution to the energy loss is only. a small per-
turbation to the energy losses of the other terms.
With (do in the optical region the above procedure
of calculating only the radial component of the'
Poynting vector appears not to be a good approxi-
mation because the two types of SESR contribu-
tions are comparable. Nevertheless, our conclu-
sion that the transverse SESR component is small
at all frequencies can be derived from the present
approach. The reason for this is that the predom-
inant dependence on coo comes from the velocity
and position perturbations (2.5). Since these are
squared in calculati:ng the Poynting vector, the
transverse SESR energy loss scales as ~o ' and
that due to the longitudinal part of SESR has two
types of contributions, one which scales as vo

'
and the other as ~o '. This frequency dependence
will be present for whatever component of the
Poynting vector one calculates. It is a curious
fact that, as already noted in the Introduction,
the present method gives the same expression
for energy loss as the apparently more general
method of Ref. 10.

According to the prescription in the first para-
graph of this section, the energy loss per unit
path length W is

rc
(E x H)„dz,

2Q
(3.1)

III. ENERGY LOSS—GENERAL CASE

It was indicated in Sec. II that both the Cerenkov
and longitudinal SESR fields have nonvanishing
components F.„, E„and H~ but all other compon-
ents vanish. Thus, the Poynting vector of the
fields E=E +E» H=H +H, has the same direc-
tionality character as Cerenkov alone. We will
take advantage of this by calculating the radiated
energy by a method similar to that of Tamm' and

rc "
c c

Woo @ B pe (3.3)

where E and H denote the total fields. In writing
out E and H in terms of the Cerenkov and SESR
contributions it is convenient to separate W into
the following naturally occurring combinations:

W = W, + W„+W„+W„+W„+W„, (3.2)
where
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tc
W(„=—„--- E~H, q dz,

4Q

t'c
2Q

rc
Wyy 2

Ej $H]gdz j
2Q

rc
E2,H, ~ dZ,

4B

rc
%22 =- E2,82 dZ .

2Q

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)
~00 =

Q~~ 0

)26 (g )» 1

1
d h)(d 1— (3.10)

the aid of estimate (A6) if &(e) satisfies the con-
ditions stated in the Appendix. Since this implies
in particular that e(u&) is real valued and satisfies
(Al), we see from (2.6) that a(r, —~) =a(r, ~) when
P'e(~) &1. Thus, for media with such dielectric
functions this frequency range gives a zero con-
tribution to the integral in (3.9), as already noted

by Tamm. ' Using (2.6), we write (3.9) in the form

Here Woo denotes the Cerenkov contribution ~0,
and 5"02 are cross terms between Cerenkov and the
SESR terms, W„and W22 are the SESB contribu-
tions, and W» is the cross term between the trans-
verse and longitudinal SESR contributions. We
shall examine each of these terms in turn.

Substitution of (2.7) and (2.8) into (3.3) gives

ime2y " I' 11V„=— 4, dere( 1 —,
( )

a
x a(r, &u) a(r, —~)

9-a(r, —~) a(r, ~), (3.9)

where we have taken the differentiation 8/sr in-
side the integration in (2.8) which is justified with

which is the well-known result obtained by Frank
and Tamm' and by Tamm. ' lt will be noted that
no Bessel or Hankel functions occur in the inte-
grand of (3.10). This is because we have used the
Wronskian relation

2
y, (~)Z, (~) —Z, (~)I,(z) =— (3.11)

in the manner of Ref. 9.
In our discussion of Cerenkov radiation thus far,

we have neglected the so-called "polarization loss"
which arises from frequencies for which the di-
electric function vanishes. "'" Since hereafter we
will only. be comparing the radiation mechanisms
in the "superluminal region", P'e(~) & 1, such fre-
quencies will lie outside the range of integration.

