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The properties of the axial-vector current are investigated using the dimensional-regularization scheme.
The problem of defining an appropriate generalization of y, in n dimensions is discussed, and previous work
is briefly reviewed. For the VVA triangle, in @ED, we find that the dimensional scheme provides for vector
current conservation, with the divergence of the axial-vector current anomalous. This is shown

unambiguously without specifying the an'ticommuting nature of y5 in n dimensions. If one arr nges to have

two species of fermions with different masses and equal but opposite couplings to the axial-vector current,
the VVA anomaly is proportional to n —4, being fully canceled only at n = 4, However, the behavior of
the triangle amplitude for large external momenta is reduced by two powers, and the resulting softened
triangle does not give rise to any finite (as n~4) anomalies when inserted in higher-order diagrams.

Finally, the appropriate generalization of y, for even-parity fermion loops is shown to be totally
anticommuting, and the validity of Ward identities for two-point functions is demonstrated.

I. INTRODUCTION

Ever since the development. of dimensional
regularization by 't Hooft and Veltman' it has
been recognized that y' presents special problems.
At the root of the difficulty is the fact that in four
dimensions y' has two properties which are in-
compatible for general n. In four dimensions, y'
anticommutes with all the matrices y~. It is also
the antisymmetric product of four Dir3c y ma-
trices. 't Hooft and Veltman chose to drop the
former property in their derivation of the tri-
angle anomaly. One great advantage of dimen-
sional. regularization is that it yields amplitudes
consistent with gauge invariance. The formal
derivation of gauge invariance from the perturba-
tion series requires that shifts of loop integration
variables be allowed. Dimensional regularization
provides for that. The derivation of the axial-
vector Ward identities require, in addition, that
y' anticommute with all y". Bardeen, Gastmans,
and Lautrup' have done some calculations in
which they prefer to retain this property.

The competition between vector and axial-
vector Ward identities was studied several years
before the advent of dimensional regularization.
Adler3 showed that no regularization scheme can
make the two consistent in the case of the VVA.

triangle (i.e., there is an anomaly). Later,
Bouchiat, Iliopoulos, and Meyer, ~ and Gross and
Jackiw' showed that in a simpl. e Abel. ian theory
the anomaly could destroy unitarity and renormal-
izability. These authors also showed that by
modifying the theory so that the anomaly is
canceled between two different fermions„unitarity
and renormalizability are restored. Since the

theories were Abelian, there was no need for
dimensional regularization.

The proof that non-Abelian gauge theories are
renormalizable and unitary relies heavily on the
fact that dimensional regularization gives gauge-
invariant amplitudes, i.e., the generalized Ward
identities are true for all n. Implicit in the proofs
is the assumption that there are no anomalies
coming from the fermion loops, no matter how

high the order of the diagram. We would now
like to review the work that has been done to
justify that assumption.

As briefly noted above, in the original work
of 't Hooft and Veltman, it was supposed that the
generalization of y' to n dimensions was such that
y' anticommuted with the first four y matrices,
and commuted with the remaining n —4. Within
this scheme they calculated only the anomalous
part of the V'VA triangle amplitude. Shortly
thereafter, Bardeen, Gastmans, and Lautrup
performed calculations using a y' which anti-
commuted with all n y matrices. They used this
scheme because it led to amplitudes consistent
with the axial-vector Ward identities for the even-
parity spinor loops they calculated. We remind
the reader that Bardeen' had shown that one could
eliminate the anomalies from all even-parity
loops, hence it is good to have a regularization
scheme which does not introduce anomalies in
those loops.

In the search for an anomaly-free regulariza-
tion scheme, Bardeen' suggested that instead of
constructing an n-dimensional analog of y', one
should regularize diagrams by keeping the fermion
loops strictly in four dimensions, but allowing
the loop integrations involving meson lines to
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extend to n dimensions. Such a prescription
appears unwieldly in practice since some scalar
products are full n-component scalar products,
whereas others are products of just the first
four components of a full n-component vector.
Furthermore, it is not known if such a scheme
is multiplicatively renormal. izable.

Several subsequent attempts were made to intro-
duce an appropriate generalization of y, to n di-
mensions. Akyeampong and Delburgo'" have
discussed the difficulties encountered in attempt-
ing to find a covariant object which would be the
n-dimensional analog of y, . Breitenlohner and
Maison" have proposed a generalization of the
antisymmetric four-index tensor. Their approach
is essentially identical to that of 't Hooft and
Veltman, but they claim to have provided a more
consistent formalism. The Breitenlohner and
Maison scheme has been adopted by Marinucci
and Tonin" for a discussion of the anomaly in
Abelian theories, and by Costa, Marinucci,
Tonin, and Julve" for non-Abelian theories. The
latter paper makes the claim that if the one-loop
anomalies are made to cancel, then there will be
no anomalies in higher orders. This would appear
to be a definitive treatment of the y' problem, but
since the paper is fairly formal and uses the
Becchi-Bouet-Stora (BHS) approach to renormal-
ization, "it is not very accessible. Further-
more, calculations take on additional complica-
tions owing to the fact that projections of n-
vectors onto their last n —4 components appear
in many places, as do similar counterterms for
vector currents. "

