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Consequences of bootstrap with several input Regge trajectories are investigated. We find that in a general
(without the duality-diagrams constraints) treatment of bootstrap, consistency requires the intercept of the
output Pomeron pole in the one-dimensional case to be larger than one: a~(0) & 1, a situation reminiscent of
the one in Reggeon field theory. Symmetry breakings of the Pomeron couplings are discussed. These
couplings coincide with those of the f-dominated Pomeron model of Carlitz, Green, and Zee (CGZ). The
case when in the unitarity loops all possible trajectories are exchanged is also considered. Predictions of the
dual unitary model for the slopes of differential cross sections for diffractive scattering are made which differ
from those of the CGZ model. A comparison with the experimentally available data is performed.

I. INTRODUCTION

Considerable interest has been devoted recently
to a dual unitary program (dual unitarization) ini-
tiated originally by Veneziano' and Lee, ' aiming at
the construction of the topological Pomeron with
the intercept n~ =1 and self-consistent Regge-pole
generation in the absorptive part of 2-2-body scat-
tering amplitudes, using unitarity and the quark-
topology structure of the multi-Regge amplitudes.
Many of the subsequent investigations along this
line have proved that this program provides. rather
encouraging results, thus reproducing the basic
features of high-energy scattering such as calcula-
tions of Pomeron effects, the Okubo-Zweig-Iizuka
rule and its violation, and exotic exchanges, the
breaking of exchange degeneracy both for meson
and baryon trajectories. ' However, in the conven-
tional dual unitary approach, one encounters with
a certain difficulty the so-called f catastrophe'
which means that the f trajectory is not generated
in the vacuum state since it is exactly canceled
with the secondary Pomeron trajectory.

In the present paper we study the general case of
the dual unitary model in which several input Regge
trajectories are present. The treatment of several
trajectories as input is a realistic case which is
encountered in nature. We point out that a formal
treatment of the model in a one-dimensional case
(no t dependence) together with the imposed boot-
strap on the output poles, generated out of three
input Regge trajectories, yields a Pomeron with
the intercept e„&1. This result could be con-
sidered either as a certain difficulty of the model
violating the Froissart bound or, alternatively,
the &1 intercept could be attributed to the bare
Pomeron —a situation reminiscent of the Reggeon
field theory, where at superasymptotic energies

absorption is supposed to bring it down to unity.
Also we show that one cannot generate Pomeron
self-consistently out of two input Regge trajector-
ies if one requires the intercept of the Pomeron
e~ to be equal to 1. In other words, one again re-
covers n„&1 also for the case of two input trajec-
tories.

We have considered the case of several input
trajectories by introducing sets of coupled integral
equations and studying their Mellin transforms.
With this technique we derive the SU4-broken cou-
plings of the Pomeron to external particles (Reg-
geons) from where the ratios of different cross
sections follow at high energies. We distinguish
two different cases; the approximate case (a) and
the exact case (b). In the approximate case (a),
which could be called the "leading-trajectories ap-
proximation, " we put in the loops of the unitarity
sum only the (one) highest-lying Regge trajectory
which is allowed by a duality diagram. In the ex-
act case (b), we allow all the Regge trajectories
which are permitted by duality diagrams to be ex-
changed in the unitarity sum.

We further derive the predictions of the dual uni-
tary scheme for 2b(s), the slope of the differential
cross section for the diffractive VN scattering de-
fined as

b(s) = ,'(8 jstlnd(r/dt)-,

We discover that the predictions of'the dual unitary
model for these slopes are different from those of
the f-dominated Pomeron of Carlitz, Green, and
Zee (CGZ). ' We give these results and compare
them with those derived by CGZ in the f-dominated
model for the Pomeron. Comparison with the ex-
perimentally available data is performed.

In Sec. II we introduce the integral-equation tech-
nique as an illustration for the case of one Regge
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II. DUAL UNITARY MODEL WITH ONLY ONE

TRAJECTORY AS INPUT

A. The Reggeon sector

We take the dual unitary approach" and use a
multiperipheral production amplitude A, „as an
input to the unitarity equation

ImA, , =+A, „A,*
n

(2.1)

One assumes that the production processes 2 n
are described by the nondiffractive multi-Regge
diagrams. Thus, the absorptive part for a multi-
peripheral (particle, cluster) production model is
represented graphically as

/b Xb Jb

g1

~ ~ ~

1

bg (2.2}

where 5 denotes the target and 1 denotes a particle
on the Regge trajectory with intercept n„ the
horizontal lines are narrow resonances (clusters),
and a phase e '~ is associated with every ex-
changed (vertical) line.

In the input, planar (uncrossed) quark diagrams
imply the exchanged objects (i.e., the vertical
lines) to be exchange-degenerate Regge trajector-
ies' (&d p f-A„K*-K**,-Q--f', etc.).

