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I study the problem of satisfying the source-charge constraints in operator-symmetrized quantum

chromodynamics (QCD) with static sources. I show that the color-charge algebras generated by the QCD
outer product P"(u, u) = (t/2)f" c(u uc + vcus) can always be put in the form P"(te„tcs) = iC,„, t„cwith
structure constants C,b, which are totally antisymmetric, but which do not in general satisfy the Jacobi
identity. However, total antisymmetry of the C s is enough for the corresponding overlying classical field

equations to be derivable from a Lagrangian and to possess a conserved stress-energy tensor, involving a
finite number of undetermined constants of integration. I postulate conditions for determining the

integration constants when the sources are in a color-singlet state, and use them to fix the overlying

classical theory in the qq and the qqq (qqq) cases.

I return in this note to the problem of integrating
the source-charge constraint equation in quantum
chromodynamics (QCD) with static sources, using
a modified form of the algebraic approach proposed
in earlier papers. "As the starting point for the
analysis, I take the following operator-symme-
trized form of the QCD field equations,

A ~ A 8 A ~ Af„„= „b„- „b„-igP (b„, b„},Bx BX

fAs v fAP tl+igPA(b f sv) +gAP8

The static-quark limit of QCD is obtained by letting
the quark mass become infinite, so that the quark
and antiquark sources are at rest in the observer's
frame and can be arbitrarily well localized. Only
the quark color degrees of freedom, and the gluon
fields, remain as dynamical variables in this lim-
it. In the sector containing N, quark and N—, anti-
quark sources, the static limit is described by
making the replacements

J,"(x)-0,
N

8,"(x) QQt" 5'(x -x, ), N=Ns+Nq,

P"(u v)= —f""(u v +v'u )
g

J'""=q y" —,'X"q,

Q,
"= —,'X," for a quark source at x, ,

Q", = --, A. ,
*" for an antiquark source at x, ,

[q"„q'„]=O, I ~m.

(4)

with A.", A = 1, .. . , n' —1 the usual SU(n) matrices.
The gluon operator symmetrization used in Eq. (1)
is suggested by the first-order formalism for the
quantization of QCD, ' in which the radiation (or
Coulomb) gauge can be imposed without the intro-
duction of ghost fields. (Specifying a gluon oper-
ator-ordering prescription is essential, since as
part of the canonical quantization procedure one
uses the constraint equation to express $p as a
nonlocal functional of canonical coordinates and

momenta, and thus 5,"does not commute with Q&

and f,"& for spacelike separations. '} In effect, the
operator-ordering prescription of Eq. (1) is a post-
ulate on which the detailed form of the subsequent
analysis depends. '

From the quark canonical commutation rela-
tions, one finds that the quark source density J,"
=q~-', X"q satisfies the equal-time color algebra

[Z,"(x, t), Zne(y, t)]=i6 (xs-y)f" nJ',o(x, t). (3)

The right-hand side of Eq. (4) is an operator acting
on the finite-dimensional direct product of the
color Hilbert spaces for the N source particles,
and clearly gives a representation of the equal-
time color algebra of Eq. (3). Equations (1) and
(4) constitute the static-source model which I
analyze below.

To study the structure of the gluon field equa-
tions in the static-source limit, it is necessary
to first determine the properties of the quark col-
or-charge algebra 8N ~, defined as the minimal

2
Nq, Nq &

set of (n —1)-piet operators tv containing N,
quark charges, N-, antiquark charges, and closed
under composition with the outer product zo

A

=P"(u, v) defined in Eq. (1). It is easily shown'
that 8„„is a finite-dimensional algebra. Let

~ A ~us choose a basis to, , a =1, . . . , dim(8~ „)span-
Q'a

ning 8„„,with the properties
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~A ~A)'
a a

\

A
A ~l/2 Qa
a [T (

A tA)] 1/2 (8)

[The index a in the denominator of Eq. (8) is not
summed. ] Let us now define structure constants
C„, for the color-charge algebra by writing

p"(w„w„)=iC„,w,";
since I' is antisymmetric in its arguments, we
evidently have

C abc Cba c

The tensor C„, is also invariant under cyclic
permutation of its indices, a fact which follows
immediately on using Eqs. (1), (5), and (9) to
write