Quite recently, Frampton"'" has called atten-
tion to a possible noncancellation of the VVA
anomaly. In his method of calculating the triangle,
the divergence of the axial-vector current has an
extra piece, explicitly proportional to n —4, with
a coefficient containing logarithms of fermion
masses. If the introduction of additional fermions
cancels the standard piece of the anomaly, there
still remains the mass-dependent piece unless the
new masses are equal to the old. In one-loop
order, the additional anomaly vanishes at n =4
because it is proportional to n —4, no matter what
the new masses. However, Frampton suggested
that in higher-loop order there might be a pole
at n =4 to cancel the factor n —4. If that were the
case, there would be a new finite violation of the
axial-vector-current Ward identity. This viola-
tion would destroy the proof of unitarity of the
Weinberg-Salam model, Frampton- suggested,
unless the quark and lepton masses were equal,
thus causing the finite violation to vanish.

Even more recently, Chanowitz, Furman, and
Hinchliffe" have discussed y' in the dimensional-

regularization scheme. For even-parity loops
they advocate a totally antieommuting y', as in
Ref. 2. For odd-parity loops, they note that if
y, anticommutes with all. y matrices, then the
traces of y, with four and six y matrices will be
consistent on. ly if n =4. They try to resolve this
dilemma by assuming that the trace of y, with
four y matrices has an ambiguous piece of order
n —4. In their calcul. ation of the VV& triangle
this n —4 encounters a factor (n —4) ' coming
from the n-dimension loop integration, and they
obtain a finite ambiguous resul. t as n- 4. In
this limit they may impose either vector current
or axial-vector current conservation (or neither).
If they choose the ambiguous piece such that the
vector current is conserved they recover the
usual axial-vector anomaly. We disagree with
their approach and find that the dimensional-
regularization scheme yields a VVA. amplitude
which automatically satisfies vector current con-
servation, leaving the anomaly in the axial-
vector divergence. The essential. point, shown in
the appendix, is that without specifying the anti-
commuting nature of y, in n dimensions, one may
express the triangle amplitude as a sum of traces
of products of four y matrices with y, . The co-
efficients of these traces are smooth functions of
n (near n =4), and are such that the amplitude
satisfies vector current conservation, as a func-
tion of n.

Chanowitz et al. , like Frampton, woul. d find that
the cancellation of the axial. -vector anomaly be-
tween fermions having opposite signs is not total,
since there would be a remainder proportional
to n —4. Thus our discussion of the Frampton
anomaly is relevent to their case. They did not,
however, consider higher-loop order, and do
not make note of the problem brought up by
Frampton.

In a previous paper" we discussed Frampton's
calculation of the triangle amplitude extensively
and explained why there should not be an n-de-
pendent anomaly. In this paper we will show that
even if one insists on using this n-dependent am-
plitude, the extra term of the anomaly will not
become finite when the triangle is embedded in
other diagrams. We will concentrate on an
Abelian theory for simplicity, hoping to fill in
the details for the non-Abelian case in a sub-
sequent publication. The theory contains two
unequal-mass fermions which couple to the axial-
vector current with opposite sign. We will see
that the cancellation of the mass-independent
anomaly at one-loop order so softens the triangle
that there are no divergence problems in higher-
loop order. We expect that the same mechanism
works in non-Abelian theories.
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The plan of this paper is as follows. In Sec. II
we will discuss the triangle diagram. We review
calculations done in Refs. 3, 16, 17, and 18, but
we try to emphasize what we feel are the essen-
tial points of physics. Section III contains a dis-
cussion of the VVA triangle contr-ibution to the
axial-vector vertex correction (two-loop order),
and to the axial-vector-current two-point func-
tion (three-loop order). Section IV deals with
the question of what to do with y' in even-parity
loops.

%'e agree with the methods of Refs. 2 and 18
for even-parity loops, and significantly extend
the discussion by Chanowitz et al. of the Ward
identities for two-point functions. In Sec. V we
summarize our results and establ. ish a basis for
discussing higher-order corrections. We are
confident that in theories which are anomaly free
at one-loop order all divergences involving y'
come from normal-parity spinor loops and cor-
rections to axial-vector and pseudoscalar ver-
tices. If that is the case, y' may be anticom-
muted to the end of the external spinor line and
then dimensional regularization may be employed
in order to calculate vertex corrections. In even-
parity loops, Qse of y,' =1 and anticommutivity
is sufficient to eliminate y . Odd-parity loops
will be convergent when the contributions of all
species of fermion are added together, so one may
do the integration in four dimensions, or do it in
n dimensions and encounter no pole.