Using (2.7), (2.9), and (2.13) we find from (3.4)

W» = ',~, dvuP 1—, a(r, ~)[b (r, —(&u —Q)) exp(iQt)+b, (r, —(~+Q))exp(-iQt)],ver, E 1
01 8++ 2+2 P2~ (+)

where we have justified the passage of a z differentiation through the integration in (2.9) by the consider-
ations of the Appendix, the estimates (A8) in particular. It can now be seen that W„vanishes when aver-
aged over a period of the frequency Q/2v. Thus, there is no net radiation yield from the term W„. This
could have been anticipated since W„ is the cross term between the Cerenkov fields which do not depend

upon 0 and the transverse SESR fields that do. See also the remarks concerning this point in Ref. 10.
A similar result holds for W». This is easily verified by using (2.7), (2.8), (2.14), (2.15), and the es-

timates (A6), (A10), (A12), and (A13) to derive an integral expression for'W» from (3.5).
Now consider the transverse SESR contribution (3.6). Using (2.9), (2.13), (A9), and (A10) we find

d~~ b (r, &u) rb, (r, —~)+b, (r, &u) rb (r, -&u)
~«O2EO 8 9

8 9
+ exp(2iQt)b (r, &) rb (r, -(co —2Q))+ exp(-2iQt)b, (r, e) rb,(r, —((u+ 2Q))

(3.12)
and we note that the last two terms in (3.12) vanish if we time-average over a, period of the frequency
2Q/2v. Denoting such time-averaging by ( ) we find

2 2-&«o Eo~(W»)= 16„aPa a

8 8
dure& b (r, &u) rb, (r, -w) —b (r, -v) rb, (r, u&)

0

8 a
+b,(r, &u) rb (r, —e) —b, (r, -e) rb (r, v) (3.13)

It will be convenient to consider (3.13) separately for different frequency ranges. Referring to (2.11), we

denote the contributions to (3.13) in the ranges [a (cu)]' &0, [a,(cu)]' &0& [a (cu)]', and [a,(cu)]' & 0 by (W„)„
(W»)„and (W»)„respectively. We will use similar notation when we consider W» and W» later in this
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section.
First consider the region [a ((())]'&0. From (Al} and (2.10)-(2.12) we have b, (r, -(o) =b,(r, (o) so that

(W ) =0.
Next consider the frequency range [a,(&u)]' &0. We find from (3.l.3)

y' 2E
(3.14)

2(do P y o

[a 4) )3 &o

where we have used the fact that a, (-&u) =a, (e) for real-valued q((o) and have eliminated the Bessel and Han-
kel functions from the final result by the use of (3.11).

For the final range of frequencies, (3.13) becomes
2 2

yo Eoe y
(W„),=

40 «~o

Ea+ 4) )P( o( Ec- &co ) j

dtrv rd"' —a (e))dd(-a.'(-w))a'. (-tr)+H"') —a.(-tr))K(-a'. (a))a.'(w)

Ko -a,' (d H1 -a -(d a -(d —Ko a (d H1 a (d a (d
M

Since (3.15) vanishes in the limit r -~, we conclude
ergy radiated by the electron.

We next consider the cross term (3.7) between the
(2.9), (2.13), (2.14), (A8), and (A12) we obtain after

(3.15)
that (W»), does not represent a contribution to the en-

transverse and longitudinal SESR contributions. From
time averaging over a period of the frequency 2Q/2v,

8 (d-Q &

(r, -(o) b, (r, (())+((o—Q) (o-
8y 'p~(~) i

8 (d —Q I 8
x b (r, (o) b, (r, —(o) —(&u —Q) cu —

~ b,(r, —&u) —b (r, (o)
p'e(oo) &

' ' Br

(O+Q 5 B—(~rO)(~ —, )b,(r, rd —b.(r, -tr)
p'e((o) )

' ' Br

We now split up the consideration of (3.16) into the three frequency ranges previously defined in connec-
tion with (3.13). In a similar fashion to the treatment of (W»), we find that (W»), =0 and lim„„(W»), = 0.
Finally, for (W»), we find

(3.16)

Cf (d& 1—

(W») =

y 2E 2

(W ) — O Or (3.1"I)12 2 2~ 2p2y2

[a+4 )P&o

where we have again used the fact that a, (-oo}=a, (oo) for real &((o) and have eliminated the Bessel and Han-
kel functions by again using (3.11).

