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I

We present an approximation for the integration over a link in the Feynman path integral for U(N)
lattice quantum chromodynamics (QCD). The approximation is valid when N~ 00 and g N is fixed to a
large value. The result is such that subsequent link integrations have the same form, allowing a complete
evaluation of the path integral in any dimension over the entire lattice by repeated application of the
approximation. Our technique can be applied to a variety of problems. As sources for the Yang-Mills field
we use quarks traveling on world lines. We present a complete action formulation of Dirac particles on
world lines with spin, color, flavor, and mass interacting with the gluon field. Evaluating the meson

propagator in such a theory in our approximation we arrive at a previously proposed string model with
quarks at the ends, thus demonstrating the dynamical equivalence of strings and QCD in our limit, on the
lattice.

' I. INTRODUCTION

Quantum chromodynamics (QCD) is generally
regarded as the most likely theory of strong inter-
actions. The perturbative predictions of the theory
based on asymptotic freedom are in good agree-
ment with experiments whenever such tests were
possible. Much remains to be understood about the
hadronic world, and the real tests of QCD are still
in the future. They await calculations on the
strong-interaction aspects of QCD which are out-
side the realm of ordinary perturbation theory.

Several methods have been proposed to investi-
gate the strong forces in QCD. These include the
1/N expansion, ' the strong-coupling expansion, ' '
and semiclassical methods via instantons. ' ' The
primary purpose of our paper is to introduce a
new approximation which is a special case of the
1/N expansion and is valid when g'N is fixed to a
large value. The virtue of our technique is that
the Feynman path integral on the lattice can be
completely evaluated. Our method is applicable
to a variety of problems.

One of the aims of all these attempts, including
ours, has been to derive the string picture of had-
rons which is successful in describing many quali-
tative features of strong interactions, including
confinement. The results presented in this paper
go the furthest so far in establishing a string pic-
ture in QCD in four space-time dimensions. Other
recent attempts also suggest a string theory. '
Earlier work establishing certain exact relations
between QCD and a string theory in two dimen-
sions was presented in Refs. 7 and 9.

It was pointed out some time ago by 't Hooft' that
in the large-N expansion QCD exhibits a diagram-
matic structure with topologies reminiscent of the
string theory of hadrons. This suggestion by it-

self was not sufficient to establish any definite
relation with the dynamics of the string theory.
It must be understood that 't Hooft's 1/N ex-
pansion yields the topology of a surface in U(N)
index sPace, as opposed to actual spacetime sur-
faces. Indeed, according to perturbation theory,
a gluon that leaves an interaction vertex in a Feyn-
man diagram travels through space time via all
possibl. e paths until it reaches another interaction
vertex. The space-time structure of such a Feyn-
man diagram is not 'n any obvious way related to
a two-dimensional space-time surface, which is
essential in the string model.

Wilson' in his strong-coupling approach to QCD
on the lattice has shown how confinement can oc-
cur, by establishing the area law for the Wilson
loop. While this, again, suggests a relationship
to the string theory, it does not imply it by itself,
since only the smallest area bounded by the Wilson
loop is shown to arise. A string theory would re-
quire all possible simply connected areas bounded
by the loop. A strong-coupling expansion involves
at, the same order of 1/g' many other topologicaL
structures in addition to areas with trivial top-
ology, and it does not appear to be a string ex-
pansion.

In two dimensions a definite relationship' ex-
ists between the 1/N expansion of QCD and a spec-
ific interacting string theory' ' with quarks at
the ends. These two theories have been shown to
be equivalent in detail up to and including inter-
actions of order 1/N for all values of the coupling
g 'N. In the zeroth order of the 1/N expansion a
free meson consists of a quark and an antiquark
interacting via a string. Interactions between
mesons are of order 1/¹ These interactions are
reproduced in detail in the string theory only by
a very special and natural treatment of the end
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points of the string. The interactions of order
l/N necessarily correspond to string-string end-
point interactions and depend crucially on the de-
tails of the end-point actions. The resulting in-
teraction' differs from the standard dual-model
interaction" and does not exhibit the same d = 26
problem. Indeed, this interacting string model is
completely consistent for d = 2. It also includes
longitudinal modes' which are absent in the stand-
ard treatment of the string model.

These developments taken together provide
strong clues that QCD in higher dimensions might
behave like a string theory in an appropriate
large-R strong-coupling limit. While this prem-
ise has been speculated on, "little tangible prog-
ress has been reported. " It is important to es-
tablish a QCD-string connection as firmly as pos-
sible since the ability of QCD to explain high-
energy phenomena such as linearly rising tra-
jectories, Regge behavior, duality, etc. , in addi-
tion to confinement could be demonstrated by an
equivalent string theory. Furthermore, in the
process of establishing such a result new calcu-
lational techniques emerge that can be used to
extract further information from QCD.

Our paper contains two essential parts: the
first builds a case for a simplified quark action
functional, the second presents the I/N approxi-
mation and applies it to the calculation of the
meson propagator. These two parts establish
independent results and could be studied separ-
ately, but are being presented here together for
completeness. Taken together they lead to a
more complete string picture as derived from
QCD in our approximation.

Many take the point of view that the quark part
of the action in QCD is inessential in understand-
ing the strong forces and thus they concentrate
mainly on the Yang-Mills part of the total action.
In a complicated problem such as QCD this is in-
deed- a welcome simplification even without a com-
plete justification. Section II, which forms the
first part of our paper, is aimed at developing a
simplified quark action which despite its simplicity
remains very close to that of QCD. Instead of
using Dirac fields to describe quarks, we give a
description in terms of point particles that carry
spin, color, flavor, and mass and travel on world
lines. Our purpose is to present a «mPlete action
including sources (quarks) that interact via the
Yang-Mills field. We supply motivation based on
arguments developed from two dimensions for pro-
posing this quark action. We argue that results
derived from our action will closely resemble
those of QCD if compared for N-~ on the light-
cone frame. Using this formalism we derive the
general form of the meson propagator that includes

the Wilson loop of an arbitrary shape describing
the interaction of quarks in motion.

In Sec. III, which forms the second part of our
paper, we treat several topics which are geared
toward the evaluation of the Wilson loop. We re-
write the continuum Yang-Mills action in terms
of only line integrals. ' " This provides a gauge-
invariant formalism in which one can go on the
lattice naively by simply replacing each derivative
by a difference. " We then present our approxima-
tion which consists of doing the integral over one
link on the lattice in the N- limit with g% fixed
to a large value. The structure of our result shows
that further integrations over the remaining links
can be done by using the same form as the original
integral. With this observation we can then evalu-
ate all the integrals over the entire lattice in any
dimension. For clarity of presentation we first
treat two-dimensional QCD, then a three-dimen-
sional world consisting of a single lattice cube,
and finally the infinite lattice. We show that all
contributions come in the form of areas reminis-
cent of a moving string. We also explicitly show
that space-time structures which are not simply
connected areas, such as handles, are suppressed
in our limit. Our final result is identical to the
expression for the functional integral of the string
+copy, in latticized form. This remarkable result
is discussed and summarized in Sec. IV.

II. A SIMPLIFIED ACTION FOR QUARKS AS SOURCES FOR

THE YANG-MILLS FIELD

This section is independent from Sec. III which
describes our approximations. The reader inter-
ested in the next topic can directly skip to Sec.
III.

To simplify the investigation of QCD it is help-
ful to treat the quarks as structureless point par-
ticles traveling on world lines. Our purpose in
this section is to provide a complete Lorentz and
gauge-invariant model of spinning, massive
quarks with color and flavor, interacting with
gluons via the Yang-Mills action. We build a
case for our proposed action by basing our argu-
ments on results from two-dimensional QCD.
We argue that calculations with our action should,
for most purposes, resemble those of the full
four-dimensional QCD action in the N-~ limit,
only in the infinite momentum frame.

Two-dimensional quantum chromodynamics
(QCD, ) fortunately provides us with a concrete
example to follow in finding a connection between
QCD and strings. QCD, has been investigated by
a number of authors, in particular, on the light
cone for large¹" In this gauge and in this
N-~ limit the meson sector of QCD, has been
demonstrated to be equivalent to a string theory
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p- = m, /2p, ,m, /2p,"y(x-, -x,-[, (2.1)

where x, and x, are the positions of the quark
end points, P+, , is the momenta, and m, ,' are
the renormalized effective masses. The Schro-
dinger equation for the string wave function

Q(p„p, ) using the above Hamiltonian is identical
to the Bethe-Salpeter equation, derived from
QCD, in the N -~ limit, for the wave function

p(p„p, ) of a meson of mass M and total moment-
"m & =&i +&2

m m'
2 + —2+ -2P+ 4(P„P,)

1 2 .