The unitarity equation (2.1}together with the
summation of the multiperipheral ladders in (2.2)
can be schematically written as the iterative solu-
tion of the integral equation

trajectory and bootstrap both Regge and Pomeron
sectors, recovering the known result n„=1. We
illustrate the disappearance of the f-trajectory
'(f catastrophe) and also derive the equal-spacing
rules for Regge intercepts.

In Sec. III we consider the ca'se of two and three
input trajectories. We derive bootstrap equations
for both Reggeon and Pomeron sectors and obtain
the result of the Pomeron intercept being neces-
sarily larger than one.

Section IV deals with a brief derivation of SU4-
broken couplings of the Pomeron and its compari-
son with the f-dominated model of CGZ for the
Pomeron' which are further used in Sec. V.

Finally in Sec. V we derive the predictions of the
model for the slope of the differential cross sec-
tion for the diffractive scattering and they are dis-
tinct from those of the f-dominated Pomeron model.

where R denotes the amplitude with only uncrossed
Regge exchanges, corresponding to the resonant
part of the amplitude. The integral equation (2.8)
simplifies if we perform the Mellin transform of
the two-body scattering amplitude A(s, f )

A(j, t)=f dss' 'Xls, s),
0

and is reduced to the simple algebraic equation

A»(2 } ~1b +g11 ' Alb(2 }Inc,
(2.4)

where )8» and g» denote the coupling constants of
the corresponding vertex parts and

nc, (t) =2o.',"(f) —1. (2.5}

We calculate the 2 2 forward amplitude (&=0) and
take into account the t dependence of the input 2 n
amplitudes by using t as an effective value for all t
after performingthephase-space integrals. The in-
put Reggeon tM,

'" in Eq. (2.5) is assumed tobe the ex-
change-degenerate vector and tensor trajectory.
The solution of (2.4) is

(2 8)

The position of the output pole is determined as
the zero of the denominator in (2.6) at

t))out(f —0) -~ —2o)iu(jI) 1 ++ (2.7)

We assume further that t is small and set it equal
to zero (which is an exact statement for the one-
dimensional case) everywhere:

o.gt(0) = 2o.j(0) —1+@»'.
I

Requiring the bootstrap condition o.~"'=a~ =—e, one
obtains from Eq. (2.8)

(2.8)

gll ~
2 (2.8)

The Pomeron is generated as the shadow of non-
diffractive particle production processes. The
topological, Pomeron is the sum of all nonplanar
duality diagrams in the s-channel unitarity sum
which is expressed as the sum of all the diagrams in
which each diagram has at least one twisted prop-
agator. "The integral equation for the Pomeron
amplitude is represented in terms of dual unitary
diagrams such as

Equation (2.9) implies g»' —- —, , if combined with
the phenomenological value for the meson-trajec-
tory intercept nz &(0)= —,'.

B. The Pomeron sector

"L P1
II I

+ " '

1 (2.3)
13): &11 + 1&f I1 (2.10)
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where the crosses on the propagator lines mean
the twist of the diagram for which one has a Reg-
geon propagator 1&s" with the phase 1 (in contrast
with the uncrossed propagator e ""s"with the
phase e ' "). Here, because of the duality struc-
ture of the Pomeron, the inhomogeneous term [like
the first term in the right-hand side of (2.3)] which
would contribute only to the resonant part is ab-
sent. The integral equation (2.10) takes the follow-
ing form, after transformation into angular mo-
mentum space:

&~(f ) =g»e *'"' . g»e""'&z(f )
g —QC1

1 1
+g» g»&p(i )+g» . g»&s(f )

g —QC1 g —QC1

1 . , 1&~(j)+g»' . &,(f )
g —QC1 g —QC1

K
)ip

K
V ~ a~g

K

K

O(y

K

FIG. 1. Diagrammatic derivation of Eq. (2.19).

which gives

Pomeron singularity, ' thus causing the so-called
"fcatastrophe'" (see, however, Ref. 5).

Equations (2.8) and (2.13), after the elimination
of g11 give the known results of Lee' and Venezi-
ano, '

(2.17)

(2.11)
Qout -- 1P (2.18)

Since the phases for untwisted (e ""e"=1) and
for twisted (1&&1=1)are equal, the two first graphs
in (2.10) are equal and therefore give the factor 2
in Eq. (2.11). The solution of (2.11) for A~(j),
after the use of (2.6), is

when the bootstrap condition Q~"t =Q~ is imposed
on the output and input Begge poles.

Equation (2.8) has interesting consequences for
the intercepts of the Regge trajectories. For in-
stance, from KK scattering, which is shown dia-
grammatically in Fig. 1, one gets

2 2/

( )
gll plb 4j cl (2 12)(j —o'cx —2gix )(j —o'ci -g» )

Q y=2Qg 0 —1+g (2.19)

The leading singularity is at

(~Ã")i =~ = »~" —1+2g»'.