II. THE TRIANGLE AMPLITUDE

We wish to remind the reader that anomalies
in the spinor loop were understood well before
the advent of dimensional regularization. In fact,
if one requires vec for current conservation, the
anomalous terms of all the axial-vector-current
Ward identities are well defined even in the non-
Abelian case. ' The usual demonstration of Ward
identities involves some identities for the y ma-
trices and a shift of the fermion loop momentum
integration variable. If the diagram involved is
divergent, the shift. of integration variable may
not be allowed. The great advantage of the dimen-
sional-regularization scheme is that for arbitrary
n the shift of integration variable is allowed,
hence the amplitude satisfies the Ward identities
for all n. If one is interested in the axial-vector
current, however, there is a catch. The usual
proof of that Ward identity assumes y' anticom-
mutes with every y„. Unfortunately, a fully anti-
commuting y, is inconsistent with the usual. Dirac
algebra unless I =4 for odd-parity loops. For
even-parity loops, no such inconsistency arises
as one may use the anticommutivity together with

y,'=1 to completely eliminate y'. Assume for
the moment that y' anticommutes with all y„.
Then

Tr((y„y''Iy"y yt y, y~) =-o.

If one assumes that the trace of y' with fewer
than four y matrices vanishes, as it does in four
dimensions, and as it does for the 't Hooft and
Veltman choice, then one easily derives

(n - 4) Tr(y'y~y&y„y~) =0.
There are two solutions to this equation, n =4 or
Tr(y'y yqy„y~) =0. We clearly do not want to
make the latter choice, for then the odd-parity
loop would vanish identically. The other solution
n = 4 prevents us from considering n to be a
variable. We note, however, that if the fermion
loop integral. has no pole at n =4, that is, if it is
convergent, there is no danger from the incon-
sistency of the Dirae algebra with an anticom-
muting y, since in the physical limit (n =4), the
result is unchanged by the inconsistency. How-
ever, if there is a pole, there will be a difference
between the expression n Tr(y'y, y~y„y, ) and
4Tr(y'y y~y„y, ) in the physical limit.

Now we will review the formal proof of vector
current conservation in the case of a three-point
function with an arbitrary third current. ' The
relevant Feynman diagram is in Fig. 1. We
denote the amplitude by A„„(P„P,) and consider
P,„A,„(P„P,) which should be zero if vector cur-
rent conservation holds. (If I' =y~y„our ampli-
tude is related to Adler's by A. ,„=[I/(2v)"]R„„~.)
We see that

d"k 1 1
(2w)" g+P', —m "P'-m

FIG. 1. The VVA triangle diagram. There is also a
crossed diagram.
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where the second term comes from the graph with
vector vertices exchanged. Contracting this ex-
pression with p», we use

1 1
p',

~ @
=

~
—(-It)(+P, +m+p'-m)

1

X
1

g-P, -m

triangle is on quite a sound basis. In carrying
out the calculation of the amplitude, one should
make no attempt to manipulate the factor 1. The
cancellation is comp1. etely independent of the
properties of I'. In an appendix we present the
actual calcu1ation of the amplitude for I" =y~y, .
Here we present only results. Define

"e'
tV V1(P14P2) A)lV (P)4P2)

so

(2 3)

+ , (2.2}
1 1

p'- m ll) —p', —m '

1 1 1 1
p+p', —m 'g —m Q —m p'+p', —m

=
(4(4')")
&& IT1.(r.r,r.r1r,)(&,p,'+&.p,')

+ Tr(r„r1p', p'2r, }(&2p„+&,p„}

r
Pl)i (4V(Pl« P2}

+T1(r.r1p'„p'2r, )(&, p„+&. p2v)].

(2.6)

d"k 1
(2w)" P'+P', —m

1 1
p-p„-m g-m

d"k 1 1
(4w)" . «- I «+«, - m)

1ya«, ~, -m (2.4)

Up to this point we have not used any properties
but the n-dimensional y-matrix rules. Ne have
not used any property of I". We will perform a
shift of integration variables on the second inte-
gral. The two terms in large parentheses require
different shifts. For the first term we make the
replacement k- k+P„ for the second, k- k+P,

p

+1(P1!P2} 2(P24P1) «

&2(P1,P2) =-&2(P2 P1}

&,(p„p.) =-&.(p.,p, ).
(2.7)

Since our A. ; do satisfy vector current conserva-
tion, A., and A„ the potentially divergent inte-
grals, are finite and are given by

Note that we have not specified the trace of four
y matrices with y„but we have assumed that the
trace of y' with fewer than four y matrices van-
ishes. The quantities A. ; may be expressed in

terms of integrals over Feynman parameters,
and there are no singularities as n- 4. In con-
trast to Chanowitz et al. and to Frampton, we
find that the A.; are unambiguous as functions of
n and that the expression satisfies vector current
conservation without the addition of any "contact
term. "

Of course our amplitude obeys Bose symmetry
for the vector current vertices, so we have

P 144+ ll V (P 14 P2 )

" (2x}" L W+p, -m

1 1"' «-,,—.-« .).
d"k 1 1

d"k 1 1-~ .'"«'.-- «-;--)='
(2.5)