Finally, we consider the contribution of the longitudinal SESR term (3.8). Using (2.14), (2.15), (A12),
and (A13) we obtain after time averaging over a period of the frequency 2Q/2m,

-im"oE~ e y' "
(d —Q 8 8 (d+Q 8 8

d&u (o —, b (r, ) o b, (r, -(o) — (o —, (r, -(o) —,b, (r, (o)

(d+Q 8 82
+ (d-, b, y', (d,— b r, -

P'&(&u) Br ' ' Br'

(O- Q
b y', -(d b (3.18)

P'&((o Br ' ' Br'
We now follow an analogous procedure to that used above for (3.13) and (3.16) to deduce that (W»)o =0 and

lim„„(W»), =0. For (W»), we find

yo Eo
dtr '"r'O'P y

ro Eo
Eg (u)j &0

Ea 44)) &o

d(o (()-, [a ((())]'+ (u —, [a,((u)]',
(d —Q (d+ Q

d~(O (o'(p'e((o)- 2}-Q'+
e (d

(3.19a)

(3.19b)
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and we have again used the fact that a, (-v) =a, (&u) for real «(e). The Bessel and Hankel functions have
been eliminated by the use of the following Wronskian relation":

Z,'(2)I,"(2)—I,'(z)Z,"(2)= —,2
(3.20)

WS (Wll)2 ( 12)2 ( 22)2

fo—..:;, f
[a (u )) &0

As a consequence of the fact that «(~) occurs in the numerator of the integrands in (3.19b) and (3.21),
one easily shows that (W»)2 and W, are logarithmically divergent for the simple I orentz model (2.16)
T»s appe»ance of «(&u) in the numerator is, in turn, due to the occurrence of the functions [g (~)] jn
(3.19a) which is brought about by the fact that the fields occurring in the expression (3 6) for W have
higher-order radial derivatives than is the case for the expressions (3.3)-(3.7) for the other W„.. This is,
of course, related to the fact that A, lies in the direction of E„whereas A, lies in the direction of u, i.e.,
along the z axis.

Because of the divergence mentioned above, Soln and Williams" do not calculate R'» or W, . In the fol-
lowing section we will give results for these quantities on the basis of a simple model which includes the
effects of some (small) medium absorption thereby removing the divergence noted above.

E
de(() E»'+ 2

~ 1+, [P2«(e}—1]' (3.21)

where the primes denote differentiation with respect to the argument. In the present case, in contradis-
tinction to the cases W„, (W»)„and (W»)„ the integration is not independent of the functions a, (&u} defined
in (2.11).

The total energy loss per unit length for stimulated radiation is obtained by adding (3.14), (3.17), and

(3.19b):

IV. ENERGY LOSS—AN EXAMPLE

In the present section we will discuss a simple model for a dielectric function «(v) which contains some
effects of medium absorption.

We shall consider the dielectric function"

(u„'((u„2 —(u2) [«,(0) —1]
2( } (~ 2 ~2}2+~2p2

r
(4.1)

where I' & 0 is a parameter (with the dimensions of frequency) which characterizes the absorption proper-
ties of the medium. We will only consider (4.1) in the limit of very small absorption for which I" is much
smaller than the characteristic frequencies of the problem. In particular, I' «(()„. In this case (4.1} is
seen to be a small correction to (2.16) except for frequencies in the neighborhood of the resonance fre-
quency ~„. Note that «2(&u„} is finite, whereas «, (~„) is not. Thus, the introduction of absorption has the
mathematical effect of providing a cutoff to eliminate the divergence.

Evaluation of (3.10), (3.14), (3.17), and (3.19b) for the dielectric function (4.1) gives

e'e„'
2 ur„' «, (0) —1 «, (0) D [B(«,(0)}—2(&u„/&u )2 —A][B(«,(0))+A]

2u' &u 2 C„(«,(0)) 2A [B(«(0))—2((()„/(u )'+A][B(«,(0)) —A]

(4.2)

( ) ~,'A.,' . f ~ r.'d..'(o.' (a )
'

(~(o
)
'

4)g+ tf r r

Ql

(W„) — '. . . 1&m de(u 1—.. .)2~o P & v-0 ~ ~ v P «2(~}
1

(4.3)

D [B(«2(0))—2(())„/(()„)'+A][B(«2(0))—2(((),/&o, )2-A]
A [A(a, (0)) —2(~„/w, )' —A][A(d, (0)) —0((o,/(o, )'+A] (4 4)
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2g 2' 4
~ Q

0 (d„(d„
+ [-', (p '+ p') —1] ~

I
— ' + [e2(0) —1](1—I'") ln

r r

p'[~, (0) —1]r (3- r")
2 (1 —r "/4)"'

4r/(I r/2/4)1/2[(0) /0) )2 (~ /~ )2]
(4I"'(I —I*"/4)+(-4]1-.(ra/rd )']41'"}(-Ij)-(rd/ru„)']+I'"} )