There is also a nonleading singularity at

(2.13)

where the internal A. quark in the loops has been
neglected. Equations (2.19) and (2.9) give the
equal-spacing rule for the intercepts (o, denotes
everywhere the intercept)

(&~ )2 2&g 1 +g» (2.14)
Q g+ Q

p
= 2QK (2.20)

However, it exactly cancels the topological f
meson, since at the singularity point given by
(2.14), from Eq. (2.12) one has the residue

which, in the case of linearly rising Regge trajec-
tories, gives the known quark mass formula.

Similarly, considering the DD scattering (Fig. 2),
one gets

g» &m (j cx bp 2
2 bf ~ )

2 gll 1b
QC1 gll

(2.16) Qy =2QDg —1+g (2.21)

which is equal but with an opposite sign to the
residue of Eq. (2.6) given by (j —a'cl) ~lb g» Plb
at the position of the f-meson pole (2.8), i.e., at
oz"'---2og —1+g»'. So, from Eqs. (2.6) and (2.12),
one has for the total scattering amplitude (with
the vacuum number in the t channel)

Qq+Qp =2QDg ~ (2.22)

where again the internal A. and c quarks in the
loops (Fig. 2) have been neglected. Equations
(2.21) and (2.9) give the relation

(2 +cl) Plb
(2 16)

QC 1 gll D
I„c-—6(

One sees that the amplitude (2.16) has only the
Pomeron pole given by (2.13). Therefore, in the
total amplitude (sum of Pomeron and Reggeon
contributions), only the leading Pomeron survives
and the f trajectory is canceled with the nonleading FIG. 2. Diagrammatic derivation of Eq. (2.21).
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2w A2 2~ ~2

(3.1)

where 1 and 2 denote the particles on the Regge
trajectories with intercepts e, and n2. ' In the
Mellin transform space from (3.1) one obtains

A„(j)=p„'+g»' . A"„(j)+g„' . A"„(j),ac, nC2

(3.2)

A2b( j ) ~2b +821 ' Alb( j ) ~822 ' A2b( j )
g —QC1 nC2

where nc, =2n',n-1 (i=1, 2), 12'," is the intercept of
input trajectory, and all the other notations are as
in Sec. II.

The positions of the output poles are determined
from the vanishing of the determinant of (3.2), i.e.,

III. TWO AND THREE INPUT TRAJECTORIES

A. Dual bootstrap with two input trajectories

Reggeon sector. Here we develop the formalism
which was illustrated for the case of one trajec-
tory in the previous section, and generate output
poles from two input Regge trajectories (say, ir

and p}. The closed set of unitarity integral equa-
tions in this case is presented as follows:

R R
b b b b b b b

The output poles for the Pomeron amplitudes AP

are determined from an equation analogous to Eq.
(3.3}, in which y, &

is replaced by 2y, &, i.e., from

j ' (~—ct+2y»+ ~c2+2y22}j

+(~C1+2yl.}(&C2+»2.) -4 y.2' = o ~

+Cl + ™C yll y22

~'1"'~2"'=(~ct+ y»}(&c2+y-) -yl' ~

(3.7)

(3.8)

Equation (3.6) has two solutions, o., and n2R [nR
—= (aR)'"t], which satisfy

1

+1 ~2 +C1 + ™C2 yll y22 &

P

+1 +2 (+Ct + 2y11)(+C2 + 27 22) 4y12'-,

From Eqs. (3.V) and (3.9) one has

ot& + ot& —2(ctout t2 in ) + 2(eton t et in ) + 2

(3.9)

(3.10)

(3.11)

Equation (3.11) is the generalization of the relation
(2.1V). Imposing the bootstrap condition" o,otut = otn

and ct2"'= a,'" one obtains from (3.11)

CXP+eP =2.1 2 (3.12)

However, actually one cannot formulate bootstrap
out of two (e.g. , m and p) Reggeons self-consistent-
ly, unless the intercept of the Pomeron trajectory
is greater than one. We show this, using the re-
lations between the input and output trajectories in
the Reggeon and Pomeron sectors and also the
bootstrap condition. 'Equation (3.$) has two solu-
tions, a'"' and n'"' which satisfy

—(t2C1+ yll + &C2 + 'Y») j
+(&cl+ y»)(~c. + y-) y-'=o- (3.3)

If one demands for one of the Pomerons @Pl =1, then
one has

where y,-; =—g,.
Pomeron sector. The Pomeron sector can be

treated analogously. The dual unitary equations
are graphically'presented as

P = P '+ P + P + P + R + R

P = P + P + P + P + R + P I ~

b b b b b b b b b b b b b b

(3.4)

In the Mellin-transform space one has for (3.4}

~

~

~

1 ."- AP(j) ""A(j)
aC1 g —aC2

AR( j ) + y AR( j )
2 —&cl 2 —c2

(3.5)
AR(j)+ 1 — . " AR

AR(j)+ y22 AR( )
2 —&c2 2 —&c2

Q =A1 2 (3.13)

aR(0) &1. (3.16)