+
Ji

( „)2 (f)(p+, + k+, p+ —k+) . (2.2)

This result was gerieralized to show the equiva-
lence of QCD, with an interacting string theory.

on the light cone with massive and spinning quarks
at the end points. ' ' ' The crucial effects of the
spin degrees of freedom become apparent only in
interactions. More precisely, the light-cone Ham-
iltonian of such a "free" string reduces to

+ S;„, x, , x,
IpJ

(2.3)

where the Nambu action for the string with end
points x"„x," is

8 2

S."tring = '~ d& d7' ( g) (2.4)

The end points are described by the action

Send ptrint ~~
d~ 0 z 2)l/2 ~( xT )x T

and the end-point interactions are given by

In QCD, interactions are of order 1/N .The ex-
act details of these interactions are in complete
agreement with a string theory with massive and
spinning quarks at the ends, which also carry
flavor. These results follow' from the foll.owing
action for interacting strings (written in d dimen-
sions):

~-tfings + ~ end oints XI

S = — Q dTd~'5"'[x" (7) -x"(v')](-x ') ' '(-x I') ' '

x [p~ (7)(is,jl, +mx~, ')g~(v')+$~(v')(x~„ia„+mxl, ')g~(7)],
(2.6)

where x,",=&x,"/&~, and X„=y„»,"/8~, and I, ~
label different particles. Note that the interactions
only involve the end points. Therefore, the details
of the interaction is completely dependent on the
treatment of the end points. The end point action
in Eq. (2.5) is closely related to the Dirac equation
as discussed in Refs. 8 and 9. It is obtained from
the Dirac Lagrangian by replacing the derivative
8" by the directional derivative x",8, /x', on the
world lines. It is important to note that the inter-
actions in QCD, as well as its equivalent string
description of Eq. (2.6) deviate significantly from
the standard dual-model interactions as treated by
Mandelstam. "

It is much more difficult, even for QCD„ to es-
-tablish its connection to strings in other gauges
than the light cone. Quantization in the axial gauge

A, =0 leads to a much more complicated Bethe-
Salpeter equation. The complications arise from
the possibility of qq pair creation and annihilation
even for N . It is then necessary to use two
meson wave functions Q„one for forward propaga-
tion (@,) and one for backward propagation (|P ).
Then the QCD, Bethe-Salpeter equations take the
form"

[&(p)+E( -p)-&]y, (,p)

y " Qk

k), [C(p, k, r)y, (r, k)g, (p —k2

[E(p)+Z(r —p)+ r'] p (r, p)

+ S(p, k, r) p (r, k)],
(2.V)

y I dk
k), [C(p, k, r)y (r, k)

+S(p, k, r)y„(r, k)],

which is not easily described as a free string
theory. Here r is the total momentum and & the
total energy of the meson, P and &-P are the
momenta of the quarks and E(p) and E(r -p)
their energies. 'C(p, k, r) and S(p, k, r) are com-
plicated functions of momenta as given in Ref. 16.
It is the wave function and not the spectrum which
is different than in the former case. The Q„(r,p)
wave functions give a description of the meson in
an arbitrary reference frame as opposed to the in-
finite momentum frame which is automatically
chosen by the light-cone gauge. In fact, by taking
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FIG. 1. Time-ordered QCD2 graph in the axial gauge
in the N —~ limit, displaying qq creation and annihila-
tion at end points of interacting strings.

the r-~ limit it was demonstrated that Eq. (2.V)

reduces to the light-cone Bethe-Salpeter Eq. (2.2),
thus ensuring the sa,me spectrum for the meson.
The important fact is that in the infinite moment-
um frame pair creation and annihilation is suppressed
leading to signifi. cant simplifications. Thus, it is
impossible to give the string description of QCD,
in the axial gauge without considering string-string
interactions. This is because in an arbitra. ry
frame the quarks at the end points get created and
destroyed an infinite number of times within a
free meson" as shown in Fig. It. . Presumably, the
interacting string action of Eqs. (2.3)—(2.6) which
reproduces the light-cone results of QCD, also re-
produces this more complicated description of the
meson in an arbitrary frame, since the action is
Lorentz and gauge inva. ria.nt. Aga. in we expect that
the details of the end points as given are crucial
for such an equivalence.

Hence we see from two dimensions that a. simple
string theory for free mesons can result (if at all)
only if we trike the following limits and prescrip-
tions for higher-dimensional. QCD:

(I) N must be taken la, rge to ensure a planar
structure with no holes.

(2) We must work on the light cone to suppress
pair creation so that end points follow smooth
world lines.
Only then can we separate a zeroth order (in l/N)
light-cone Hamiltoman for free mesons which
corresponds to a noninteracting string theory.

Assuming that a free string theory can result in
these limits in higher dimensions, the form of the
interaction will be determined by the 1/N expan-
sion. To order I/N the interaction will correspond
to string-string interactions at the end Points only.
Thus, the treatment of the end points in a string
theory is crucial for determining the interaction
and the closely related d= 26 problem. We have
seen in two dimensions that this interaction is
different than that considered by Mandelstam, and
depends on the details of the fermionic degrees of
freedom at the end points of the string. Since there
is a limit (light cone and N-~) in which the quark
in a meson ean be expected to be describable ap-
proximately by a world-line picture' (no pairs),
we wil. l seek a formulation which is exact in two

S =S~M+S, +S2, (2.8)

where

(2.9)

and, motivated by the above discussion, we take
for a quark on a world line the action

dimensions and try to apply it to four dimensions.
A different attempt which is related to ours in
two dimensions but which is considerably more
complicated in four dimensions is given by Halpern
et a$.

Motivated by the above picture, we will investi-
gate a modified version of QCD, in the N-~ limit
in which the quark field is replaced by point par-
ticles moving on world lines. The quark will be
described by the world-line action of Eq. (2.5) ex-
cept for interactions with the gluon field. The
pure Yang-Mills action is unmodified. Just as in
two dimensions the "quark" action describes mas-
sive spin-& Dirac fermions with color and flavor
and an effective mass. The effective mass will be
identified with the total dynamical mass of the
quark. The quark is restricted to move on a
smooth world line such that pair creation and annihi-
lation is not allowed. Although the model thus de-
fined is covariant and can be studied in any gauge
and any I,orentz frame, we expect it to yield re-
sults resembling ordinary QCD, in the N-~ limit
only in the light-cone frame, based on the discus-
sion given above. The main difference between
ordinary QCD, and our present model is in the
quark propagator: The momentum dependent full
qu'ark propagator of QCD, in the N-~ limit is re-
placed in our model by the propagator of a spin-&
particle with an effective mass (but not static). In
two dimensions for N- this is exact on the light
cone, because then the quark propagator has a
single pole. " In four dimensions it could not be
exact, since dynamical chiral-symmetry breaking
could be understood only by considering the full
propagator. Nevertheless, our "quark" approach
provides a complete model with sources in addi-
tion to the Yang-Mills action, which ean be studied
independently in order to understand the nature of,
say, the confining forces. With regard to such
general considerations we expect our simplified
model to yield similar results to light-cone QCD,
as N since the details of quark propagation are
not the essential ingredients in determining these
forces. The study of QCD, with a full quark field
is deferred to the future.

Thus, we define a four-dimensional effective
theory by the action
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FIG. 2. Quax'k loop.

as the (j) (~), g2'(v) are dynamical degrees of free-
dom to be quantized along with the gauge field
A„(x).

Our goal is this paper is to describe the propa-
gator of a meson made of a quark-antiquark pair.
Then the two world lines x, (v), x,(7) correspond-
ing to a pair of quarks which are created at T =0
and annihilated at ~=T will form a closed loop,
one branch of which represents the quark, the
other the antiquark (see Fig. 2).