P
' ll l ' ]'c,(~,(0))

[a,(0) —1] ~,(0)+3 —
I

—r" lnI

P '[&2(0) —1]G ( [B(&2(0))—2((d„/(d )2+2)[B(e2(0)) 2((0 /(d )' ~] I
2A I), [B(&2(0))—2((I)„/0)„)'—A][B(&2(0))—2((d, /&u„)2+2] J

with r' = I"/(d„,

A =([e,(0)-1]'-2r "[e,(0)+1]+r "]I/2, B(~) =~+ I r",
(I)„ I ] (d„c„,(x) =

I]
"'

I
—B(x) "'

I
+x, D =[&,(0) —1]'—r "[e,(0)+1],

r
2

6=3 — B &20 —2 ~&20 &20 -1 —I"2&20+1 +X"
r

The upper limit of integration v„ is determined from the equation

p2&2((0„) = 1

and the lower limit, (0„ is a, zero of [a,((0)]2.
Solution of the biquadratic equation resulting from (4.1) and (4.6} yields

(4.5)

1 2r2(n —2) r~-I'- (d 2(n —2)+ c](d ' 1+ +e 2 r r ()]20) 2 (22(d 4
r r

(4.7)

with

c( = P'r'[&, (0) —1],
which reduces to

(4.8)

for small I". We have discarded the other root of
the biquadratic equation because it does not reduce
to „2 when I'-0.

Now consider the zeros of [a„(0))]2for the dielec-
tric function (4.1). One finds that these are deter-
mined by a sixth-degree algebraic equation in (d.
From Descarte's rule of signs one deduces that
there are either two or zero positive real roots.
In the limit I' =0 it is easily shown that two of the
roots are +(d„so that for I" w0 there are in fact two
real positive zeros. We are interested in the one
that does not approach (d„ in the limit I'-0. Call
it (d, . To simplify matters, we will consider ap-
proximate results for (d, by evaluating it in the
limit F=0. Then it is equal to the unique positive
real root, &u„of [a.((d)]2 = 0 for the dielectric func-

I / (W„), (W„), (W„),
)2 + 2 +

~oo & &oe E~ Eo,
(4.9)

tion (2.16). Since we are taking r & 0 and p'e, (0)
—1~0 it can be shown that 0&&,~ (d„with equal-
ity obtaining if and only if el(0) =1. 0), is deter-
mined by solving a quartic equation. However,
this equation can be simplified by considering the
limit P-1 in which case it reduces to a cubic
equation. Taking this limit, we solve the resulting
equation by the method of Cardan. "

Using the above facts concerning ~„and (d„we
find that (4.2}-(4.4) are finite in the limit I'-0,
whereas (4.5) is logarithmically divergent in this
limit, as we have already mentioned at the end of
Sec. III. In the case of (4.2) we recover the result
given by Frank and Tamm' in the limit P -1.

We will now discuss some estimates for the ratio
of stimulated radiation to the Cerenkov radiation
emitted by the electron based on the formulas
(4.2)-(4.5), i.e., for a model dielectric described
by (4.1) with I"= r/0)„very small. Thus, we shall
consider numerical results for the quantity
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It is evident from (4.3)-(4.5) that the ratio of
stimulated to Cerenkov radiation can be made large
if E~' and/or E«' are given sufficiently large val-
ues. In a practical sense, however, ~E,

~

should
be much smaller than the breakdown field of the
dielectric in order that the medium not be dis-
turbed by the passage of the electromagnetic wave
and that our perturbation analysis be valid.

Some typical values for R with ~, in the micro-
wave region are shown in Table I. The blank
space in this table arises because at that low val-
ue of e, (0) (1.0005), the value I"=10 ' does not
correspond to a small absorption frequency. This
is because the correct smallness parameter is
not I", but is instead I' divided by a quantity pro-
portional to e, (0) —1, as is evident in the passage
from (4.7) to (4.8).

In Table I the first three values of e, (0) corres-
pond to gases, the fourth to a liquid, and the last
to a solid (a glass).