The decoupling result (3.15) contradicts the gener-
al idea of bootstrap out of two trajectories through
the coupled channels, while the conclusion (3.16)
could be regarded either as a certain difficulty of
the model violating the Froissart bound or, alter-
natively, the intercept &1 could be attributed to the
bare Pomeron —a conclusion reminiscent of the sit-
uation in the Reggeon field theory, "where, at

it follows from (3.13) together with the use of Eqs.
(3.9) and (3.10) and the inequality

(+Cl +2yll++C2+2y22) 4(+Cl +2y, l)

x (ixC2 + 2 y22) (3.14)

that y»' ~0. One concludes, therefore, that either

(3.15)

or the intercept of the leading output Pomeron pole
is larger than one:
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ultra-asymptotic energies, absorption is supposed
to bring it down to one. In fact, as discussed fre-
quently iri recent literature, "a Pomeron with an
intercept )1 can even have several appealing phen-
omenological features. "

We note that in this case as well, one encounters
the f catastrophe: For a total amplitude which is
the sum of Pomeron and f Reggeon A,. =AP+A~

(2 = 1, 2), one obtains, by summing up Eqs. (3.2)
and (3.5), the following system of equations:

(
Y 11 A Y12 A p

2
1 2 lbj —0'cl j —&c2

2 A+1 —." A=P2
1 2 2bj —™cl j —Ac2

(3.17)

j3-Wj2+&j-C =0,

where

(3.19)

A =X, +X2+X3,

B=x, x, +x, x, +x, x, —(yl22+ y222+ y2l2), (3.20)

2 2 2
1 2 3 y23 1 y31 2 y12 3 y12 y23 y31

with xl =zcl + yll, X2 = zc2 + y22, and x = Qc3+ y33 ~

The condition [that the two extrema of (4.4) have
opposite signs] under which Eq. (3.19) has three
real roots o,ut (i=1, 2, 3) is

C2+ —,',A(2A' —9B)( ,', B'(A' —4—B)~ (3.21)

By- allowing the couplings y,.&
to be in a certain

domain, one can assume that the condition (3.21)
is indeed fulfilled.

The equation which determines the output singu-
larities of (3.17) coincides with Eq. (3.6). How-
ever, note that Eq. (3.6) gives only the leading
Pomeron singularities, while the solution of Eq.
(3.5) contains the Reggeon singularities (with the
f-quantum number) as well, in the sa,me way as
for the case of one input trajectory where they
appeared previously in Eq. (2.12). But now, in the
total amplitudes given by (3.17), only the two Pom-
eron singularities survive, whose positions are
given by (3.6), and whose nonleading poles have
exactly canceled the corresponding f trajectories
of the Reggeon section.

B. Dual bootstrap with three input trajectories

Reggeon sector. The system of s-channel uni-
tarity integral equations for the case of three in-
put Regge trajectories, denoted by 1, 2, and 3, is
presented in the Mellin transform space as

A~(j) =P '+ P " A (j) (2=1 2 3).
j =1,2, 3 j Cj

(3.18)

The positions of the output Reggeon are obtained
from the vanishing of the determinant of (3.18),

Pornexon sector. The Pomeron bootstrap can be
treated along the same lines as in Sec. IIIA. The
positions of the output poles are determined from .

an equation similar to that of the Reggeon sector
(3.19) in which everywhere y,.&

is replaced by 2y;;,
i.e., from

j' A'j'+8'j -C' =0,

where

A' =x'-+x'+x,',1 2

C xl x2 X3 4y»' xl —4 y31
2-4yl2 x, +16r»y23y31,

(3.22)

3 3

c;+y;; (3.25)

g (nP)'"'= Q (nc, +2Y„.)..
j=l

It follows that

(3.26)

3 3

g (a )'"'= 2 g (o. '. "'- n' ")+3.
j=l i =1

Note that this is the generalization of the results
(2.17) and (3.11) for the one- and two-trajectory
cases. Imposing the bootstrap condition

(3.27)

otout —
otto (i —'1 2 3)

one obtains from (3.27)

(+P)out + (&P)out + (&P)out —3

(3.28)

(3.29)

Of course, in order to check the self-consistency
of the whole scheme, one has to check the self-
consistency of the bootstrap condition (3.28) in the
Reggeon sector separately (also see Ref. 10).

Analogous to the two-trajectory case, the possi-
bility

(+P)out (+P) t(+oPu)out (3.30)

with xl = ac, + 2 y„, x2 = ec2 + 2 y22, and X3 +c3
+2Y». Similar to inequality (3.21), the condition
for (3.22) having three real roots (o.