Thus, we consider the Green's function

(2.10)

i D„=is,+A" (x,)x„„. (2.11)

and similarly for S, with x, and g, describing the
second quark. The covariant derivative is where X), ,(v) are the canonical conjugates to

g, ,(~) determined by the action

(2.12)

Above we used

x", =ax" /s~, g, =y„ax~/s~ .
x(')='v . (2.13)

This describes a theory of two spinning, colored,
flavored, massive particles 4",„and (j) „(o.'= spin,
a=color, i =flavor) which live on the world lines
x»(v) and x»(v), respectively. A relation to the
Dirac action is evident. ' The quark wave functions

g, ,(T) interact via the gluon field A„[x(r)]. Note
that the world-line variables x",(v), xt(v) as well

We note that (1/vN )X,&g, creates or annihilates
a normalized color-singlet state of quark-anti-
quark whose spin and flavor content is described
by the color-singlet matrix I'. Following a modi-
ication2o of the methods of Halpern et gl; the

above matrix element can be put into the form of
a functional integral:

Z ', [ dA] [ dx, ][ dx, ] [ dy, dX, ][ dy, d X ] e ' '». "~"2'

" xp{-. [X,(o)(I,(0)+ X.(0)y,(0)+ X,(T)4,(T)+ X.(T )4,(T)]] —T [R,(0)X,(T )1' e.(T)X.(0)] . (2.14)

I

The factor Z is the usual normalization. The integrand consists of the usual action term, the initial and
final wave functions as they occur in the above matrix element written in trace form over color, spin, and
flavor, and finally the term exp[ 2i (X())+ etc.)] which is explained by Halpern et al.20 This final factor en-
sures that the quark number —i Xp for each species is maintained at —i X(1)=1 throughout propagation.

Once again referring to the appendix of Ref. 18 and modifying it for time-dependent Hamiltonians we
evaluate the Fermion integrations. %e use the following result

[ d X][ dg] exp
~

d&[X&,(1) —& XH(7')$] $„(0)e xp'{i [X(0)g(0)]j exp{-,'i [X(T )4)(T)]}Xs(T)

1 T
1'exp -i H 7 dv, 2.15

AB

where T is the time-ordered product and H(v) is a time-dependent matrix in color-flavor-spin space. By
writing the quark actions S, and S, in terms of canonical conjugates for the fermions

S= dT XBT —iX m T+XT A. (2.16)

and using the above integral we obtain for our functional integral the form
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[ dA] [ dh, ] [Ch,]exp[- S,„(A)]

T T
x —Tr I' Pexp i [ my' +Aq(h)]dx," 1' Pexp i

[
[myq+Aq(h, )]dh", , (2.17)

0 0

where we have used

dT(mg, +h, .A. ) = ( my„+A „)Ch"

and ordered the product over the paths instead of time. Since the Dirac matrix z„ is in a different space
than the color matrix A „we can separate the exponentials and traces into the form

0 T 1Tr I' Pexp i
~~

my ~ Ch, 1"' Pexp i . my Ch, —Tr Pexp i A ~ Ch
T "0 N

(2.18)

where the last closed color loop is just the Wilson loop which will be indicated from now on by 5':

i 0 T

W peep i n ~ & = perp r rk, n(x, )[ S'axp r' rh, A, (x,))T ] „0 (2.19)

Therefore, the integral over the gauge field now simply reduces to the evaluation of a Wilson loop of ar-
bitrary shape and is equal just to the expectation value in the pure gluon sector:

(
1 1—TrW = (dA) exp[ —SyM(A)] —Tr I (dA) exp[ —S,M (A )] . (2.20)

This quantity depends on the boundaries parametrized by the functions h,"(7) and h,"(~) over which fur-
ther path integl als should be pel formed as follows:

t
0 T

(dx', )(rk, ) Tr t' Perp i my dx, t" esp i, my dx,
)

esp[ —S., (x„x,)],
-0

(2, 21)

where following Wilson we have defined an effective action Sp.t representing the potential between quarks
in a meson by

esp[ —S... (x„x,)] = —yr W).
1

(2.22)

The trace in this path integral can be rewritten by introducing fermion variables without color and retrac-
ing the steps above. We will denote these fermion variables again with the same symbol g by omitting the
color index a. Thus, we obtain a form similar to Eq. (2.14) where there is no gluon integration:

[ dy, dj, ][ dg, d y, ] [ dh, ] [dh, ] exp [ —s„.t (h„h, ) + s, + s,)]

x e~-, i[Xt(0)p,(0)+ g,(0)p,(0)+yt(T )gt(T)+y, (T)g,(T)]}Tr[ I'(, (0)y, (T )~ g, (T )X,(0)] . (2.23)

Here S, and S, are exactly of the same form as in
Eq. (2.10) except for the covariant derivative D,
replaced by the ordinary derivative ~,. This
shows that the meson is described by the effective
action

exp [ —S„,(h„h,)]= Chstring eXP [ —Sstring ] ~

I

over the Nambu string action of Eq. (2.4), written
in four dimensions:

S ff ISg+ sSp+ Sp (2.24) (2.25)

In the subsequent sections we will exhibit an ap-
proximation of QCD in four dimensions in which
Spo t can be rewritten in terms of the path integral

This resulting model differs from the standard
string model by the additional action at the end
points. As discussed above end points play an im-
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portant role in determining the string-string inter-
action that corresponds to QCD in the large-N ex-
pansion. This model was previously suggested by
Bars and Hanson on an intuitive basis' based on
QCD, and was shown to be equivalent' to QCD in two
dimensions after including interaction. It was subse-
quently shown by Kikkawa. e& al."that the Bars-Han-
son quark action is also related to Wilson's action for
fermions on the lattice. The model was further anal-
yzed by Kikkawa et al. in four dimensions in a semi-
classical WKB approach" and shown to reproduce
certain interesting features of the known particle
spectrum. We consider these preliminary results
encouraging for our approach. In our opinion a
fully quantum-mechanical treatment of the model
on the light cone (no pairs) is necessary for com-
parison with QCD (for N-~, on the light cone).

The main result of this section is Eq. (2.24) and
the detailed quark actions. They describe the mo-
tions of the quarks interacting via the potential
calculated through the Wilson loop. We have built
a case for the validity of our quark action, in com-
parison to the full field theory description of
quarks, in the limits indicated. Except for effects
of chiral-symmetry breaking we expect our ap-
proach to work well.

III. WILSON LOOP

A. Passage to the lattice

In Sec. II we derived a Feynman path integral
for the meson propagator involving the Wilson
loop taken over an arbitrary closed curve para-
metrized by x'(~). We will evaluate this integral
by latticizing space and time. We digress for a
moment to discuss a method for going on the lat-
tice which appeals to us. We first make a change
of variables in the continuum by expressing the
gauge potentials A„(x) in terms of path ordered
line integrals. The details of this substitution has
been discussed extensively in Ref. 13. Briefly,
we denote by B„(x) the line integrals over straight
lines as shown in Fig. 3(a). They are unitary
matrices which satisfy

B„(x)=/exp —i, dx'„&„(x'),
4 ce

A —B sb B

E~p =B~sp(B»9 pB~)B„,

Tr(E»)'= Tr[8 „(B»B„B„„)]',
Bpu Bp Bv

no sum on
fL or v.

(3.1)

Thus, the a.ction is a function only of the gauge-
invariant variables B„,. They correspond to line
integrals along paths as shown in Fig. 3(b). For
gauge transformations which vanish at ~ these
variables remain invariant. The B„„canbe treat-
ed as ordinary local variables and the quantum
theory can be carried out entirely in terms of
these gauge-invariant variables. ' " The passage
to latticized space time is now straightforward
since we are dealing with gauge-invariant var-
iables. All derivatives are simply replaced by
differences:

s~B»(x) = —[B„„(x+pa) -B&,(x)].
l

(3,2)

As shown in Ref. 14, the new local lattice theory
thus defined preserves the quantum commutator
structure of the continuum theory. In thi's version
of the lattice theory the B„„arecorner variables
as opposed to link variables. But a map" has been
established to the formulation' of Wilson and Kogut
and Susskind showing the equivalence of the two
versions of lattice theory.