If we take E~ =E« = 100 statvolts/cm in Table I,
which corresponds to fields approximately ~~0 that
of the breakdown field strength in typical ma-
terials, we see that the ratio of stimulated to
Cerenkov radiation ranges from approximately
100 to 4000 for gases and solids, respectively,
for ~, in the microwave region. For larger fre-
quencies these estimates are reduced because of
the inverse powers of &u, occurring in (3.21). For
typical optical frequencies" for ~„ the above es-
timates for the ratio of stimulated to Cerenkov
radiation should be multiplied by a factor of the
order of 10 ' . This factor is obtained in the fol-
lowing manner. Optical frequencies are larger
than microwave frequencies by a factor of the or-
der 10', so that the first two items in (3.21) are
smaller by factors of the order 10 ' due to the
factor eo . The remaining term in (3.21) is smaL-
ler by approximately 10 "due to the factor ~,
[see the definition of 0 after (2.5)]. But, in the
microwave region the first two terms in (3.21)
are smaller than the remaining one by factors of
the order 10 ' so that all three terms are of the
same order of magnitude for ~, in the optical re-
gion, which is approximately 10 "times the value
of the last ter'm in (3.21) in the microwave region
where it is the dominant term.

TABLE I. Values of A for 0 in the microwave region.
&«, Eo~ are in Gaussian units. u„=6x].0~

-2xx10«sec-~ p2-(1 ppp5) "~

The first and second terms in (4.9) are opposite
in sign and of the same order of magnitude which
is small in comparison with the third term for (00

in the microwave range (by approximately a, factor
of 10 ' as noted above). Thus, our conclusions of
the present study are as follows.

For external field strengths smaller than the
dielectric breakdown field, the SESH mechanism
gives a large contribution to the total radiated en-
ergy at incident frequencies in the microwave re--
gion but only a small contribution in the optical
region. Most of the radiated energy loss is due
to the SESH mechanism for microwave frequen-
cies, and to Cerenkov radiation for sufficiently
large frequencies and sufficiently high electron
velocities.

The last remark refers to the fact that the value
of R is reduced if the electron velocity is greater
than the threshold value P= [a,(0)] "'. In Table I
the result for c,(0) = 1.0005 is for P equal to the
threshold value so that the results for this case
are. reduced for larger P. Conversely, the results
for the remaining values of &,(0) in Table I are for
P not at the threshold value so that the correspond-
ing threshold results in these cases are larger.

The results discussed above are for total energy
losses in which one integrates over all frequencies
~ allowed by the relation p'e, (cu) ) 1. However,
we can also obtain the spectral distribution of ra-
diation from the respective integrands in (3.10)
and (3.21). It is evident that the ratio of dW, /d~
to dW»/du& can be increased relative to the ratio
pf stimulated to Cerenkov total energy losses for
frequencies ~ such that p'e(&u)) 1. This increase
is due to the decrease in the Cerenkov contribution
at such frequencies rather than to the increase of
the stimulated radiation term.

Some values of the ratio of these quantities in
the case of the dielectric function (4.1) for &, in
the microwave range are shown in Table II. In
compiling this table we have chosen the electron
velocity so that the threshold condition, P'E, (0) =1,
is satisfied for each value of &,(0). . Then the quan-
tity p'e, (~) —1 can be made as small as desired by
choosing (d sufficiently small. It will be noted that
the results given in the last row of Table II cor-
responding to &u/~„=10~ are larger than the cor-
responding values of R in Table I. The entries
~ in this row arise because, for this frequency,
one has e, (&u) = e, (0) to the accuracy at which the
results are given.

2 (0) 1.0005 1.005 1.05 1.33 2.3 ACKNOWLEDGMENTS

10 -3

1p
0.009 69 0 -053 0-140 0.277

0.0114 0.033 0.086 0-203 0.401
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hen, N. Seeman, S. Schneider, and R. Spitzer for
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TABLE II. Values of [(d/~) (( W&&) 2/ED e2+ ( W&2)2/E0, + (W&2) &/Eo )]/(dW00/dc') for coo inthe
microwave region. &O, , EO@ are in Gaussian units. w =6&& 10&5 sec, 0=2&&10 sec, p2
= [&2(0)J ~, Z' =10 4. The numbers in parentheses denote the powers of 10 by which the
accompanying number is to be multiplied.