A., -p~ p2A. , +p, A.4,

A., -P, A.,+p, p, A.6,

where

A.2 = 16m "+I'(3-n/2)

1
x d» dyxy(~2+@2)" ~~ 2

0 0

A = 16m
" '1 (3 —n/2)

1 &-x
x dx dyx(1- x)(M2+Q2)" ' '

0 0

(2.8)

We note that when using dimensional regulariza-
tion shifts of integration variables are permitted,
so the formal proof of gauge invariance for the

with

~'=~'-», '-~P, '
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Q p, xp2la yplP

The only difference from Adler's result as the
replacement of 1 by 3 -n/2 in the argument of
the I' function and the exponent of M'+Q'. If we
are interested in the limit as n - 4 of t~„„, the
result will depend only on Tr(y y~y„y, y, ) at
n =4, the usual c z„& factor. Since our amplitude
satisfies vector current conservation for all n,
we recover at n =4 the result Adler obtained by
imposing vector current conservation. The usual
anomaly of the divergence of the axial-vector
current then follows. However, if one uses the
definition of the 4; in n dimensions, one finds

(Py+P2) flu A 2mfP +~ Tr(@1p2yl4y&y5) &

where

1 X

dx dy(M'+Q')" ~' '.
0 0

Frampton brought up the point that when one
allows 8 to have its full n dependence, rather
than taking the limit n =4, the anomaly depends
upon the fermion masses. Hence, an attempt to
cancel the anomaly by adding another fermion
with opposite coupling to the axial-vector current
will not result in an exact cancellation unless the
fermion masses are equal. At the one-loop level,
the new piece of the anomaly is proportional to
n —4; however, Frampton suggested that in higher-
loop order there might be a pole to make the new
piece finite. In Sec. III we will show that the new
piece of the anomaly remains infinitesimal even
in higher-loop order. For the moment, we will
concentrate on a theory in which we attempt to
cancel the one-loop anomaly between two different
mass fermions. We find

) (2w)" ' gap —m "g-m "g P, —m, g+p, —-m, "g —m, "g-p, —m)

' P'+p, -m, "ff m, -"ff-P„-m~ lt+P, —m, g-m, "lf-P, —m,

Note that if the tmo contributions are added, the
leading behavior as k- ~ cancels, leaving a con-
vergent integral even for n =4. Thus dimensional
regularization is not needed to obtain a mell-de-
fined expression at n =4 which satisfies both vec-
tor and axial. -vector Ward identities.

If we write the difference of the two integrands

f(m, ) -I(m, ) =- dm 1(m),
ml

it is easy to see that the loop integrations are
finite. The sum of the tmo triangles is now a
finite integral over a mass parameter of a tri-
angle with a mass insertion. The triangle was
linearly divergent, but the triangle with a mass
insertion is linearly convergent. It is easy to see
that in this theory

A.,'= dm —16m"/'1 4-n 2
m]

1 1 x
x dx dy 2xym(Q'+M')" + 4

0 0

(2.9)

pm
y6 "/3Z 4-n

m1

1 1«g

x dx dy 2x(x —1)
0 0

It is also easy to see that it was not necessary
that there be only one mass parameter for the
cancellation to be written as an integral over a
mass insertion. Suppose the legs of the diagram
correspond to particles of mass m„m„m, in one
triangle and m,', m,', m,' in the other. Then

T(m„m„m, ) —T(m,', m,', m,')

+ T(m f, m„m, ) —T(mf, m,', m, )

+ T(m,', m,', m, ) —T(m,', m,', m,') .
Each line may be written as an integral between
two masses of a mass insertion (but now the mass
insertion is on a particular leg).

III. VfHY THE AXIAL ANOMALY REMAINS
INFINITESIMAL

In Sec. II we saw that when we try to cancel
the anomaly between two fermion species, we
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FIG. 2. The triangle contribution to the axial-vector-
fermion vertex.

have actually eliminated the divergence in the
fermion loop momentum integration. The inte-
grals are convergent if they are done in four
dimensions, but they may also be done via di-
mensional regularization. When Frampton cal-
culated the divergence of the axial-vector current
for a singl. e fermion he found that what was simply
a number in Adl. er's calculation had become a
complicated function of Feynman parameters,
external momenta, and masses raised to the
power —,'n —2. Expanding for n near four, he
found an infinitesimal (i.e., proportional to n —4)
term which depends upon the fermion mass. He
worried that these new terms of order n —4 might
find a pole from a subsequent integration and be-
come finite. This does not happen.

Having two fermions does more than make the
fermion loop integrals finite, it a1so makes the
behavior of the triangle for large external mo-
menta softer. The single triangle grows linearly
with the external momentum; however, as can be
seen by comparing A, with A.,', when there are two
fermions trying to cancel each other, the triangle
decreases l.inearly with the external momentum.
Thus, the contribution of the odd-parity triangle
to the axial-vector vertex correction in Fig. 2 is
in fact finite, al.though it l.ooks like it has a log-
arithmic divergence. In fact, if- the anomaly were

~mP
FIG. 3. The two-triangle contribution to the axial-

vector two-point function.

not canceled at the one-loop level, there would
be a divergence. This should be compared with
Ref. 3. To make the discussion more concrete,
we consider the new mass-dependent anomaly of
Frampton and calculate its contribution to Fig. 2.