&

)'"' (i = 1, 2, 3)
is expressed as

CI2 + 2 Al(2AI2 9BI)( l BI2(A 2t4BI') (3 24)

Under the assumption of the validity of (3.21) and
(3.24), the singularity positions of output Reggeons
and Pomerons can be obtained from Eqs. (3.19)
and (3.22), respectively. However, similar to the.
case of bootstrap with two input trajectories, a
formal bootstrap with three input (say tT, p, and e)
Reggeons in a one-dimensional model yields nec-
essarily a Pomeron with intercept larger than one,
o,P(0))1. We illustrate this point in the following
way: One has from Eqs. (3.19) and (3.22)
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&' =&'&2'&'3-4y„'&& -4y &'&2

yg2' 3 —16r&2 y23y3g = -.

(3.32)

(3.33)

Eliminatingx, 'from Eqs. (3.31)and (3.32), one obtains

x", +(x,' —3) x,'+x,"—sx,'+4(y„'+ y„'+ y„') +3 =0.

(s.s4)
h

However, this equation does not have real roots
for x', (and also for x,'), while

xg = Qcg + 2 ygg = 2Q j —1 + 2ggg

must be real since both the input trajectory e'," and
the coupling constant g»' are real. Therefore, one
is led to the conclusion that the case (3.30) is ruled
out and one recovers the result

a~(0)&1, (s.s5)

which may have some bearing upon the situation in

Heggeon field theory" and can even have several
phenomenologically appealing properties" as were
already mentioned.

We have considered the case with target b fixed
[see (3.18)]. Considerations of different targets
do not change our conclusions, since by adding some
of the equations, the primary system of equations
can be brought to a set equivalent to the case with
the target fixed. Further, in deriving (3.35), we
have been allowing the coupling constants y,.; ='g„.'
to have any value, since our derivations were in-
dependent of values y,.; in the equations. However,
this result has been obtained in a one-dimensional
(no t dependence) dual unitary model. Whether the
above-mentioned result could be altered in a model
with the realistic dimension by the proper inclusion
of the t dependences is not known, due to the fact
that in this case one cannot treat the problem an-
alytically. Let us also mention that in the case of
three input trajectories, the f trajectories cancel
out with the nonleading parts of the Pomeron amp-
litudes in the same manner as discussed previous-
ly for the one- and two-trajectory cases.

IV. SU4-BROKEN POMERON COUPLINGS IN DUAL

UNITARY SCHEME AND COMPARISON WITH THE

f-DOMINATED POMERON MODEL OF CGZ6

which satisfies (3.29), is ruled out from the follow-
ing considerations: If (3.30) is the case, then one
has

A' =x', +x'+x' =32 3 (3

x1x +x2 x +x x1 4(Y12 + Y23 + Y31 )

Pomeron couplings4 to external particles, while
in the next section we find the predictions of the
dual unitary model for the slopes of the differen-
tial cross sections for various vector-meson-
nucleon diffractive scatterings. We assume that
SU4 is broken for the Regge trajectories according
to

(yy+ Q2~ Q3~ Q4~ e5 06 P
(4.1)

The graphical notation in (4.3) is obvious —although
we are dealing with amplitudes, but since the Pom-
eron is a factorized pole in the dual unitary model,
we no longer draw the target but only the Pomeron
(wavy) line; also in (4.3) we have dropped, on the
right-hand sides, the diagrams which contain Reg-
geon amplitudes.

Clearly, one has to consider the twisted external
particles as well,

untwisted

twisted

where external quark lines are ordered clockwise,
while in the twisted diagrams, the quark enters in
the reversed order.

Let us call the untwisted external particle amp-
litude A and the twisted one B. Then in the Mellin
transform space Eq. (4.3) reads as

where e,. denotes the intercept of the Regge tra-
jectory i with the notation

I=p, 2=K*, 3=/, 4=a*, 5=E*, 6=) ~ (4.2)

For the moment, we do not impose the symmetry.
(SU~) requirements on the coupling constants y,.;
=g,.&2 and leave them arbitrary. We distinguish
two different cases: (a) &he leading-trajectory
aPProximation, in which we put in the loops of the
unitarity sum only the (one) highest-lying [accord-
ing to (4.1)] Regge trajectory which is allowed by
duality diagram and the exact case (6), where we

allow all the Regge trajectories, which are per-
mitted by duality diagrams, to be exchanged in the
unitarity sum.