p(0) 1.0005 1.005 1.05 1.33 2.3

10 "~

10 "2

10
10-4

7.79(-6)
0.000 784
0.039

8.05(-6)
0.000 788
0.078

2.97(-5)
0.000 823
0.0823
3.92

0.000 749
0.00104
0.104

11.2

0.006 65
0.001 80
0.180

17.9

APPENDIX

In this appendix we will demonstrate the validity
of passing the space and time derivatives through
the integration over ~ for the fields occurring in
Eqs. (3.3)-(3.8} for a large class of real-valued
dielectric functions. We will use the following cri-
terion. "

Theorem. Let f(x, n) be a real-valued function
of a real variable x belonging to a finite interval
-~ & a & x & b ( and dependent upon a real para-
meter n. Thenthe equation

d b

f(x, n)dx = f(x, n)dx
dQ 8Q

is true if both f(x, n) and ef(x, n)/en are Riemann
integrable with respect to x and &f(x, n)/&n i«
continuous function of n uniformly in x.

We will have need of an extended version of the
above theorem in which f is replaced by a complex-
valued function g of the real variable x. This ex-
tended theorem can easily be established by sep-
arating g into its real and imaginary parts and
then invoking the above result.

t'(-&d) = 6((d) . (A1}

For the cases of interest to us, the frequency ~
will be limited to a finite interval. 0 & (d, & ~ & (d„

We will a,ssume that a(v„) & ~.
In the estimates given below we shall restrict

ourselves to the range of frequency for which
[a,(&u)]')0. The other cases discussed in Sec. III,
i.e., [a (~)]'&0 and [a,(~)]'&0&[a (~)]', can be
handled in a similar fashion by replacing the es-
timates for appropriate Hankel functions occurring
below by corresponding estimates for the modified
Bessel function K,.

From (2.6) and (2.8) we have for the Cerenkov
magnetic field (with T =t —z/u)

For the functions that we consider, the conditions
involving Riemann integrability are easily verified
so that we will only discuss the condition involving
uniform continuity.

As noted in Sec. II, we suppose that the dielec-
tric function & is a real. -valued function of fre-
quency. It then follows from mell-known general
considerations" that e is an even function of &,

(i)Hc~(x, t) = dv exp(iu&r)Hp'I r —[p'e(e)-1]"' —exp(-i&or)H, "'I r —[l)'e(e)-1]"' (A2)

where &u„ is determined by the equation P &(&u„) =1 as we have already noted in (4.6) in the special case
Considering the function

f(r, &u) = exp(-i&uT)H,"'((rv/u) [P'a(&u) —1]"'),
we find

(A3)

, f(r', &) — „f(r", ~) = dr + f(r, &u)

co d
s I& e(u)) —1I dr s Ho (y)

u &n
(A4)

where y denotes the argument of the Hankel function in (A3). Now, using some well-known relations among
the Hankel functions and the estimates"

IH,"'(y) I& const x (y "'+y '), y&0, (A6)
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we obta. in from (A4)

f(r', ~) — „f(r", ~) - —.
l

P'~(~) —1l-'

3/2

[P2 ( } 1]3/4( tt/2 zz)/e} (
tt ). t ).

)
u

(A6)

showing that Bf(r, (d)/Br is a continuous function of r for r & 0 uniformly in v for (d c [0, a„j. In (A6) C de-
notes a positive constant which is, in general, different from the one appearing in the estimate (A5).
Throughout this appendix we will use the letter C to stand for a generic constant independent of x, z, t, and
w which does not take the same value in all the estimates to follow. The symbol ~ denotes that frequency
in the interval [0, ~„j at which e(~) obtains its maximum value. We also require an estimate for
(B/Br)[ f(r, v)] with f defined by (AS). This is easily obtained in the same manner as the above derivation
of (A6).

We now consider the transverse SESR fields. From (2.9) and (2.10) the appropriate vector potential is

A (x t)=, dra exp irar —i(ra —tt) — tt,"' —a (ra) +exp 'rar —t(ra+it) — tt, '( —a (ia))4e Py

—exp(-ie zet(rect)) — tt —a.(e) —exp -ice+i(a —tt) — tt, —a (ra))
Z Q ) V ~ ~ Z () )

Q Q Q g

where (t), denotes the lower limit of (() for which [a,((t))]'o 0.
The transverse SESR fields are given by (2,13) so that we define the functions

,p(,zz, t; r)z= exp(—trzzet(recit) — (tt, —a, (rz)),
Z f

(AV)

(A 9)

and show that Bg,/Br, Bg,/Bz, and Bg,/Bt are continuous functions of r, z, and t, respectively, uniformly
in (d for ~ c (+„~„],as well as the corresponding results when g, are replaced by the respective complex
conjugates g, . %e will only gives estimates in the case of the derivatives of g„since those for the deriv-
atives of g,* are analogous.