The mass-dependent part of Frampton's anomaly
is proportional to

1 1. X

(n —4)e„„„p,'p,' dx dy 1n(@2+M') (3.l)
0 0

for a single fermion. If there are two fermions
with opposite coupling to the axial-vector vertex,
we have

1 1 x @2+M 2

(n —4}e„„„p',p2 dx dy ln ',
0 0 2+M2

(3.2)

where M =m&'-xP, '-yP, '. Inserting this into
Fig. 2, we substitute p, =l, p, =-(q+l), to get

r'(P'- Y+ m)r"
(2 )" P(q+l)'[(p —l)'- ']

(@2+M, ')x dx dyln —, ', . (3.3}
0 0 2+M2

Except for the logarithm, we would have a log-
arithmically divergent integral in accord with
naive power counting for a vertex correction.
However, as l approaches infinity, the logarithm
goes to zero, thus cutting off the integral. As
usual, it is easiest to see what happens by writing

ln ~ '~ = — dm ln +M
j.

2m
dm

mj
+M

dpi
2m (3 4)

l'[(x+y)'- x- y]+2l q[x(x+y —1)]+x(x-1)q'+m'

Written in this way, we see that the logarithm provides two extra powers of convergence so that the inte-
gral over l is finite (i.e. , there is no pole at n =4}. There is an explicit power of n —4 since we were
considering the new mass-dependent anomaly. The new term makes no contribution in the limit n =4.

Next we consider the two-point function with two odd-parity triangles, as shown in Fig. 3. Although this dia-
gram seems to have overlapping divergences, the triangle is so softened by the cancellation mechanism that it
has no divergences at all. Each triangle vanishes like 1/1 as the center loop momentum l goes to infinity, so we
have four extra powers of convergence over naive power counting. The naive quadratic divergence turns
into a quadratic convergence. There is no pole at n =4 to promote unwanted infinitesimal terms to finite
status. So we see that we could have taken the limit n =4 for the triangle itself before inserting it into
other diagrams. This is precisely what we suggested doing in a previous paper. "
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We have seen that adding fermions to a theory does two things. First, adding the contributions of the
two fermions together before the triangle loop integral is evaluated renders the integral convergent.
Second, the resulting triangle amplitude is sufficiently softened that its contribution to other diagrams
is finite. So far we have concentrated on an Abelian theory. Vfe have also not considered radiative cor-
rections to the triangle, which are covered by the Adler-Bardeen theorem. '

IV. WARD IDENTITIES FOR TV(O-POINT FUNCTIONS

We will consider the case of the axial-vector current two-point function in this section. We have cal-
culated the two-point function in detail assuming that y' anticommutes with all other y matrices and that
y,' =1. In this way y' may be eliminated from the trace. The amplitude thus constructed is a tensor which
has meaning in n dimensions. It is to be contrasted with the amplitudes calculated for abnormal-parity
loops. These amplitudes involve the tensor e~„&, and do not have any consistent meaning outside of four
dimensions. Our prescription for calculation is identical to that of Ref. 18. However, we demonstr ate the
Ward identity for all values of momentum, not just for P =0.

For the moment we restrict our attention to a theory with one fermion of mass m and consider two-
point functions of vector, axial-vector and pseudoscalar currents. We denote the currents by J„, J'„,
and J' respectively. The two-point functions which correspond to even-parity loops are (0~ TJ„J„~0&,

(0[ TJ'„J'„[0&, (0( TJ„'J'[ 0), and (Ol TZ'J'~ 0). The abnormal-p»ity functions (0[TZ„/[0& and (0[TZ„J'[0&
must vanish because they depend only on one momentum but must involve the & tensor. We see that

OITJ„Z„I0)=( 1)
"' () "[(X'V' )y"(X' )"

(2w)" [(p+k)' —m'](k' —m')

d"k
=

Jl dx )„Tr[(P'+P'+m)y" (P'+m)y"] (. . .),1

0

» 2 „q, (Tr([(1-x)P'+m]y (-«P'+m)y"]I'(2-n/2)
0

'[ .(—1 -«-)P'+-m']»(y'y. y, y.)~(1 ~/2)}
But using the n-dimensional rules for y matrix algebra, the factor in heavy parentheses is just

8«(1 —x)i'(2 —n/2)(P'g„-P &„)
so that

(0)TZ J)0)=-~ ~„+f dx~,
~ ~ j,.„i,I'(2-n/2)(P'g, -P„P,).

Next we consider (0~ T JJ",~0&. Tr[(p'+P+m) y„'(P+m)y„]'is replaced by

Tr[(P'+P'+ m)y„y, (P'+ m)y„y, ] .
I.etting y, anticommute with y„and setting y, =1, we may eliminate it from the trace'.