C,„.=N 'Tr[w" 'f" (ws-w +w w )]
=N 'Tr [wc 'fc"s(w "w~-+wow")] =C

Tr(w,"w~") =— tr, (w,"w~) =N(n, N, , N, )&,—»
with N&0 a convenient overall normalization con-
stant. That such a choice is possible follows from
the fact that for an arbitrary Hermitian basis e,"
spanning 8» N, one hasNq, »q&

Tr(,",")=M„, (6)

with M a real, symmetric matrix. Letting O, ~ be
the real, orthogonal matrix which diagonalizes M,
we can define a suitable basis se, by the transfor-
mations

uA=Oa aQ

The effective charges Q;,«and the amplitudes b'„
and f'„„are c numbers, while all terms lying out-
side the quark color-charge algebra (including all
nontrivial operator structure in the gluon Hilbert
space) have been denoted by . . To proceed fur-
ther, I make the tree approximation of dropping
the terms indicated by in Eq. (13). The oper-
ator equations of Eqs. (1) and (4) can then be re-
written directly as a system of overlying classi-
cal equations

a ~ a ~ a cf„= v b„— t bu+gCaocbpbu~9x Qx

D fcflv f aalu gc bb fcftl gJ'Qfl (14)
9

N

P J~o g qo 63(x

These equations have the same structure as those
of a classical Yang-Mills theory (with fixed point-
singularity sources), except for the fact that the
structure constants C, ~, , while totally antisym-
metric, do not satisfy the Jacobi identity. I call
such a theory a classical semigauge theory.

Let us now study the properties of the semigauge
system of Eq. (14). Setting g =0 in the field equa-
tion gives the familiar charge constraint equation

faoi Jaa

The condition for Eq. (15) to be preserved in time
is most easily obtained in the form

D ~D ~f'" "=
2 (D ~D ~ - D U D ~)f '""=gD ~

J'~ . (16)

Taken together, Eqs. (10) and (11) imply that C, „,
is totally antisymmetric in its indices. We will
see later on that C,„,does not in general satisfy
the Jacobi identity, and so it is useful to introduce
the further tensor

+abed Cabe ecd+ Cade ebc+ aceCed b (12)

QA ~qa wA JA ~ JawA Pl ~ leff a & f ~ j j
»

J', = Qq;,«6'(x-x, ).

The total antisymmetry of C„, implies that D„,d
is totally antisymmetric in all four indices. '

We can now explicitly display the action of the
various operators in our problem on the quark
color Hilbert space by decomposing them on the
basis ze.A,

bA /bowl~. . . fA Qf& wk~. . .

Because the C 's do not satisfy the Jacobi identity,
the left-hand side of Eq. (16) is not identically
zero. By use of the identity

Eq. (16) may be rewritten as
1
~De~cub'p b'vf""'

= —Q C, „,b', (x, ) Q; «5'(x —x,). (18)

D, ~,g b„b'„f "'=0,

C„,b, (x, ) Q;,«=0, 1=1, . . . , N.

(18a)

(18b)

Equation (18) explicitly involves b', , and since the

Since the left-hand side of Eq. (18) is a continuous
function of x, the left- and right-hand sides must
vanish separately, yielding the additional equa-
tions of constraint'
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field equations do not determine 9, b', , no further
constraint equations are obtained from the condi-
tion that Eq. (18) be preserved in time. From the
antisymmetry of C„,, we see that the identity

-„;(y'g') =(D.y') g'+y'(D. g ')

remains valid in the semigauge case. Hence using

r =1, . . . , R in the classical Lagrangian and stress-
energy tensor,

g P g(r&

8
a&r)a (ar)aV v g(r &a&(f (r )a)

(27)
5f'„,=D v5b'V-DV5f&;

and defining a Lagrangian density g by

g K( ya yaflv gaJlf a)

we find that'

(20)

(21)

R
Tvgiuon g T&Lg&uon&r&

( y(r&av&y(r)a+ 5&ty(r &ya(r) XUa)

0=6 d'xS

=K d x — '"'D &b~ —gJ'"5b~

=Z d'x D, '~"-gS'~ 5b'„, (22)

yielding the equation of motion given in Eq. (14).
Thus a classical semigauge theory is derivable
from a local Lagrangian density. Defining the
symmetrized gluon stress-energy tensor by