We find this approach appealing in that it pro-
vides a systematic method for constructing a lat-
tice theory from the continuum theory. For ex-
ample, using the B» form of E» ~ust by drawing
pictureS, we can easily derive that (no sum on p. )

E» Bq(x) = U(x, C, ) —U(x, C,), (3. 3a)

B„E»(x)= Ut(x, C,) —U (x, C,), (3.3b)

where the ordered path integrals U(x, C, ) are taken
over the curves C, shown in Fig. 4. (They are just
products of B„„.) Taking the product of Eqs. (3.3a)
and (3.3b) we find (no sum on p, , v)

[E»Ep„(x)]', =[ —2+ U(x, C„)+U (x, C„)]'. ,

x
=By. (x)

A
Jiv

(b)

-: Bp.v {x)
A A

X +P.Q+VQ

A
x x+pQ

A
X+ VQ

C2 1(

A A A
X+ VQ X+ P0+ VQ

o
'A

X X+ p. Q

(3.4)

FIG. 3. Paths used for the line integrals in Eq. (3.1)
for B„in (a) and for 8» in (b).

FIG. 4. Line integrals used to construct E&~ in Eqs.
(3.3) and (3.4).
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where the closed curve C„ is given in Fig. 4. The
unitary matrix U(x, C») may now be written as a
product of either the corner variables 8„, located
at the corners of the "plaquette" in Fig. 4 or the
link variables which represent line integrals over
the sides of the "plaquette. "" It is seen that in
our approach the action TrE„,E„„aswell. as other
quantities such as Tr E&„E„„eanbe constructed

on the lattice in a straightforward and systematic
fashion. In this paper we will use the Wilson ver-
sion of the lattice theory since it is more familiar
generally but the analysis could have been carried
out entirely in terms of the corner variables B&„.
The Wilson loop now takes the well-known form'
(using g'(a) instead of g'a' ")

dU exp I g' Tr UUUU+H. c. —Tr TV
YrW

d U exp 1 g' Tr UUUU+H. c. (3.5)

The sum in the exponent is taken over all plaq-
uettes in all space-time. The (dU)'s correspond
to the invariant group measures for the link var-
iables U, and TV is a product of link variables over
the latticized quark trajectories.

I(A) = dUexp[(1/g') Tr(AU+ U A. )], (3.6)

where A is the sum of unitary matrices in all
plaquettes that share U as a link. For example,
in two dimensions, as shown in Fig. 5, only two
plaquettes share U„and they can be rewritten as

Tr(U, U, U3 U7+ U, U3 U2 U, )

+ Tr(U, U, U, U, + U, U, U, U, )

= Tr(AU, + U,At), (3.7)

where

A. = U, U U3+ U6 U, U (3.8)

In d space-time dimensions A has 2(d —1) terms
in the sum

2(d -1&

A= g A, , A,.hA, =1 (no sum) . (3.9)

B. The approximation

Concentrating on the integration over a single
link U we find we must evaluate an integral of the
form

I

We wish to find an approximation for I (A).
We proceed to compute I (A) by expanding the

exponent and evaluating the integral for each term
in the series by using invariance arguments. We
have attempted to find more direct ways of com-
puting I (A) by parametrizing U and writing out the
measure explicitly, but these did not prove to be
of any practical use (see the Appendix). Thus, we
write

(A) P (1(g2) +n (1/m!n!)

x dU(TrAU)" (TrU A ) (3 11)

Let us consider the general properties of these
integrals for both U(N) and SU(III). It is clear
from the invarianee properties of the measure that
I(A) can be a function only of Tr(AA )' for any
integer l, detA, and detA . For U(N) the deter-
minants must occur only in the combination
det(AA ) which can be rewritten as a combination
of Tr(AA ) . Thus, for simplicity we specialize
to the U(N) case since now only m =n contributes.
We do not expect that U(N) instead of SlJ(N) will
drastically change the properties of the Wilson
loop. Since we are interested in the large-E limit
and since detAA does not appear in the sum until
m =m =N, we can evaluate the m, n& N terms with-
out dealing with -the determinant. In the appendix
we show that the general structure of the integral
for m =n & N is given by

Later we will need also AA which is given by
U) U6

t
UP U71il~ U7 05

Llp Uy

=2(d —1)+ Q (A, A~t+A, A~) . (3.10) FIG. 5. Two neighboring plaquettes.
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~
~ ~ ~

(/g)dU(TrAU)" (TrA U )"=,(, ) (, ( ),] „(».. ~ »)
Zlkl =n

(3.12)

where the sum over the integers &„&„.. . , &„ex-
tends over all possible terms with the restriction
that n = k, + 24, + ~ +n4„. This simply means that
the number of factors of (AAt) is exactly equal to
n. The coefficients Cs(h„. .. , h„) are polynomi-
nals inN of order k=4, +02 ~ ~ +k„n. In the Ap-
pendix we also have calculated all the relevant co-
efficients C„"up to n = 4 from which we have learned
the following facts by extrapolation to 4& n & N:

(i) When AA is proportional to the unit matrix
AA~ = a'~ 1 the coefficients C„"conspire to give
the simpl. e exact answer

efficient has the form

C "(n, OOO" ) =N" +O(N"-'), (3.15)

as shown in the Appendix explicitly up to n =4.
Hence we approximate the series in the N- limit
by keeping only the leading term in Cs(n, 00 ~ ~ ).
In addition, we substitute for the denominator the
leading form N'" to obtain

2tl

dU (TrAU)" (TrA~ U~)"

2' ]
dU (TrAU)" (TrA U~)"

(3.13)
a)2" j
g2) nf

Substituting this form into Eq. (3.11) and summing
the series we arrive at our approximation

(ii) When
l(A)=exp (

—
)

. (3.17)

Q

0

In our final evaluation of the Wilson loop we shall
be interested in keeping g 'N fixed as N -, and
we will use the notation P =1/g'¹ Substituting
Eq. (3.9) in Eq. (3.17) and using Eq. (3.10) we ar-
rive at the strikingly simple form

0
I(A) = dUexp[PN Tr(AU+A~Ut)]

similarly we obtain =—exp[ P'N'2(d —1)]

(
1 2ft ] dU(TrAU)" (TrA. U )"

a " (N 1). (1)g' (N+n —1)!n!

These can be checked explicitly up to n =4 by using
the coefficients given in the Appendix. Note that
the poles in Eq. (3.12) have canceled. "

Since the expression in Eq. (3.12) is difficult
to deal with we will try to obtain an approximation
for the integral I (A) for a general A. in th e N~

limit. We first note that for fixed n the leading
term is given when &, =n, k, = 0, i +1, because the
Cs(h; h„) are polynominals in N of order h, + h,
+ ~ ~ ~ +k„with the 4,. subject to the constraint k,
+ 2k2+ ~ ~ ~ +nk„=n. Furthermore, this leading co-

&& exp P'NTr g (A;A, +A&A,". ) . (3.18)

Note now that A, A,. is the unitary matrix associa-
ted with the closed loop formed by combining two
neighboring plaquettes. Hence further integrations
on the lattice util be of the same form as i(A) and
the same approximation can be used repeatedly to
completely integrate the lattice theory. This will
be described in detail in the coming sections.

We emphasize now a number of questions that
arise with regard to our procedure of taking the
N-~ limit. In the standard 1/N expansion, in
principle, the answer should have been obtained
by first computing I (A) exactly, fixing P, and then
taking the N - limit. Instead, we interchanged
the sum and 1.imit and kept only the leading term
for each term in the series, regardless of the
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magnitude of g'. Thus, our approximation couM
differ from the standard large-N limit. However,
we have been able to check our approximation
against the standard N- approach for the special
forms of AA given in (i) and (ii) above. For these
cases, no approximation was used in arriving at
Eqs. (3.13) and (3.14). Hence the integral can be
evaluated by summing the series and then taking
the limit N-. In so doing we extrapolate the
result of n &N to all n. Thus, we obtain the re-
sults (Is, is the modified Bessel function)

(i) I (A) = exp[(a/g')'], (3.19)

(i) I (A)= exp(P'. N'a'), (3.21)

(ii) I(A) = —
— expI N A, -1+ln, (3.22)
1, 2

1+X

where

&= (1+4a'p')'"+O-
N

Although the result (i) agrees with our approxi-
mation Eq. (3.17), result (ii) agrees only as p-0
for which it simplifies to the expected form

(ii) I (A) = (N 1)!(-a/g')' "I, ,(2a/g') . (3.20)

r

Note that (ii) is exact (see the Appendix). Further-
more, our extrapolation of Eq. (3.13) to all n
which ignores detAA. = a' is permissible for
small a since we intend to takeN-~. After re-
placing 1/g'= PN, fixing P, and letting N-~,
these reduce to

I (A.) = exp(Va'p') . (3.23)

Thus, henceforth we understand our approxima
lion to be valid only for small P or large g'N.
This shows some relationship to the strong-cou-
pling limit.