Tr[(p'+ f+ m)y y'(p'+ m)y„y'] = Tr[(p'+g+ m)y (jt+ m)y„] —2m Tr[(p'+ p'+ m)y„y„] .
We see immediately that

d"k 1
&0I I'JqJvl0& =&0I TJu J~l 0& 6m Zv& (2 )n [( +y)2 m2](y2 m2)

(4.1)

(4.2)

(4.3)

(4.4)

=(0~ TJ„J„~0) —
(4 }„~ 'dx[,

(1 },], „„I'(2-n/2)m'g, .
0

Similarly we calculate (0( TJ'~J') 0& and (0~ TJ'J'( 0&:

1

&Of ZZBZ'J 0) = „„dx. .. „„I'(2-n/2)mp. ,
0

j.

(0~ TJ J'~ 0) = „„d'x, » „„{I'(2-n/2)[m'+x(l-«}p']+ ~nl'(1- —,'n}[m2-«(1-x)P']j.
(4.5)

Now that we have the two-point functions we ask
whether they are consistent with the canonical
equations of motion. It is easy to derive the equa-
tions of motion from the Lagrangian of QED. For

I

the fermion, (ip —eel —m)C =0. Letting J'„
=4y~y %, J~ =4 y„4, and J' =4 y+,

~~J„=O, (4.6)
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8 J„=2imJ (4.7)

From Eq. (4.2}we see that it is consistent with
(4.6} since p„(p'g„„-p„p„)=0. This is well known.
For the axial-vector-current two-point function
we must have

Thus, &~(k) [&'(k)] corresponds to (Ol TJ'„J'I 0)
[(0I TJ'O'I 0)] in Eq. (4.4) [(4.5)j. Note that we
have kept the term from the commutator in the
form of a vacuum expectation value rather than as
the trace of a propagator. In momentum space,
(4.9) becomes

-iP „(0 I 7Jv Ju I 0) = 2im( o I 7J5J'
I » (4.8)

to be consistent with (4.7). Comparing (4.3) and
(4.4} it is quite easy to verify this. We would
als'o like to see if the equation of motion gives
the correct relation between (Ol TJ „'J'I 0& and
(0I TJ'O'I 0&. This is not as obvious as the last
two relations. First, the equation of motion is
not quite as easy to apply to this case because
[J,', J'] wo. We find

s."(OI TJ'.(x)J'(y) I »
=&ol Ts'J'. (x)J'(y)l »

+6(x,—y, )&ol [J.'(x), J'(y)]l o&, (4 9)

6(x.—y.)[J.'(x), J'( y)] = -6'(x —y)

x [4 (y)4 (x)+7 (x)@(y)].
(4.10)

We choose to write the right-hand side in this
way because it makes a later equation more co-
variant looking. Our Fourier transform con-
ventions are

(Ol TJg(x)J (y)10& = ~e'"' " "6'(k)de

(0I TJ'(x}J'(y)I 0& = e' 'i" "~4'(k)dk
(2m)'

(4.11)4

&oI q'(y)+(x)++(x)+(y)l o& =

I x i}}(x-}})C(k)

ik"&'„(k)= 2ima'(k) — C(I) .
(2m)4 (4.12)

Evaluation of C is quite easy using the free-
field decomposition of %, 4 as is appropriate
to this order:

C(k) =-Smm5(k'- m') . (4.13)

d"k d"k
„C(k) =-Snm „5(k'-m')

dk, J
d" "k6(ko'-k2-m')

(21k

(2p)" ~ (k2+m2yi2

-4m 2~&"-»'2 - a"-2du
((w}"' n - (), (0'+I'}'"

X"

=„S„„r(1n/2)m- .

Now we are ready to verify (4.12). The left-
and right-hand sides are given by (4.14a) and
(4.14b), respectively:

The evaluation of the last term of (4.12) involves
a divergent integral. We will use dimensional
regularization to evaluate it:

(4s)"'» [m'-x(1-x)k2]' ""
1

-Sm )«dx[, ),], „„f[m'+x(l-x)k']r(2-n/2)
0

(4.14a)

+ ~n[m'-x(1-x)k']I'(1-n/2)] + „~m" 'I'(1-n/2) . (4.14b)
(4m)" '

It is trivial to show that at k' =0 both sides are zero. For k' 40, to verify (4.14a}= (4.14b) it suffices
to show

1J. .. „12([m'+x(1-x)k'-~k']r(2- ~n)+~nr(I ——n)2[m'-x(1- )k'x]] =m" 21"(1-n/2).
, [m'-x(1-x)k']' ""

(4.15)

Fortunately it is easy to evaluate the integral over the Feynman parameter x (Ref. 21):

t 1 (I n k2
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Using this integral we express the left-hand side
of (4.15) in terms of two hypergeometric func-
tions, eliminating k' via k'=4m'x:

.
m" I" 1 —— 1 —2x 1 —— 2' 2 ——. , 1; 2', x

+-', x(1 —m), E, (2 —2, 2; —', ; x)I .