Case (a). To begin, as an illustration, we con-
sider 1t1N scattering. For the absorptive part of
QN-diffractive scattering, the dual unitary equa-
tion is presented:

3 3

(4.3)

In this and the next sections we study questions
of more practical interest and apply the formalism
developed in the previous section to obtain the

(x'+a~) .
& -C2

(4 4)

Since the physical particle has both orientations of
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quarks, it is composed of twisted and untwisted
lines and so the physical amplitude A,. is expressed
as A, =2(A; +BP). For p, Q, and g one has AP =A~&

(i = 1, 3, 6), since A,. =B; for i = 1, 3, 6. Thus (4.4)
gives

and for pN scattering

AP +ll AP2
1nc,

and (4.12)

AP +23 AP
—

= 2
2 ~

g —QC2
(4.5) pP yll pP

We impose the bootstrap condition on the output
Pomeron j'"' =nP(0). Multiplying Eq. (4.5) by
(j —np(0)) and taking lim; «&, one obtains

pP Y23 pP
aP —n2

where

1+o,p(0)
2

(4.6)

(4.7)

and the Pomeron residues PP are defined as o.P

= lim; „&»(j —np(0))AP One can proceed for
other external particles in a similar way. Then
for amplitudes A,. and residues P,. we obtain the
following: For K*N scattering

R2=— ,N
=J3. /e', =-'[l,(0)], (4.14)

=P'/0 = (o)
(pN) 3 1 1 (4.16)

Note that Eq. (4.12) implies the relation which co-
incides with (2.19). Equations (4.6)-(4.11) give
the ratios of Pomeron couplings PP, and hence the
total-cross-sections ratios. Ef all coupling con-
stants g, ,' preserve SU4 symmetry, i.e., all possi-
ble quark diagrams have equal weight irrespective
of whether they contain O', A., or e quarks, then

(4.13)

Thus (4.12) can be written as g2 = y„=aP —a, ,
and from (4.6)-(4.11) one gets

A=A+A"2 1
+C2 ~ +Cl

pp (&p &)r /2
(&P —&1)(&P —&1 r»/2)—

for D ~N scattering

(4.8)
R4 =—

R, =—

R6=

, „=u,/J3', =-.'[1,(o)],o(pN

'"*")=P./~. =-:(~ B)
o(pN) 5 1 2 3 6

=p'/p' = (0)
o(pN) 6 1 2

(4.16)

(4.17)

(4.18)

AP ~41 AP + ~44 AP
4 ~ 1 a 4ecl g —ac4

pp (~ p —~.) r„/2
(~p —a,)(~p —12, r../2)—

(4.9)

where

( )
o.p(0) —n, (0)
op(0) —o'3(0) '

( )
nP(0) —a, (0)
mP(0) —o.6(0)

(4.19)

for I'~N scattering

A = " A ' -A
5 ~ 2 ' 4

~ —&C2 ~ —+C4

+ Y54 Y41 pP .

for gN scattering

and

~64 AP2
6. ~ 4

nC4

r~r„/2
(ap —a,)(ap —o.4 r„/2)—

P ~52 +21
4 o.p-o. , n -p, o- y/ 2

(4.10)

(4.11)

From Eqs. (4.14)-(4.18) one obtains the known
quark-model relations

2 o(E'*N) = o (pN) + o (QN),

2 o(D *N) = o (pN) + o (gN),

2o (E*N) = o (QN) + o (gN) .
(4.20)

oz(0) o.p(o) —n, (0)
o.p(0) —o.~.(0) '

~coz(0) &p(0) —a,(0)
np(0) —o.~ (0)

'

(4.21)

Under exchange degeneracy nv(0) = mr(0) [see
paragraph after Eq. (2.2)], i.e., a& ——

o& and oP(0)
=1, which implies np(0) =o.p(0), the relations
(4.14)-(4.18) coincide' with those obtained in the
framework of the f-dominated Pomeron''4 model
of Carlitz, Green, and Zee, 6 in which one has
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It is necessary, however, to emphasize the differ-
ence between the CGZ model and the dual unitariza-
tion scheme. In the f-dominated Pomeron model, '
one has f besides P, but the Pomeron behaves like
an f coupling, while in the dual unitarity scheme,
one has only the Pomeron singularity as discussed
in Sec. II.

Broken SU~ for the couplings. Symmetry break-
ing of the Pomeron couplings comes about through
differences in the intercepts of the Begge trajec-
tories even though all vertices satisfy exact SU,
symmetry. One can introduce4 additional symme-
try-breaking (suppression) factors E, F& for the

q, q;-meson production (F~=Fz=1) which would

take into account symmetry breakings due to the
masses of the produced particles, 4 with different
quark contents in the unitarity sum. Then the pre-
dictions of dual unitarization differ from those of
the CGZ model. ' In this case, instead of (4.14)—
(4.18) we have

[1+ri(0)]F ~ R
F)'ri(0}

2[1+(1 Fq)r, (-0)] ' ' I+(1-F~)r,(0) '

[1+r2(0)]Fc 1 Fc R
F g

2[1+(1-F )r,(0)] ' ' 2 ' Fg ' F

F.'r, (0)
1+(1—Fc)r,(0)

'

The simple quark-model relations (4.20) are not
then satisfied. Assuming the following represen-
tative value for Pomeron and Heggeon intercepts:

1 1np(0) =1, n, = —,, n, =4, n, =2n, —n, =O,

n, = (n, + n, )/2 = 4 + 2 n„n,= (n, + n, )/2 = -', n„

and for the suppression factors (Fq, Fc) =(1, 1),
(0.9, 0.8), (0.8, O.V), we obtain the numerical val-
ues for R, = o(V, N)/o (pN) for three different val-
ues of n, (0) =-2, -4, -6. They are summarized
in Table I.