The fact that P must be fixed to a small value
as N leads to an approximation scheme which
is a special case of the standard large-N limit
which is valid for any P. Because our approxima-
tions has to be applied to each link integration
separately it means that it has to be understood
as a local approximation as opposed to a global
expansion in powers of P over the entire lattice.
This will lead to subleties that will help clarify
the local nature of our approximation, as will be
discussed below. The main virtue of our approach
is that it allows a complete integration of the
theory and reveals an extremely interesting
structure with no further approximations.

Now that we have established the approximation
and have shown that the integral over each link
leads to further integrations of the same type, all
that remains is to keep track of the integrations
systematically until the entire theory has been
integrated. It is clear that this can be carried out
in any dimension. In order to illustrate this fact,
we treat two-dimensional and three-dimensional
QCD for which we can draw pictures of the lattice
to help keep track of the integrations. Four-
dimensional QCD will be discussed by extension of
the results in lower dimensions. Although the two-
dimensional theory has already been discussed in
the literature, "'"we shall nevertheless treat it
in detail since it serves to illustrate as well as to
support our method in a readily tractable case.

C. Two-dimensional QCD

A representative link integration in two dimensions has already been discussed in Eqs. (3.7) and (3.18)
and Fig. 5. Using our approximation the result is

I

dU exp[ pN Tr(U U U U + UTUtUtU")]exp[ pN Tr(U~U, U, U, + U, U~UtU~)]

=—exp[2P'N'] exp[ P'N Tr(U, U, U, U, U, U, + U, U, U, U, U, U~t) ] . (3.24)

(3.25)

Thus, there is- a factor exp(2p'N') and a term in-
volving larger loops over whose links integrals
remain to be performed. Since factors of the type
exp(2p'N ') always cancel between numerator and
denominator in Eq. (3.5) we may ignore them.
Therefore, we represent Eq. (3.24) graphically by

6 6
ePN {2+7 + 2~7 ) PN (7~5 ~ 7~5 )du, e 3 3 4

4 6
eP' N (~i .' i6 + ~q-; -i & ~3 4 3

where the dotted line indicates the integrated link.
Let us refer to p as the "weight" associated with
the elementary pl, aquette. Equation (3.25) shows
that the weight associated with the loop generated
by joining two plaquettes is p'. This has the con-
sequence that subsequent integrations will lead to
the joining of loops with different weights. For
example, once again using Eqs. (3.9) and (3.18)
one obtains
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r P N(t ', t5 + t! I&) PN(5/ + 5Q j
du5 e

P N(l '
', I + I I I I}

FIG. 7. Loops that emerge by combining plaquettes as
a result of integration over the dotted links.

exp[ psN Tr( W+ W )], (3.27)

In general, for two arbitrary loops with n and m
plaquettes having a common link, the link integra-
tion yields a larger loop whose weight is the prod-
uct of the two weights, yielding p" p = p"+".

A typical Wilson loop on the lattice is shown in
Fig. 6. To evaluate the expression in Eq. (3.5),
let us perform first the integrals over the links in
the order shown on the figure. After the fourth
integration we have a loop of the form shown in
Fig. 7(a). Using the unitarity of the U's on the link
I where the loop doubles on itself, this is equiva-
lent to the loop in Fig. 7(b). The last dotted line
is inserted since the integral over the link I
is done trivially f dUz, = 1 as the integrand at this
stage is independent from UL, . We encounter sim-
ilar situations after the integrals over 5 and 7 are
performed. After all the integrations over the
links inside the Wilson l.oop, we obtain the result

dUdV dW exp[ p N Tr(VUI/tWt+Wl'Utpt)]

s e*s[()"s(»()sr)sr)I .—.sr)sl (s.ss)
1

and a similar expression for the denominator
where the last parenthesis is replaced by 1. We
use the invariance properties of the measures
once again to perform transformations on U from
left and right, thus substituting VUV~g ~ = U'

everywhere. The integrations over V and U' are
now decoupled from W and thus cancel among num-
erator and denominator. The final result is

f dwexp[p"II/Tr(W+W~)] N TrW

f«exp[p" »r(W+W') 1

1 )r
(

wsszp[ " s»s(()s+Is )II.

where 8'is the product of the links comprising
the Wilson loop and P' is the weight of W in this
particular example. For the general Wilson loop
containing n plaquettes the resulting weight will
be P", after performing the integrations over the
1.inks inside it.

A similar procedure can now be foQowed to
perform the integrals outside of the Wilson loop
all the way to the boundary of the two-dimensional
world. The result takes the form shown in Fig. 8.
The weights of the inside and outside loops are
p" and p, respectively. The 'integrations over

, the links comprising these loops can be reduced
to just three integrations over W; U, and V as
shown in the figure, by using the invariance pro-
perties of the measures. Thus, we arrive at a
numerator

(3.29)

This last integral is given in Eq. (3.17) except
for p replaced by p", which I.cade to

1
N
—(Trw) =P" . (3,30)

(3.31)

with

1 1 1
2Wc' 0 a, = ——,lnP= —, In[Is/g2(a)]. (3.32)

Since n =A/&2, where A is the total area bounded
by the Wilson loop and a' is the area of a plaq-
uette, we can write

(Tr W) p
A/(s e A/2& (2

N

2
I

5' 4
6

7

W

IL

FIG. 6. Wilson loop in two dimensions, integration to
be performed in the order indicated.

FIG. 8. Two closed loops associated with the unitary
matrices 8"and the product VUVt W.
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This agrees with the result arrived at previously
by Migdal via other methods if his results are
taken in the limit of N-~ with fixed small P. '4

This confirms the validity of our approximation.
Although in two dimensions the area law of Eq.
(3.31) could have been arrived at from the lattice
theory via Migdal's method"' "without taking the
limits N-~ and P = small, our method, unlike
Migdal's, has the advantage of generalizing readily
to higher dimensions.

D. Three4irnensional cube

To illustrate the new features that appear in
higher dimensions we begin with a simplified world
of a cube in three dimensions, as shown in Fig.
9(a). We take the Wilson loop at the bottom of the
cube and do the integrations in the order indicated
in the figure. The integrations 1, 2, 3 combine
the side plaquettes into the larger loop shown in
Fig. 9(b). Using the invariance properties of the
measures, the leftover integrations take the fol-
4owing form for the numerator:

dU dV d Wexp[ PN Tr(U+ U")]

x exp[ P'N Tr(WVUV + VU V W )]

x exe(3)eTr(W W)) +—TrW), (3 33)
1

and a similar form for the denominator with the
last parenthesis replaced by 1. The first and last
factors in this expression represent the plaquettes
for the top and bottom faces of the cube which were
part of the original action. The middle factor
represents the loop in Fig. 9(b) which resulted
from the first three integrations. Note that the
exponent with weight P4 is a measure of the four
plaquettes that were combined as a result of the
three integrations. We next perform the U integral
which combines the first two factors in Eq. (3.33)
to yield exp[ p'N Tr(W+ W )]. The V integral is
now performed trivially: f dV=1. The weight P'
is associated with the surface formed by the five
plaquettes on the top and the sides. Thus, the
Wilson loop takes the form

j dWexp[(P+ P')N Tr(W+ W )] —TrW

j' d W exp[(P+ P') N Tr(W+ Wt)]

(3.34)

where we have used the same method as in Eqs.
(3.29) and (3.30). The two weights P and P' corre-
spond to the two surfaces bounded by the Wilson
loop in this simplified world. Thus, we can write

—Tr(W) =Q exp(-A. , /2no('),
1
N

(3.35)
1 1= —,In[Ng'(a)]

217(X' 0'

where the sum g; is over all possible areas (here
only two). It is easy to show that E(I. (3.35) holds
for any other Wilson loop, such as the ones shown
in Fig. 10. We note that each. area contributes
only once, i.e. , the coefficients in the sum multi-
plying the exponential exp( —A, /2mo. ') are inde-
pendent of the area and equal to 1.