The relevant estimates for H, ~ are, using the first bound in (A5},

8 9 2 ~/

(r, z', t;~) „.,(r, z-", t ~) - l-' —z l(~.+n)'u "' [a,((d, +()] ' (A8)

showing that Bg,/Bz are continuous functions of z for r&0 uniformly in (d for u) c [(d, + v, ~„] for v & 0. The
quantity v is not needed for the lower sign, but it is necessary for the upper one and its presence is the
reason for the procedure discussed at the end of Sec. II.

In a similar manner, we find the following estimates appropriate for E,~:
y/2

—,g, (r, z, t';t~) — „g,(r, z, t"; ~) ~lt' —t" l(u„'
( )

The estimates appropriate for H„are similar to those given in (A4) for the Cerenkov magnetic field. The
only important difference lies in the respective arguments of the Hankel functions. %e have

f B, B
, g, (r', z, t; v) — .„g,(r",z, t; &u) ~ Ctu "'[p'u&„'e(e„)+((d„+0)']"'(r'"'—r""')+(r" ' —r' ')), (A10)

where we have used the bound

f
a, ((d)

l

~ [p'(d„'e (cu ) + (cu„+0)']'/2

which is easily derived from (2.11).
We now consider the longitudinal SESR fields. From (2.10) and (2.14) we have,

tr Q B/Br u zX„(x,t)= ' p exp irat —i(e -tt) — ~ —, tt,"' —a (e))4 (u, yQ „u p'z((d) ' u

(A11)

Z (d+ 0 (2)-exp irat —i( +tt) — .ra —, tt —a, (ra))u p 6((t)) u

+exp -iet+i &+0 — (d-, — H ' —a, eZ M+0 ( ) r
u p'z ((d) ' u
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We now def ine the functions

-exp~ i-(dt+i(&u —0) —
~

&u-, IIf,' —u ((d)I .g) (() —0 & () r
u& p'e((d $

' u

z&
tr(r, et;ra)=exp

]
irat r-t(raettl —

I
ra — ttr'r - a, (re))

and show that t]h,/sr are continuous functions of r for r & 0 uniformly in &o for (d (= [(d„&u„]. As will be evid-
ent from the estimates given below, the introduction of the quantity v is not necessary in the present case.
Corresponding results for sh,*/sr, can be proved in an analogous fashion. We find

8
, h, (~', z, f; (u) — „h,(r",z, t; (d)

(d + g P(d &(d + (d +0 f' -'Y +(d„+Q

which establishes the stated assertion. In (A12) we have again used (All) and also the fact that &((d) ~ 1 for
all cu (= [~„&u„].

The final field component to consider is

r,cz, s'/ar' "u (2)tt„(x, t)= ' ' era exp irat —i(ra —t)) — tt,' —a (ra))4oyQ Q . Q

(2 ) ~ ~ ~
~ (Z)-exp i rat —i(ra+ tt) — tt —a, (ra) ]

—exp tria(t era —)r—t)r it —a, (ra))u ' u ' ) ul. ' u

„,tr+ exp~ -i (dt +i ((d II) ——H,"'~ —~ (~)

where we have used (2 10) and (2 15) Thus we are led to consider once again the functions defined in (A7).
In particular, we must show that s'g, /sv' and gs,*/ '9]are continuous functions of r for & &0 u»f»miy I»
for e(= [(d„(a)„]. As before, we will only give the proof for the cases s'g, /sr'. Note that the corresponding
results for sg, /sr are implied by the estimates (A10). The estimates that do the tricl~ »e

82 a'„.X (r', e t re) — (r" e t ra) - CIa "'(pra t(ra )+ (ar rit)']"'(r'"' —r""')
I

1

+u '[P'(d„'e(~ )+((()„+0)']lu -„re

+a "'[t)'ra 't(ra )+ (ra rtt)']"'(r" "'—r "™)r(r" —r'
)I
(A13,)

In obtaining (A13) we have used (A5), (All), and the relation

d3. I&,"'(y) = -'yIf."'(y)+ (.-'y —y ')If."'(y),

which is easily derived from the standard recurrence relations for the Hankel functions.
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