In order for the above formalism to give a
uniquely defined classical stress-energy tensor,
it is necessary to determine the constants of in-
tegration K&„& which appea, r in Eq. (2V). These
constants carry information, which up to this point
has not figured in the analysis, about the color
state of the system of N source particles. For
quark and antiquark sources in a color-singlet
state ~0), defined by"

gq", )0) =o, (28)
g= 1

Tvgluon K( yavkya + 5&t ya yaga)

we find

(23} I postulate the following rules for determining (or
partially determining) the constants K&„&.

(i) The constants K&„& should obey the sum rule

with

Tvgl on K( D yaV&ya yap& D ya

D ya yaXa D ya yaka

+ &qa yaka)

n2 1
qAq A

R
= QK,„,q&"&;q&")„', e =1, . . . , X. (29)

qv~a= vf &a+Day v), + &f'av = g'Dago-gf&'vf&'A.

(25)

The first term of Eq. (24) can be evaluated by us-
ing Eq. (14), the sum of the second, third, and
fourth terms vanishes, while the last term vanishes
by virtue of the constraints of Eq. (18a). Hence the
gluon stress-energy tensor satisfies a conservation
law of the usual form,

9
TV g(non Kgf a Jak

v vX

The constant K in Eq. (26) is effectively an unde-
termined constant of integration. If the color-
charge algebra of Eq. (9}diagonalizes into R dis-
joint subalgebras, then the classical analysis of
Eqs. (15)-(26) can be carried out independently
for each subalgebra, , leading to the introduction
of R non-negative constants of integration'&„&,

This rule is motivated by the expectation thai a
classical scheme for calculating static quark
forces should reproduce the leading Coulombic
quark self-energy divergence, as calculated by the
usual perturbation theory rules.

(ii) For any proper diagonal subalgebra 8„")„
which annihilates the color-singlet state [i.e.,
g&&&, &, ~

0) =0 for all a spanmng the subalgebra],
choose K& &

0 This rule" is motivated by the
expectation that such subalgebras should not be
excited when the quarks are in a color-singlet
state, and hence should make a vanishing con-
tribution to the classical stress-energy tensor.

I close by applying the formalism developed
above, and the rules for restricting the constants
of i& tegration, to the qq and qqq(qqq) systems.

The color charge algebra 8, , has been computed
by Giles and McLerran. ' lt is spanned by a basis
zv", , a=1, . . . , 4, with
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A 1~A (QA+QA)

f&f, =-—d Q, Q —, + —a(Q, -Q-, ),A ABC B C A A

~A fABCQBQC2
3 n e e ~

0, n=2

(30)

and thus by Eq. (29) we get

g2 1 A(2 l 2 pg2

K(l) — — —+1
2n 4 n n'+4' (37)

completing the determination of the integration
constants. This uniquely- fixes the overlying clas-
sical theory, giving the SU(2) Yang-Mills form
assumed in Ref. 1 as the basis for a nonperturba-
tive discussion of the static qq potential.

B. ew (see)

n&2.
The basis of Eq. (30) has been nornalized as in

Eq. (5), with N(n, 1, 1) = (n' -1)/n, that is,

A A.Tr(f&f AbUbA) = tr, tr-, (w,Af&fbA) =

and satisfies the outer-product algebra

P(ZU )afCb) = bC abc&Ca =$ a f~afoe,

P(f{1,, ni4) =0, a, b, c =1, 2, 3.
Evidently 8',",=-[a{1»,) and 8,'",=—(&&14] are
proper diagonal subalgebras of the algebra 8, „
so let us relabel the bases as

ZU(1) a a, @=1)2~ 3 ~

K(2) =%4 a

(33)

(Q
A + Q~A) I 0 ) 0

Using Eq. (34) to eliminate Q-,
" we get

4)
N'

4 1 Aac B c
(„2 4)ff. d Q, Q. I 0)

=0

(34)