Case (b). If we calculate the Pomeron couplings
by taking into account contributions from all possi-
ble trajectories in the loops of the unitarity sum,
then for QN scattering, for instance, we have

2~ = P [2y„./(q —n„.)] 2P .
z =2~3, 5

(4.22)

Proceeding as in case (a) we obtain, with SU4-sym-
metric coupling constants, the following relations:

R, =-,'(R, +1),
1 1 1 I -(n~ n, )/g' 1

g' n~ —n, 2(n~ —n, ) 2 [1—(n~ —n, )/g']

2(n~ —n, ) g' g' 2(n~ —n, ) n~ —n,

R3 1 1 1
+'

~ 2(n, -n, ) g' n, -n, 2(n, -n, ), '

1 1 1 1
R, =(np —n, ) ~— — R, —

g 2(n~ —n, ) n~ —n, 2(n~ —n, )

Q& —Q6 1
R3+ — +

1 —(n~ —n6}/g' - g nJ —n2 ns ns Q~ —Qg

—I/(n~ —n, ) —I/(n~ —n, )
2 [1 (np —n.}/g']—

1 1
2

Q~ —Q2 g

(4.23)

Note that the above solutions are reduced to the
relations (4.14)-(4.18) if the following two sets of
relations are valid: (i) The relation which holds
between the coupling constant g2 and the Regge in-
tercept

1 1 1 1
g' n~(0) —n, (0) n~(0) —n, (0) n~(0) —n, (0} '

(4.24)

which is a generalization of the familiar formula

g' =n~ —n, [see the sentence after Eq. (4.13) for
the case of the leading-trajectory approximation].
(ii) The two equal-spacing rules (2.20) and (2.22}
n, =2~(n, +n, ), n~= ,'(n, +n, ),—and also the relation
n, =—,(n, +n, ) are valid. These equal-spacing rules
and the relation (4.24) can be shown to follow from
bootstrap in the Reggeon sector for case (b) by
studying the set of equations in which all the tra-
jectories are included in the unitarity sum.

With the above two assumptions holding, the case
in which all dual diagrams are taken into account
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TABLE I. Comparison of dual unitary scheme with data for cross-section ratios.

E),=1, &c=1 09 ac=08 Ey= 0.8, Ec=0.7 Empirical values

R3=R@
R4 =Ra*
R5=Rp-*
RS=Rg

0.75

0.50
0.58
0.33
0.17

0.75

0.50
0.55
0.30
0.10

0.75

0.50
0 ~ 54
0.29
0.07

0.64

0.35
0.45
0.20
0.08

0.64

0.35
0.43
0.18
0.05

0.64

0.35
0.42
0.17
0.04

0.55

0.23
0.39
0.13
0.06

0.55

0.23
0.37
0 ~ 12
0.03

0.55

0.23
0.37
0.12
0.02

(0.8)
(o.73 + o.1)
0.45+0.2

(-o.52) '
-(0.23 + 0.08)
-o.o4 '&

S'=&ii=gppf'=o 5

n the absence of data for K*p, we quote the experimental ratio for o.(Kp)/a(zp). For detailed comparison with the CGZ
model see Ref. 15.

The value obtained from the quark-model relation (5.50) together with R3'" =0.45 +0.2.
As quoted in Ref. 6 or Ref. 16.
The value obtained from Eq. (5.51) together with R6" -p.p4.
The value obtained from Eq. (5.52) together with R6' -0.04,
The experimental values from photoproduction 0(pp) = 23 mb (Ref. 16) and 0(gN) =1 mb (Ref. 17) have been used.

Note, however, that for the latter, especially, the off-mass-shell problem of the vector-dominance model is not corn-
pletely understood.

~ See also V. Barger, lectures delivered at McGill Inst. of Particle Physics, 1975 (unpublished).

coincides with the case when only one leading dia-
gram is kept in the unitarity sum. The difference
is only in the coupling constant g'.

V. THE SLOPE PARAMETER OF DIFFERENTIAL CROSS
SECTION FOR DIFFRACTIVE SCATTERING

We denote by 2b(s} the slope of the diffraction
peak for large s defined as

I

2b(s)=( ln
)

and consider the predictions of the dual unitary
scheme for this parameter. While with respect
to the total-cross-section ratios the predictions
of the dual unitarization model coincide with those
of the CQZ model, as shown below, the predic-
tions of the two models for the slope parameters
differ.