(4.16)

We eliminate the second hypergeometric function

by use of the identity'

1-'x

——2 — 2' 3 ——~1;~;x

(1-n) n

2 'E, 2--, 2;2;x

1

Then the expression in curly brackets reduces to"

n 3 =2 n n
2& 3 2 2 1 2& &2&E 2- — 1 — x ——x 2- — E 3- — 1 — xi

)

=& 3 ——,0; ~;x =1. 4.17
n
2P P2

Replacing the curly brackets in (4.16)by»n accord
with (4.1V), we see that the left-hand side of
(4.15) reduces to m" 'I'(I -n/2), thus verifying
that identity. The verification of (4.15) is suf-
ficient to prove the Ward identity (4.9). We have
gone through all this analysis to show that the
two-point functions may be calculated using di-
mensional regularization if one simply uses the
anticommutivity of y' (with all y matrices) and
(y')'=1. The resulting amplitudes obey the Ward
identities for all n without any anomalous terms.
Verification of two of the identities was trivial,
the third was not.

Using a y' which anticommutes with all y ma-
trices is consistent for even-parity loops. It most
closely imitates the action of y' in four dimen-
sions. The two-point functions are the most di-
vergent even-parity loops. We have shown how
nicely this procedure works in that case. It
should not be difficult to verify that this procedure
works for all even-parity loops even for a non-
Abelian theory. Calculations of certain even-
parity three-point functions were previously done
by Bardeen et al. as stated above. Using an anti-
commuting y', they found that the Ward identities
hold.

V. SUMMARY AND CONCLUSIONS

We have been considering several questions
in this paper. Although these questions generally
come up in the context of non-Abelian theories,

. we have concentrated on Abelian theories for
simplicity and because we feel that the basic
physics may be seen in such theories.

We first discussed the VVA. triangle. Dimen-
sional regularization may be used to see that there
is an anomaly; however, if one deals with a theory
designed to cancel the anomaly, the integration
over the fermion loop momentum is finite. That
is, the amplitude requires no regularization di-
mensional or otherwise if one adds all triangle
contributions together before doing the integration.

U one insists on using the form of the ampli-
tude for arbitrary n derived from dimensional reg-
ularization, there appears to be an infinitesimal
mass-dependent anomaly. We have shown that it
remains infinitesimal even when the triangle is
embedded in a larger diagram. The diagram in
Fig. 2 was considered in detail in Sec. III. We
showed that although it appears to be divergent,
the integration over l is actually convergent be-
cause the cancellation of the anomaly softens
the triangle.

Let us consider radiative corrections to Fig. 2.
In Fig. 4(a) there is a divergence from the photon
self-energy. There is also a diagram with the
self-energy counterterm. The divergence of Fig.
4(a) is just in the photon propagator. If we con-
sider Fig. 2 to be the first term of a skeleton
expansion and replace the bare propagators and
vertices by renormalized ones as in Fig. 4(b),
we see that the two remaining loop integrations
are finite once we take both fermions into account.
The fact that the leading behavior of the renor-
malized propagators and vertices is identical to
that of the bare ones, up to logarithms, is es-
sential. In the non-Abelian theories, the situa-
tion is a bit more subtle since there may be
anomalies in four- and five-point. functions unless
the fermion representations are properly ar-
ranged. We expect that a careful analysis would
show that if all the one-loop anomalies are can-

FIG. 4. (a) A photon self-energy insertion from the
radiative corrections to Fig. 2, (b) The full set of cor-
rections. The shaded blobs ar'e renormalized propaga-
tors and vertices.
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celed there is no problem with radiative correc-
tions. If that is the case, it would be very con-
venient to use dimensional regularization and the
minimal-subtraction scheme to calculate the re-
normalized propagators and vertices. Then, the
only divergences invol. ving y' would come from
even-parity loops and axial-vector or pseudo-
scalar vertex corrections, in which y' is on an
external fermion line. We have seen that an
even-parity loop may be calculated via dimension-
al regularization and that the answer is consis-
tent with all Ward identities. When y' is on an
external line, we may use its anticommutivity
to move it to the end of the line and then use di-
mensional regularization on the diagram as if it
were absent.

It would be useful t,o show expl. icitly that all
even-parity loops obey the Ward identities when
calculated in the way indicated. It is also neces-
sary to carefully consider the non-Abelian case
to show that the cancellation of all the one-loop

anomalies is sufficient to assure that the radiative
corrections to the triangle do not contribute to
the anomaly. We feel, however, that we have
demonstrated the basic physics of the anomaly
cancellation mechanism, how one may calculate
with y' in the context of dimensional regulariza-
tion, and why Frampton's new anomaly remains
infinitesimal. After completing this work we re-
ceived a report by Ishikawa and Milton in which
they advance arguments similar to those of
Sec. III.
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APPENDIX