E. Infinite lattice

The examples of two dimensions and the single
cube in three dimensions have taught us that the
best procedure for keeping track of integrations
over the entire lattice is the following: Starting
in the neighborhood of the Wilson loop we inte-
grate over each link which is not part of the Wil-
son loop 8'. The W integration is done only after
the rest of the lattice has been integrated. After
doing those integrations we will generate factors
of the form exp[ P"N Tr(W+ W )], where P" is the
weight corresponding to some surface bounded by
K Thus, in the end we will obtain an expression
of the form

J dWexp[(g p")N Tr(W+ W )] —Tr W

J dWexp[(g p")N Tr(W+ Wt)]

(3.36)

where Q(3" denotes a sum over weights corre-
sponding to distinct surfaces. All 8'-independent
factors cancel between numerator and denomina-

2)

(a) (b)

i
I

/ I
I

J[
/

r I//

I
I
I

FIG. 9. (a) Cube in three dimensions. |'b) Loop result-
ing after the integrations 1, 2, 3.

FIG. 10. Possible Wilson loops as boundaries of sur-
faces.
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Zy
Qwi

F. IG. 11. Elementary Wilson loop.

FIG. 13. Some loops of weight P3 generated by two in-
teg rations.

tor. The last integral over 8'is easy to evaluate
as before, and we obtain

(3.37)

Thus, our problem is reduced essentially to find-
ing the exact form and interpretation of the sum
over weights.

To see how this works, consider a Wilson loop
consisting of a single plaquette, as shown in Fig.
11. For clarity the figure displays plaquettes only
in a horizontal plane, in addition to the first three
vertical links (1, 2, and 3) over which we inte-
grate. The remaining links and plaquettes are not
shown in the figure, but they are there implicitly.
The integrations can be done graphically just as
explained for the previous examples as it follows
from our approximate integral in Eq. (3.18). Thus,
we combine all possible pairs of loops meeting at
the integrated link into larger loops. For example,
in Fig. 12 the new larger loops generated after the
first integration are shown. After the first inte-
gration, the mathematical expression for these
diagrams is the factor

exp( p'ÃTr[(U, +Ut)+(U, +U, )+(U, +Ut)

+(U~+ UJ)+ (U, +Ut)+ (U~ + U~ )]] (3.38)

as generated by Eq. (3.18). Here U, , etc. , stand
for the closed line integrals corresponding to the
loops obtained by erasing the dotted link in the

corresponding figure. The unita, ry matrices U, ,
etc. , can be written as a product of the links form-
ing the loop. Subsequent integrations in Fig. 11
generate more complicated loops, some of which
are shown in Fig. 13 after two integrations, and in
Fig. 14 after three. There are, of course, more
loops at the level of two and three integrations
which are not shown in the figure. They are ob-
tained in the same way by combining plaquettes
with the new loops as well as with other plaquettes
after each integration. The next integration over
the link labeled by l in Fig. 14 generates a factor
involving just the Wilson loop with weight P' by
combining the loop of Fig. 14 with the plaquette
on top of the cube, just as in the example of the
single cube. This same integration will generate
more complicated loops by combining the loop of
Fig. 14 with other adjoining plaquettes.

The integrations continue in this graphical way.
From Eq. (3.18) it is seen that with each resulting
loop l we must associate the multiplieative factor
exp[P"N Tr(U+Ut)], where U is the product of
links comprising the loop and p" is its weight. The
generated loops always correspond to the boundary
of the surface formed by the combined plaquettes.
The number of such plaquettes (n) determines the
weight P". It will happen that a given loop is the
boundary of many surfaces. Then the weight of
the loop reduces to the sum of the weights corre-
sponding to all the surfaces for which it serves as
boundary. By proceeding in this manner, we will
clearly obtain all possible weights associated with
all possible surfaces bounded by the Wilson loop
8', just as in the single cube case. k",ach gisti peg
surface occurs onLy once, since there is only one
way of forming each of these surfaces by attach-
ing plaquettes.

In the previous discussion we started out from
(0) (b) (c)

(e)

FIG. 12. Loops of weight P generated by integration
over the dotted link. The horizontal plaquette represents
W drawn in the figures for reference.

FIG. 14. A loop of weight P' generated by three integra-
tions.
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a Wilson loop the size of a plaquette. The same
arguments can be applied to any size Wilson loop,
the only difference being that a number of inte-
grations are already needed just to form the
smallest area, as in the two-dimensional case.
Thus, for any Wilson loop, integrating over the
entire l.attice, we find the remarkable result (a)

Link 2

(b)

1
N
—( Tr W) =Q exp(-A, /2no. ') (3.39)

Inter se c t ion

r i
r

r & r I

n

I

I

I

wg
(b)

w '~g

(c)

FIG. 15. Surfaces bounded by the Wilson loop 8'. (a)
Normal nonintersecting surface of weight P . (b) Normal
self-intersecting surface of weight. P . (c) Singular sur-
face of weight P .

just as in the single-cube case, where the sum
runs over all possible d&»inst areas bounded by
the Wilson loop. Note that at any stage of our cal-
culation it was only surface structures which ap-
pear and thus it should be no surprise that Eq.
(3.39) is a sum over surface areas.

In Sec. IV we will show that only simply connect-
ed surfaces contribute to Eq. (3.39), due to a sup-
pression factor of 1/N' for surfaces with one han-
dle and higher powers of 1/N for more complicated
topologies. The simply connected surfaces fall
into two general categories:

(1) Normal surfaces, formed by joining distinct
plaquettes. These include both nonintersecting and
self-intersecting surfaces [see Figs. 15(a) and 15
(b)1.

(2) Singular surfaces, formed when overlapping
plaquettes are joined [see Fig. 15(c) and Fig. 16].

In Fi.g. 15 we represent the integrated links by
dotted lines and the boundary of the resulting sur-
face by a heavy line which coincides with the Wil-
son loop. The surface of Fig. 15(a) is formed by
the 12 outer faces of the cubes. The surface of
Fig. 15(b) is formed by the six faces of the cube
plus the two faces on the Wilson loop, combined
together into a single surface self-intersecting
along the indicated link. In Fig. 15(c) the dotted
plaquette corresponds to a folded surface form-
ing a pocket stitched on the outside whose open
edges extend by combining with the two plaquettes
bounded by the W'ilson loop. This surface arises
as graphically described in Fig. 16. It is easy
to see that all normal surface areas appear in the

FIG. 16. (a) Loops of (p2 each) which generate Fig. 15
(c) by integrating the common links. (b) Plaquettes in-
volved in Figs. 15(c) and 16(a).

sum of Eq. (3.39). On the other hand, we find that
a different set of singular surface areas appear
when the integrations are performed in different
order I.ndeed, from Fig. 16(b) we see that if link
2 is integrated before link 1, the configuration of
Fig. 16(a) never appears and the singular surface
of Fig. 15(c) does not get generated.

The apparent ambiguity with regard tp singular
surfaces is resolved with a reanalysis of our ap-
proximation as described below. The net result
is that for consistency within our approximation we
must drop completely all singular surfaces in the
sum of Eq. (3.39). This conclusion is arrived at
as follows: We remember that our approximation
for small P was based on a single link integral
rather than on a global expansion over the whole
lattice. To understand the approximation further
let us first introduce a different weight P~ for
each distinct plaquette in the action. At the end
of any calculation we will take the limit P~ - P for
all plaquettes P. Now return to our integral in Eq.
(3.6) and the approximation as given in Eq. (3.18).
We see that the P' in the exponent should now be
replaced by P, P,. which is bilinear in the weights
of each pair of plaquettes (i,j ) that are combined.
The terms that are dropped in the exPonent in our
approximation, by fixing P~ to a small value, are
higher order in each P~ as in Eqs. (3.22) and

(3.23). Thus, for consistency, when we calculate
the weights of larger loops, any higher order
terms in any single p~ that is generated in the
course of the calculation must be dropped. It can
easily be seen that the weights of all normal sur-
faces are multilinear in the distinct P~ that con-
tribute to it, while singular surfaces have weights
which are at least quadratic or higher order in
some P~. Since higher orders in each P~ were
dropped to begin with, singular surfaces must also
be dropped for consistency. This analysis results
in an algorithm if we insist in working with a
single P over the entire lattice: After n neighbo~-
zng integrations the weight of any resulting loop
is a polynominal. Terms in this polynomial of
order P""and higher should be dropped. It turns
out that singular surfaces are associated with
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Nil son
loop

(a)

surfaces are included.
%'e therefore emphasize the following points:
(1) Only simply connected surfaces appear in

Eq. (3.39),
(2) All normal surfaces arise.
(3) Each surface appears only once.