We proceed in a similar way as Carlitz, Green,
and Zee' and assume s-channel helicity conserva-
tion for the differential cross section

dg =~"nonnip ~ ~~tiip ~

TABLE II. Comparison of dual unitarization and CGZ models for diffractive slopes in GeV

Dual unitariz ation
+~=0.4 GeV m~1=0. 2 Gev '

-2 -4 -6 -2 -4 -6

CGZ model
up=0. 4 GeV 2 &~=0.2 GeV 2

-2 -4 -6 -2 -4
Exper iment

b(K*N) - b(pN) -0.27 -0.27 -0.27 -0.30
b(QN) —b(pN) -0.80 -0.80 -0.80 —0.90
b(D*N) —b(pN) —0.19 -0.12 -0.09 -0.21
b(F *N) —b(pN) -0.93 -0.89 -0.87 -1.04

-0.30
-0.90
-0.14
-1.00

-0.30
-'0.90
-0.10
-0.98

-0.20
—0.60.
-0.14
-0.69

-0.20
-0.60
-0.09
-0.66

-0.20
-0.60
-0.07
-0.65

-0.27
-0.80
-0.19
-0.93

-0.27
-0.80
-0.12
-0.89

-0.27
-0.80
-0.09
-0.87

(-O.32 +O.15) '
-0.95 +0.45

-(-0.11) '
-(-1 o) '

b($N) —b(pN) -1.30 -1.34 -1.37 -1.46 -1.52 -1.55 -0.96 -0.98 -0.99 -1.30 -1.34 -1.37
-1~ 80
-1.25 f

The value predicted from (6.3) and (6.4) together with the experimental value b(QN) —b(pN) =-0.95 +0.45 GeV
From 2b(pN) =6.5+0.2 GeV 2 (Ref. 16) and 2b(QN) =.4.6+0.70 (Ref. 16).
The value obtained from (6.5) and (6.7) together with experimental value b(pN) —b(pN) =--1.25 GeV (Knapp et al. ,

Ref. 17).
The value obtained from (6.6), (6.4), and (6.7) together with experimental value b(jbN) —(pN) =-0.95 +0,45 GeV and

b(gN) —b(pN) =--1.25 GeV 2 and e&(0) =-4.
From 2b(gN) -2.9 GeV (Camerini et al. , Ref. 17).
From the value 2b(QN) -4.0 GeV (Knapp et al. , Ref. 17).
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of elastic scattering and neglect the real part of

fl p
in calculating the dif fraction s1ope $ . Then

we have

5, -5;= ln (5.2)

b(Z*N) —b(pN} = p', (0)/[1+ r, ( 0)],

b(yN} —b(pN) = r', (0)/r, (0),

(5.3)

(5.4)

l

We take the ratios of the Pomeron residues P& /P,
from the formulas (4.14)-(4.19). Further, we en-
visage the possibility that the t dependence of
P,. /PPa is introduced by giving corresponding t de-
pendence to a,.(0}and ap(0). Then we can derive
the following relations:

b(D*N) —b(pN) = r,'(0)/ [1+r,(0)], (5.5)

b(F*N) —b(pN) = [r', (0) + r,'(0)] / [r,(0) + r, (0)]

(5.6)

b(yN) —b(pN) = r', (0)/r, (0),

where

(5.V)

p', (0) = —p,(t), i =1, 2.6
t=O

Let us list the expressions for the p, (0)ous, r,'. (0)»s
of the dual unitarization scheme obtained from
Eqs. (4.19) and for the f-dominated Pomeron mod-
el of CGZ, ' r, (0)«.z, x',.(0)«z obtained from (4.21):

rx(0)ous =

&l(0}ous =

1( )CGZ

}ous

&s(0)ous =

ap(0) —a,(0) . ap(0) —a~(0)
ap(o) -a.(o) ' ' "' ap(o) —ay (o) '

[ap/2 —a', (o)][ap(o) —a,(o)] —(a'p/2 —a', ) [ap(o) —al(0)]
[ap(0) —as(0)] '

(ap —ay) [ap(o) —af (o)] —(ap —ay ) [ap(o) —ay(0)]
[ap(o) —ay (o)]'

a (0)-a,(0} a (0)-a (0)
ap(0) -a,(0) ' ' «z ap(0) —aq (0) '

+r(0)ous I replace ns-a rr r +s(0)«z= +l(0}«z I replace n~r -a oy

(5.6)

where

ap(0) = [1+ap(0)] /2,

and the prime denotes a derivative with respect to

As an illustration, we choose the following rep-
resentative forms' for the Regge and Pomeron
trajectories:

a &
=a

p „(f)=—a,(t) =0.5+0.90t,

a, , (f) = a,(f ) =0+0.60t,

aq ~ (t)=a,(t) =-2+0.5t, -4+0.5t, -6+0.5t,

ap(t) =1+0.4t, 1+0.2t .

The estimated values for b(VN) —b(pN) obtained
in our and in the CGZ models for two different
values ap =0.4 and 0.2 and for three values a&(0)
=-2, -4, and -6 are summarized in Table II.
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