(35)

and so by rule (ii) above we set K&» =0. Although
f{1»&, IO)= 0, the other two elements of the (1) sub-

algebra do not annihilate
I 0), and so we expect

IC&»WO. To fixit'&», we apply rule (i) above. The
effective charges are

&1&a n '&

Q, ff
i

a
(l)a 8

4-, .„,-1,0},

The fact that 8, , contains no proper diagonal sub-
algebra of dimension dim(8,'"', ) ~4 guarantees that
it is in fact a Lie algebra, since the totally anti-
symmetric tensor D„,„must vanish on subalgebras
of dimension 1, 2, or 3. The classical Lagrangian
and stress-energy tensor of Eq. (2V) involve two
undetermined constants of integration K(» and K(».
%e wish to determine these constants for a qq pair
in the color-singlet state IO), defined by

Added notes.
1. In the discussion in the text, I have restricted

the quark and antiquark source charge matrices to
be constants in time. The formalism may be ex-
tended to include ti, me development of the color
sources (arising from dynamics of the quark field)
as follows: At time t=0 assume the color sources
to have the canonical form of Eq. (4), and let the
time-independent basis zv,"be the one constructed,
as in the text, from the t=0 color sources. At all
later times the field operators can be decomposed
on the fixed basis fc,"as in Eq. (13), but now the
effective charges Q;,«will be time dependent.
Hence Eq. (18) is modified to read

S
l c upv ~ & a
&AD abed b&1buf ""=~ s {1 Qfeffl-1 X

—gC...b', (x,)Q; „5'(x x,).

(A1)

By continuity this still implies Eq. (18a), but now
Eq. (18b) becomes

8 , Q,'.„=gc„,b', (x, ) Q;„„ (A2)

which describes the time development of the color

The color algebra 8, , [which for the outer pro-
duct of Eq. (1) is isomorphic to 8»] has been
computed by Lee." He finds an 18-dimensional
algebra, - consisting of an irreducible 16-dimen-
sional proper diagonal subalgebra 83 0 and two
1-dimensional proper diagonal subalgebras 83 p".
The subalgebra 8,'"0 has a nonvanishing tensor
D„,d, and so is not a Lie algebra. For n =3 [that
is, when the color group is SU(3)] both 1-dimen-
sional subalgebras annihilate the color-singlet
state. Hence application of rules (i) and (ii) above
determines the constants K(l) (2) (3) as follows:

ff —4
[Q{1)a Q& 1)a] -1

(38)
K(2) -K(3) -0,

again uniquely fixing the overlying classical theory.
Further details of the structure of the algebra 83 p

are given in Ref. 12.
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sources. At times t &0 the time-evolved source
charge matrices will not, in general, obey the
canonical conditions

[q,",q'. ]=0, f~m,

Taking the divergence of Eq. (A4c) and using Eqs.
(A4a), (A4b) gives, as expected, the time evolu
tion equation of Eq. (A2). Solving Eq. (A4b)
for fi; (assuming b; vanishes at infinity) gives

&ABC )e"@B--tr,(eA@B)=
li

f quark
for

l

I antiquark~
ABC f (dABC +ffABC)

(AS)

~ eff +0
4fflx-xil '

a~ (& 3

4fflx -x, l'

(A5a)

(A5b)

Substituting Eq. (A5), together with Eq. (A2), into
the left-hand side of Eq. (A4c) gives

ao f ~a8
ex'

8 f aoi p25a ga
Bx

(A4a)

Specifically, calculations by Lee' show that in the
qq case the initial charges Q,"(0),QA(0) are the only
pair of operators in the color algebra Qy y which
obey the canonical conditions of Eq. (A3). His re-
sults show, in the qq sector, that if one wishes to
maintain a strict canonical charge structure at all
times, the static source constraint of Eq. (18b)
must be imposed. The same statement is probably
true in other sectors as well. However, I believe
it is likely that for a correct quantization proced-
ure in radiation-gauge QCD, one need only have a
strict canonical charge structure at one time (e.g.,
t=0) along the system world line.