F. Suppression of handles and higher topologies

FIG. 17. Formation of a handle.

powers of p which are not allowed by the algorithm
at any stage of the integration. On the contrary
all normal nonintersecting and self-intersecting

We must first envision how our integrations can
lead to a surface with a handle. The two loops of
Fig. 17(a) corresponding to surfaces S, and S, can
be combined by integrating along the line C. This
yields the loop of Fig. 17(b) which clearly is as-
sociated with the doubly connected surface of a
handle. The easiest way in which to see the 1/¹
suppression of such a surface is to imagine a
worM in which this is the only surface we can
form. Then, referring to the labeling of the var-
ious branches of the loop in Fig. 17(b), the Wilson
loop integral takes the form

jdW dWT, dUdVe px[p N(TrW]V WU VU+H. c.] —TrWW„
Tr(W) =

j dW, dW, dUdV exp[P N Tr(W, Vt W,UtVU+H. c.)] (3.40)

where P is the combined weight of surfaces S, and S,. This integral can be easily done by transforming
lV, and S~:

lV2 = 9'2U

O' = UW1 1

(3.41)

which leaves the measure and 'Trg,, invariant. After performing the novP trivial U integration, we once
again transform to

W" =W'V
2 2

8" =W'V'l. 1

(3.42)

Then we obtain, for the numerator of Eq. (3.40),

dWdW dVexP[(I NTr(WW ~ H c)]—TrWVWV = f dWdW, exPI[d N Tr(WW, H c )] —Trx, —Trx,

(3.43)

If we transform one last time to W.' =W,W, and
evaluate the W, integral we obtain

dW, exp[() N(TrW, ex.c.)](—T"rW) .

(3.44)

Thus, Eq. (3.40) becomes

g Tr(W)
1

ln dW, exp[ P"N Tr(W, + H.c.)]1 8
2N' 8 (3

(3.45)
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G. Four dimensions

It is clear from the nature of our procedure that
only surfaces will be built, regardless of the num-
ber of dimensions. The number of dimensions
only affects the number of plaquettes meeting at a
given link [2(d —1) for d dimensionsj, and accord-
ing to (3.18) these are always combined in pairs,
regardless of the number of dimensions . Hence
the foregoing results including the discussion of
the 1/N' suppression also holds in four space-
ti me dimensions.

In summary, our final result for a Wilson loop
of arbitrary shape embedded in any dimension
d ) 2 has the form

1 1—(TrÃ) =g exp -A,. —,InNg'(a), (3.46)
i 1

where the sum is over all distinct "normal" sim-
ply connected surfaces bounded by the Wil son loop.
Since we we re able to evaluate the integ ral s only
for small P (i.e. , large g'N), we would not be
justified in taking the continuum limit a -0. How-

ever, it is significant to note that the result is
closely related to the functional integral of a
quantum string theory. The functional integral for
a string theory (ignoring end points) is of the form

where J d'7dc[-g(x(7, o))]'/' is the surface bound-
ed by K If the surface spanned by the string is
latticized in space-time then Eq. (3.47) reduces
just to our result Eq. (3.46) for the Wilson loop.
We note that for an agreement with the string
theory each normal surface must occur only once
in the sum Eq. (3.46). Indeed, we have shown this
to be true for QCD in our limit.

Some discussion of the continuum limit will fol-
low in Sec. IV. For now, if we naively substitute
Eq. (3.47) for (1/N) (TrW) andcombine this result
with that of Sec. II, we obtain an effective theory
for a free meson:

Spff S((quark) + S,(quark) + S(string), (3.48)

Had this been a simply connected surface, no 1/K'
would have been present. One can also show with
some work in the general case, with more surfaces
being generated, that any loop of the type in Fig.
17(b) leads to a factor of 1!N' multiplying the
weight of the corresponding su rface. In addition,
the same argument applies to any number of han-
dles, such that the suppression factor is (1/N')'
for 4 handles. Thus, in the large -N limit these
surfaces are excluded from Eq. (3.39).

where S, and 8, are given in Sec. II. This des-
cribes a quantum theory of a quark and an anti-
quark interacting via a string. ' ' lt certainly
shows confinement in addition to many other string
p rope rti es.

IV. DISCUSSION AND CONCLUSIONS

In the first part of this paper we have presented
a complete model which is closely related to QCD.
It is based on the Yang-Mills action for U(N)
probed by Dirac particle s carrying flavor, color,
spin, and mass and moving on wo rid lines. The
model was motivated by the results established in
two dimensions on QCD and strings, including in-
teractions. Based on the discussion given, our
model is expected to resemble QCD in four dimen-
sions only if the comparison is made in the N -~
limit in the infinite momentum frame. This is
because our model does not allow pair creation-
annihilation and quarks are forced to move on
smooth world lines. We have shown that these
features of the model are natu rally related to a
previously suggested string model" with definite
modification at the end points. If granted that in
the 1/N expansion the zeroth-order approximation
of QCD corresponds to some theory of free
strings, then the interactions to order 1/N could
only eor respond to string-string end -point inter-
action. As emphasized in the text, mainly because
of the interactions at the end points the resulting
string theory is expected to deviate from the stand-
ard dual models and their problems (e.g. , d=26).
This already oe cu rs in the two -dimensional theory
which is known to be fully consistent.

In the second part of the paper we presented an
approximation for N - with g 'N fixed to a large
value for U(N) QCD on the lattice. The approxi-
mation involved an integration on a single link.
The result was such that further integrations were
of the same form, so that by repeated application
of the approximation the entire Feynman path in-
tegral on the 1attic e could be performed. It is im-
portant to keep in mind that this was not a global
expansion in 1/g'N, but rather an approximation
applied to each link separately. The local nature
of this approximation was further cl,arified in
Sec. III E, and any independent method which at-
tempts a comparison with our results should
follow a similiar procedure.

Our method of approximation should be applicable
to many problems, such as hadron-hadron scat-

teringg,

hadron decays, had ronic form factors,
baryons, etc. In this paper we concentrated on the
meson propagator and were led to a calculation of
the Wilson loop. Our result established a firm
connection between strings and QCD in this approx-
imation. This connection was established by noting
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that only simply connected normal areas, both
intersecting and nonintersecting, occurred in the
result. Handles and other topologies were shown
to be suppressed by factors of at least 1/¹. The
fact that each normal distinct area occurred only
once in the sum is a crucial factor in establishing
the correspondence with the areas described by
Nambu's string action. This differs markedly from
Wilson's strong-coupling expansion, in which the
lowest-order contribution to the Wilson loop in-
volves only the smallest area bounded by the loop,
with higher-order corrections including more com-
plicated topologies. Thus, statements that the
strong-coupling expansion is related to a string
theory are not entirely correct. The strong-cou-
pling limit was shown by Wilson to lead to confine-
ment via a l,inear potential, but this falls short of
establishing a connection with strings. Our result
here implies that QCD, by being firmly related to
Nambu strings, is capable of explaining much more
than just linear confinement. This includes such
experimental phenomena as linearly rising tra-
jectories, Regge behavior, and the richness of
hadronic states implied by the Hagedorn tempera-
ture as well as duality.

Since our calculation was performed on a lattice,
the connection with strings was establ. ished only
for a latticized version of the string action. We
are not really justified in taking the continuum
limit since our answer is valid only for large g'N
rather than for all values of g'¹ A proper treat-
ment for all values of g'N is expected to reveal
asymptotic freedom at short distances according
to folklore. Of course, at this point we mould ex-
pect a deviation from the string action. It is in-
teresting to follow the behavior of the coupling
constant as we change the size of the lattice.
Since we have identified the string tension

1/2vo[' = —,in[Kg'(a)],

which is a physical quantity and therefore inde-
pendent of the lattice cutoff a, we can solve for a
rapidly varying coupling constant

Ng'(a) = exp[a'/2m+' ],
which is valid only for large values of Ng'(a)
Hence we see that the behavior of N g '(a) is con-
sistent with what one expects from a confining
theory. This behavior of the coupling constant
shows consistency with a renormalization-group
analysis using our approximation.