The evaluation of the VVA triangle in the dimensional scheme can be carried out without making ex-
plicit the nature of y, for general n except that its trace with odd numbers of y matrices or with two y
matrices vanishes. Let us write the amplitude, following the approach of Adler, as

d"k 1 1 1
(2r}" P'+ p', m "g -m "P' -p', -m-

1 1 1
(-k'+P, —m) "(-g- m) " (-k'- p', —m)

After rationalizing and combining denominators, one finds

j. ~x

dx dp d k[m —xp2 —gp~ +2(xp2 —pp~) 'k -k ]

(A1)

x [m'Tr(y„y„y, y„y,)2(k+p, -p, )'+ Tr(y y„'y y„y'y„y, )(k+p, ) kz(k-p, },
T(y r.r'y.-r'r y, )(k P.) k (k+P -).]. (A2)

Although this expression involves the trace of products of six y matrices with y„one may reduce the
expression to sums of traces of products of four y matrices with y, by performing the k -integration and

using the n-dimensional. Dirac algebra. It is not necessary to specify the anticommuting nature of y„and
one obtains, unambiguously,

Z T 'rt„,.=
4(2 ).[«(r,r.r.rir, )(&,p, +~,p, )+»(r,r&y, re, )p, p, (A,p,.+&,p,.)

+»(r. r~ r, r~ r, )p,'p.'(&,p„+&,p„)],
where the invariant quantities A.

~ may be written

]. /~X

Aq ——. 16m"~I'(S -n/2) dx dna;D" ' ',
0 0

where

D=m'-~(1-~)p. '-X(1-S)p.'-»rp, p. ,

and for 3 ~i &6,

(AS}

(A4)
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Q3 =X/ ~

a, =x(1-x),

a, = -y(1- y),

a, =-xy.

(A6)

(AV)

(A8)

(A9)

In the limit n =4, these A& become the A, -A, of Adler. For A, and A.„which are represented by formally
divergent integrals when n =4, Adler chose to define them by current conservation, which rendered these
quantities unambiguous and well defined. The dimensional-regularization method yields expressions for
a, a,nd a2 which may be written as

a, = (1 —Sy)D/(4- n) + —,'{y(1—y)(l —2y)p, '+ 4xy(l —y)p, p, +x[(1—y)(1 —2x) + 1]p,' j,
a, =-(I-3»}Dj(4 n)+ -—,'{p,'y[(2y —1)(1—x) —1]—4xy(l-x)p„p, +x(1-x)(2x —l)p, '] .

(A10)

(All)

These expressions contain a pole at n =4, but the residue, of this pole is zero after integration over x and
y. Motivated by Adler's imposition of current conservation, we write

1 ~l ~2 3 ~2 4 1 (A12)

and we now prove that the integral over x and y of a,D" ' ' is zero. First we note that the coefficient of
(n —4) ' in Eq. (A10) may be integrated by parts:

4-n dy(1 —Sy)D"~' 2= [1-x-2(1-x)'][m'- (p, +p, )'x(1-x)]" ' '
(4-n)

We may then write

1~x
+ a dy y(1 —~$)[(2y —l)p, ' —2xp, p, ]D" ' '.

0
(A12)

J
1 1 x

y I 1 X

dya, D"~' '= dx(1 —x)(m ——,'}[m -(p„+p,)'x(1-x)]" ' '+ 2 dx dyD" ' 'N,4- 0 0

where
(A14)

N = —'y'(1 —2y)p„' -xyp, p, +xy(2x —l)p, '.
It may then be noticed that

OD BD
& = ——,y' —+xy —,

~X

(A15)

(A16)

from which it follows that

1 1~1 1
dx dyD" ~' 'N = dx[--,'(1-x)'+x(1-x)][m' —(p, +p, )'x(1-x)]"~' ',

0
(AIV)

which exactly cancels the first integral on the
right-hand side of (A14). Similar manipulations
may be carried out for a, . We have proved that
the dimensional scheme provides unambiguous
answers for the coefficients of the products of
traces of products of four y matrices with y„
and that these coefficients do satisfy the vector
Ward identities for all n. The anomaly then ap-
pears in the axial-vector Ward identity. 'The
reason the anomaly naturally appears in the axial-
vector current is clear. The "proof" of the usua, l
axial-vector Ward identity requires both that y,
anticommute with all y matrices and that mo-
mentum shifts be allowed. For the strictly anti-
commuting y„ the condition

(n —4) Tr(y, ygy„yny, ) =0

I

means that the trace cannot have a smooth value
as m is varied, hence the dimensiona, l scheme may
not be used to justify the necessary shifts of loop
momentum.

It should be noted that if instead of the VVA.

triangle we had considered a VVS triangle, where
S denotes a scalar vertex, there is no difficulty
associated with defining the ampl'itude in n dimen-
sions. One expects vector current conservation to
hold, and it does, provided one goes through
manipulations similar to those needed to prove
that J' d» fdya D" 3 was zero. The point is that

straightforward application of dimensional inte-
gration techniques will always produce amplitudes
consistent with vector current conservation, but
it may take some algebraic gymnastics to prove
it.
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