2. 'An important aspect of the discussion of the
text is that not only are boA and f,", algebra-valued,
as in the usual radiation-gauge canonical treat-
ment, ' but the spatial part of the gauge potential
b,"- is algebra-valued as mell. The following simple
argument shows that this unconventional feature
is necessary in the fixed-source model, when
truncated down to the finite Hilbert space spanned
by the quark color-charge algebra. Suppose that

is not algebra-valued; then the overlying
components fi,'. vanish identically, and Eqs. (14)
simplify to read

b aoi ~ (~ +l)
gCaoe&of' =~ ~ i- -

l2O'F ~X -X&

g C aha @teff(+0) C eff (+0) (AeI)
4fflx -x„l

The expressions in Eq. (A6) and Eq. (AV) differ by
a nonvanishing divergence-free vector unless

C ~a Q„„f(xo)Qaf „f(xo) = 0 for all l, n, (A8)

a condition which is not satisfied by the effective
charges [see, for instance, Eq. (36)]. Hence the
conventional canonical assumption that b",. is not
algebra-. valued is inconsistent with the equations
of motion of the truncated fixed- source model. This
conclusion is independent of assumptions about oper-
ator ordering, since when 5",. is not algebra-valued,
the ordering prescription of Eq. (1) used in the
text agrees with the alternative ordering prescrip-
tion described in Ref. 5.
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respect to the factors b", b" appearing inf». In
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P (Q v) =—'~f (Q v +v u )

and by a second binary product

QA (Q, V)= —~ fABCfCDE (QBV DQE + QB QE v D+ vD QBQE

+ QEuBVD+ v DQEQB+ QEv DQB)

—~ ('Q ~(Q V)) &fABCf CDE(V DQBQE+ QEQBV D)
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C&~ and D&~ obey the identity

sf ftuv

yermutat ions

(."::)
+1 even permutations

E'p = —1 odd permutations .
Note that Eq. (18b) is equivalent to covariant source
current conservation D J ~= 0, and so we see that
even in the semigauge case (with point sources) the
conservation equation is a consequence of the field
equations, and does not have to be introduced as an
independent postulate. I wish to thank S-C. Lee for
discussions which he1ped to clarify the structure of
the constraint equations.

In carrying out the variation of Eq. (22), I have assumed
J ~ to be functionally independent of b~. This assump-
tion is consistent with the canonical expression for J ~

given in Eq. (2), in which only quark fields appear.
In the tree approximation of dropping the terms ' ' ' in
Eq. (13), the quantum structure of the theory is re-
duced to a finite-dimensional quark color Hilbert
space. The color-singlet state must be invariant
under global color rotations in this space, and hence
is annihilated by the quark contribution E „~z to the
color spin,

Fgu~~ I 0) —0 ~au~~ — @s ~

However, the total color spin operator FA contains
gluon as well as quark contributions,

@here
atce

Fglum =

and so an additional. argument is required to show that
FA ( 0) =0 for the qq and qqq systems of physical
interest. In. the qq case, the analysis of the overlying
classical equations given in Ref. 1 shows that

d&gjf aoj 0 ~FA FA
galere
atao

and so in the tree approximation the color spin opera-
tor E vanishes identically. In the qqq case, sym-
metry of the overlying algebra in the variables of the
three quarks, and the fact that 8& o ( 0) is spanned by
(Q, , Q, Q ) ) 0), implie s that

Hence in this case the color spin operator FA does not
vanish identically, but nonetheless still annihilates the
color-singlet state. The picture that emerges is that
for static qq and qqq systems in the color-singlet
state, both the quark color spin and the color spin of
the surrounding gluon cloud are separately zero, and
couple trivially to give a state of zero total color spin.
This is consistent with the usual phenomenology of the
nonrelativistic quark model.

~~An alternative to rule (ii) would be to postulate that for
stable states of physical interest, the constants E&„&
are fixed by minimization of the free-energy functional
& of Ref. 1, subject to the sum rule of Eq. (29) and
the positivity conditions

E«) ~ 0, x= 1, . . ., R.

If, as postulated in Ref. 1, confinement is associated
with the nonlinear sectors of the overlying algebra,
the minimum of 5 is attained by maximizing the con-
tribution of these sectors, which requires setting
E&

&

= 0 for any Abelian subalgebra 8~~~. Since in the

qq and qqq cases the Abelian subalgebras are the only
ones which annihilate the color-singlet state, this" alternative rule implies the same values for the con-
stants E«& as are obtained from rule (ii) of the text.

~~S-C. Lee, Phys. Rev. D (to be published).