We also point out that our method does not ex-
hibit any phase transitions as a function of dimen-
sions. Since. our result is valid for large g'N,
this does not contradict mean field approaches. "

Our approximation method should be applicabl. e

among other things to the analysis of dynamical
chiral-symmetry breaking. However, for this
purpose it is essential that we use fuBy interacting
Dirac fields as opposed to our world-line approach.
This is because, as discussed .in the text, the be-
havior of the quark propagator is the essential
factor in determining the symmetry breaking. An
analysis of this probl. em is underway.
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APPENMX

We want to evaluate the U(N) integral

E (A) =
Jt du(TrAV)"(TrA'fj')"

Similar group integrals for. SU(X), not U(N), were
discussed in Ref. 37. In order to evaluate the inte-
gral we consider the expression

J„(A,.]=f dV[TrA, UTrA, U TrA, U]

x [TrA', U' TrAtfj' . TrA'„U']. (A2)

We note that if we take (A„),'= &,'&]'„(A'„)„'=&'„&,
' »d

sum over k, leaving the remaining 4,. unchanged,
the last factors in each square bracket become

TrA UTrA U UkUtj -6j
thus reducing the integral to a simpler one in-
volving (n —1) factors. That is,

J„(A„,. . . , A„„A„)-jJ„,(A„. . . , A„,). (A4)

%e use this fact in order to evaluate J„as follows:
We first note that because the measure is both
left and right invariant, J„must be U(N) && U(W)
symmetric. Using this invariance property we
write the answer for J„(A,) in terms of all possible
U(N) & U(N) invariants that are multilinear in
A1 p

~ e o ++p A yp ~ ~ e ++'e Next symmetrize the answer
in both sets (A. , ' A,„) and (A.~~

' ' A.t) since J„has
such a permutation symmetry. This expression
ha, s a number of unknown coefficients. In the ans-
wer if we substitute the special forms of A.„,A„
above we obtain a recursion relation through Eq.
(A4) which determines the unknown parameters.
Therefore, by starting from n=-1 we can build the
result for arbitrary. n. Here is how our procedure
works. For n = 1 we write
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)I dU TrA, U TrA', U' = C TrA, A, . (A5)
Eq. (A5) for which we now know tbe answer 5,'.(1/N)
'Tran, A, . The right-hand side gives

Applying. Eq. (A4), the left-hand side reduces to
5i fdU= 5', while the right-band side gives CN5/.
Therefore, we must have C= 1/N. Now we take
s —2'

dU[TrA. ,UTrA, U][TrA~~Ut TrA, U']

= C,[TrA,A', Tr A, A', + Tr A, A', TrA, A', ]

+C,[TrA, A', A, A', + TrA, A', A, A', ]. (A6)

Using again Eq. (A4) the left-hand side reduces to

C,[TrA, At N5,' +.(A, At),'.]+ C,[N(A, A~~),'. + 5,'. TrA, A~] .

By comparing the two sides we learn that

NC, +C, = 1/Ã,

C, +PC, =O.

(A'7)

(A6)

This gives C, = 1/(N' —1) and C, = -1/N(N' —1).
'The process continues in this way. At the end, we
set A,.=A and A~ =A~ for all i to obtain our original
integral. Here we list our explicit answer up to
m=4

E,(A) =—,[NTrAA ],

(2!)2,(TrAA')' Tr(AA')'
N2(N' 1) 2!, 2

(4l)2 ~ (TrAA")', (TrAA~)' Tr(AA )'
F,(A)= .(N. )(„2 4)(N. 9)

(N'- ' 4| 2!
I

Tr(AAt)', 1 Tr(AA)' ' Tr(AA )'
+ (2N2 2) TrAA + '+ 6 —

&

(A9)

The higher values of g can similarly be obtained.
From above we see the general trend which gl, l.ows
us to write the general form of Eq. (3.12) in the
text, 'The explicit coefficients displayed above
allow us to further extract more specific informa-
tion as discussed in the text.

We have tried other approaches to evaluate the
integral

~ 22 Z2g

hf2

U(Z) =

1

(1~ ggt)1/ 2

Zla Z~2' ' 'Z

(A12)

1+Ztg x/2
. (Ais)

f(A) =
J dU exp[Tr(AU+USA~)] (Ala)

1 ~ 1
(1+gtg)~/2 (1 + g'/g)&/&

which have not proven to be as useful as the series
method above. For future reference we explain
them here. Both of the methods below attempt to
parametrize the unitary matrix U. The first is a
coset decomposition that we developed, the second
which is applicable only when A is proportional to
1 is a. parametrization due to Weyl. "

(i) Coset decomposition. For the U„.„group,
, let us identify the subgroups U,~ and U„and de-
compose the (M +N) x (M XN) unitary matrix
U~+„as follows:

'Then the measure takes the form

[dU„.„)=[dU, ][dU„][dU(g)],

where

(A14)

[det(1+ Zg~)]"[det(l + Z'Z)]'
(A 15)

and C» is a normalization constant. We now de-
compose the (M+N) && (M+N) matrix A„,„as fol-
lows:

U„.„=U(z)('" 0),
0 U„

(All)
g+N

-Ct X„
(A16)

where U(Z) is a unitary matrix parametrized by
the MN complex variables Z,~, It is now possible to write
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1I'~ &n- ~
1 gtg ir2

(A17)
The idea is to use this form in order to generate

a recursion relation. We were successful in
simplifying this form further for the special case
of I= 1, N = arbitrary, and both A& and A.„pro-
portional to unity, while B=c~ =0. 'Then Z is just
a row matrix

f(( a1. 0

1
=X

J dx(1 —x)" 'lo(2aMx)
0

=N! (a) "f„(2a). (A24)

'Therefore, we have arrived at a recursion rela-
tion from which we can attempt to calculate f„„
by applying the same formula repeatedly in order
to write the integral only in terms of the Bessel
function I,. 'The resulting integral is still cumber-
some. 'The simplest case is when b = 0, since then
f~(0) =1, so that

Z = (Z„Z„.. . , Z„)

and we obtain

a 0 ~ ~ 0

0 b

(A18)

d'"Z a
+ ZgY N+j- 1 1+Zgg &./z

'The normalization is chosen so that f„„(0)=1.
'This exact result agrees with our series method
as described in the text, Eq. (3.20).

(ii) Weyl's Paxametrization when A =axl. In this
case we can diagonalize U:

b«r ((( sic)'i'). (A19l
U=T (A25)

b

(I + ZtZ)1/2 ~ (A20)

Note that 1/(1+ ZZt)'(' is a scalar while 1/
(1+ZZ )'(' is a matrix. Applying a U(N) rotation, Z
can be put into the form Z~(~Z ~, 0, 0 0) so that

r
b

(1+ZZ~)'i"
'The integrand is independent from T. Writing the
measure as dU= dTd!i, ((t), we can evaluate the
integral over T. The measure d(i. ((t~) was given by
Weyl as

d! (4)=
2

'' '
2

"~(4)&(4), (A26)

0 b

Now both f, and f„depend only on the magnitude

Z Z++Z 8++ s a s +Z Z+ 1
-1

(A21)

'The angular integrations can be performed, giving
the form

a 0 '' 0

where &((ti) is a determinant. The most conve-
nient form for our purpose is

g(y) e e(c(( -(()1
v'N t

(A27)

0 b

dx, (1 —x,)"-'&,(as x )

Note that for A. =a we have

i( Yr(AU+AU ) ca8((((cosa&+cocos+ . +cosa(((& (A28)
rID 0 0

b
0 b

xf (A22)

The integrals can be evaluated immediately:

(age r I
1 2

Now we note that f, is just the modified Bessel
function

where we have used the integral representation for
the modified Bessel functions

(' 2r d(ti
f~ (a~x) = t exp[a& x (e'c + e ')]-

~o 27t

f 2~ dab
(2aPN) !I s esaB(( coscaisc

Jo 2m
(A30)

= fc(2av x ) . (A23) Thus, we have the exact answer
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In the text, using the series method, we arrived
at the asymptotic form of this integral as W-~:

f„(aPN) = (A31)
f«(aPN)

g~ eO

I~, I~2 ' 'Ip

where the Bessel functions have argument 2aPN.

for aP = small. It is difficult to take the li mit N-~
directly of this determinant, both because the
determinant grows and because the arguments as
well as the indices of the Bessel functions go to
infinity at different rates.
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